JPH05152551A - Manufacture of solid-state imaging device - Google Patents

Manufacture of solid-state imaging device

Info

Publication number
JPH05152551A
JPH05152551A JP3312581A JP31258191A JPH05152551A JP H05152551 A JPH05152551 A JP H05152551A JP 3312581 A JP3312581 A JP 3312581A JP 31258191 A JP31258191 A JP 31258191A JP H05152551 A JPH05152551 A JP H05152551A
Authority
JP
Japan
Prior art keywords
substrate
solid
silicon substrate
manufacturing
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3312581A
Other languages
Japanese (ja)
Inventor
Muneo Harada
宗生 原田
Yoshiyuki Nishida
芳之 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3312581A priority Critical patent/JPH05152551A/en
Publication of JPH05152551A publication Critical patent/JPH05152551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enhance mechanical strength of a CCD solid-state imaging device chip of back surface irradiation type. CONSTITUTION:A glass substrate 10 and a silicon substrate 11 are banded together. The silicon substrate 11 is grounded and etched to about 10mum thickness. A dispersion area 12 which is reverse conductive type, being contrary to the silicon substrate 11, is formed on the surface of silicon substrate 11. A transfer electrode 14, being the first layer, is farmed on the silicon substrate 11 with an oxidized film 13 in between. Further, a transfer electrode 16, being the second layer, is formed with an oxidized film 15 in between, A light beam irradiated arm the glass substrate 10 transmits through the glass substrate 10 and then absorbed in the silicon substrate 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、素子形成面と対向する
裏面側に光を受ける裏面照射型の固体撮像素子の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a backside illumination type solid-state image pickup device which receives light on the backside opposite to the device formation surface.

【0002】[0002]

【従来の技術】テレビカメラ等の撮像装置に広く用いら
れているCCD固体撮像素子は、半導体基板上に複数の
転送電極を並列に形成し、光電変換作用により固体撮像
素子内に発生する情報電荷を転送電極が形成するチャネ
ル領域に蓄積して転送するように構成される。このよう
な固体撮像素子においては、被写体からの光を半導体基
板内に取り込むようにするため、光の入射経路の確保が
ひとつの課題となる。一般に、フレーム転送方式やイン
ターライン転送方式のCCD固体撮像素子においては、
転送電極の間隙に設けられた開口部を通して、あるいは
転送電極自体を透過して半導体基板内に光が取り込まれ
る。このような場合、光が入射される側に転送電極があ
るため、入射経路を広く確保するのに制限を受けること
になる。
2. Description of the Related Art A CCD solid-state image pickup device, which is widely used in image pickup devices such as television cameras, has a plurality of transfer electrodes formed in parallel on a semiconductor substrate, and information charges generated in the solid-state image pickup device by photoelectric conversion. Are stored and transferred in the channel region formed by the transfer electrode. In such a solid-state image pickup device, since the light from the subject is taken into the semiconductor substrate, securing an incident path of the light is one problem. Generally, in a CCD solid-state image sensor of frame transfer type or interline transfer type,
Light is taken into the semiconductor substrate through the openings provided in the gaps between the transfer electrodes or through the transfer electrodes themselves. In such a case, since the transfer electrode is provided on the side on which light is incident, it is limited to secure a wide incident path.

【0003】そこで、被写体からの光を半導体基板の裏
面側に受けるようにすることで、光を効率よく半導体基
板に取り込むようにすることが考えられている。図6に
そのような裏面照射型のCCD固体撮像素子を示す。P
型の導電型を示すシリコン基板1の表面には、情報電荷
の転送経路を成すチャネル領域が形成されるN型の拡散
領域2が形成され、この拡散領域2上に酸化膜(絶縁
膜)3を介して多結晶シリコンからなる複数の転送電極
4が並列に配置される。この1層目の転送電極4上に
は、さらに酸化膜(絶縁膜)5を介して2層目の転送電
極6が転送電極4の間隙を被うように配置される。これ
らの転送電極4、6には、例えば4相の転送クロックが
印加され、チャネル領域内のポテンシャル状態が転送ク
ロックに応答して変動させられることにより、チャネル
領域に発生する情報電荷が蓄積転送される。
Therefore, it is considered that the light from the subject is received on the back side of the semiconductor substrate so that the light can be efficiently taken into the semiconductor substrate. FIG. 6 shows such a backside illuminated CCD solid-state imaging device. P
N-type diffusion region 2 in which a channel region forming an information charge transfer path is formed is formed on the surface of a silicon substrate 1 having a conductivity type of an oxide, and an oxide film (insulating film) 3 is formed on the diffusion region 2. A plurality of transfer electrodes 4 made of polycrystalline silicon are arranged in parallel with each other. On the transfer electrode 4 of the first layer, a transfer electrode 6 of the second layer is further arranged via an oxide film (insulating film) 5 so as to cover the gap of the transfer electrode 4. For example, a four-phase transfer clock is applied to these transfer electrodes 4 and 6, and the potential state in the channel region is changed in response to the transfer clock, whereby information charges generated in the channel region are accumulated and transferred. It

【0004】ここでシリコン基板1は、裏面側に大きな
凹みを設けることにより、素子領域での厚みが10μm
程度まで薄く形成されており、これにより、シリコン基
板1の裏面側で光電変換によって発生した情報電荷(通
常はキャリア)が、再結合する前にチャネル領域に取り
込まれる。即ち、シリコン基板1内に入射する光の作用
で分離されるキャリア及びホールは、時間経過と共に再
結合するため、キャリアを蓄積するためのチャネル領域
を光の入射領域と近づけるように、キャリアを再結合の
前に情報電荷として蓄積できるようにシリコン基板1が
薄く形成される。従って、図中矢印で示すように、シリ
コン基板1の裏面側に被写体からの光が照射されて情報
電荷が発生すると、シリコン基板1の表面側の拡散領域
2に形成されるチャネル領域に情報電荷が取り込まれて
蓄積される。
Here, the silicon substrate 1 has a thickness of 10 μm in the element region by providing a large recess on the back surface side.
It is formed as thin as possible, and as a result, information charges (usually carriers) generated by photoelectric conversion on the back surface side of the silicon substrate 1 are taken into the channel region before recombination. That is, the carriers and holes separated by the action of the light incident on the silicon substrate 1 recombine with the passage of time, so that the carriers are re-coupled so that the channel region for accumulating the carriers is close to the light incident region. The silicon substrate 1 is formed thin so that it can be stored as an information charge prior to bonding. Therefore, as shown by the arrow in the figure, when the back surface side of the silicon substrate 1 is irradiated with light from a subject and information charges are generated, the information charges are generated in the channel region formed in the diffusion region 2 on the front surface side of the silicon substrate 1. Are captured and accumulated.

【0005】このような裏面照射型の固体撮像素子は、
例えば、IEEETRANSACTIONS ON E
LECTRON DEVICES、Vol ED−2
3、No.11、November 1976、「A
Backside Illuminated 400×
400 Charge Coupled Device
Imager」に詳しい。
Such a backside illumination type solid-state image pickup device is
For example, IEEE TRANSACTIONS ON E
LECTRON DEVICES, Vol ED-2
3, No. 11, November 1976, "A
Backside Illuminated 400x
400 Charge Coupled Device
For more information on Imager.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、シリコ
ン基板1が薄く形成されるためにチップの機械的強度が
不足し、素子形成後の組立て工程での取扱いが極めて難
しくなる。従って、組立て工程における製造歩留まりが
大幅に低下するおそれがあり、コストアップの原因とな
る。
However, since the silicon substrate 1 is formed thin, the mechanical strength of the chip is insufficient, and it becomes extremely difficult to handle it in the assembly process after element formation. Therefore, the manufacturing yield in the assembling process may be significantly reduced, which causes an increase in cost.

【0007】さらに、シリコン基板1の裏面側の凹みを
形成する際には、エッチング除去されるシリコン内に存
在する結晶欠陥や酸素析出等がシリコン基板1の活性領
域に転写される場合があり、これによりビットの欠陥や
感度むら等が発生する可能性がある。そして、シリコン
基板1の裏面側に凹みを形成するためのエッチング処理
についても、極めて長い時間を要することから、コスト
アップを招くことになる。
Further, when forming the recess on the back surface side of the silicon substrate 1, crystal defects, oxygen precipitation, etc. existing in the silicon to be removed by etching may be transferred to the active region of the silicon substrate 1, As a result, bit defects and uneven sensitivity may occur. Further, the etching process for forming the recess on the back surface side of the silicon substrate 1 also requires an extremely long time, resulting in an increase in cost.

【0008】そこで本発明は、裏面照射型のCCD固体
撮像素子の製造工程を簡略化することを目的とする。
Therefore, an object of the present invention is to simplify the manufacturing process of a backside illuminated CCD solid-state image pickup device.

【0009】[0009]

【課題を解決するための手段】本発明は、上述の課題を
解決するために成されたもので、その特徴とするとここ
ろは、半導体基板の一方の面上に薄い絶縁膜を介して複
数のゲート電極が形成され、上記半導体基板の他方の面
側から照射される光により基板内に発生する情報電荷を
上記半導体基板の一方の面側の表面に形成されるチャネ
ル領域に集めて転送出力する固体撮像素子の製造方法に
おいて、入射光を吸収して光電変換作用により情報電荷
を発生する単結晶シリコンからなる第1の基板と上記入
射光に対して透明な酸化シリコンを主成分とする第2の
基板とを貼り合わせる工程、及び、上記第1の基板をこ
の基板の他方の面側に発生する上記情報電荷を再結合前
に上記チャネル領域まで導くことができる厚さまで薄く
する工程、を含むことにある。
The present invention has been made to solve the above-mentioned problems, and is characterized by a plurality of hearts on one surface of a semiconductor substrate via a thin insulating film. A gate electrode is formed, and information charges generated in the substrate by light emitted from the other surface side of the semiconductor substrate are collected and transferred to a channel region formed on the one surface side of the semiconductor substrate. In a method for manufacturing a solid-state image sensor, a first substrate made of single crystal silicon that absorbs incident light and generates information charges by photoelectric conversion action, and a second substrate that contains silicon oxide that is transparent to the incident light as a main component. And a step of thinning the first substrate to a thickness that can guide the information charges generated on the other surface side of the substrate to the channel region before recombination. In the door.

【0010】[0010]

【作用】本発明によれば、素子を形成する基板を薄いシ
リコン基板と厚いガラス基板との2相構造とすることに
より、チップの機械的強度を保ったままの状態で、裏面
側から入射される光が吸収される領域と情報電荷が蓄積
領域との距離を小さくすることができる。また、各転送
電極を形成する前の段階でシリコン基板を薄く形成する
ことができるため、製造工程が大幅に簡略化される。
According to the present invention, the device forming substrate has a two-phase structure of a thin silicon substrate and a thick glass substrate, so that the light is incident from the back surface side while maintaining the mechanical strength of the chip. It is possible to reduce the distance between the region where the light is absorbed and the region where the information charges are accumulated. Further, since the silicon substrate can be thinly formed before forming each transfer electrode, the manufacturing process is greatly simplified.

【0011】[0011]

【実施例】図1乃至図5は、本発明の固体撮像素子の製
造方法を説明する工程順断面図である。まず、図1の如
く、入射される光に対して透明な石英基板(ガラス基
板)10と、光を吸収して光電変換するシリコン基板1
1とを貼り合わせて一体化する。この貼り合わせ方法と
しては、各基板10、11に親水処理を施した後に密着
させ、さらに700℃以上の加熱処理を施すことにより
行うことができる。このような親水処理及び加熱処理に
よると、親水処理により基板10、11の表面に付され
た水酸基(−OH)が互いに水素結合し、さらに加熱処
理により水素結合していた水酸基がH2Oとなって脱水
縮合を引き起こすため、固体撮像素子を形成する基板と
して十分な強度を得ることができる。
1 to 5 are cross-sectional views in order of steps, illustrating a method for manufacturing a solid-state image sensor according to the present invention. First, as shown in FIG. 1, a quartz substrate (glass substrate) 10 that is transparent to incident light and a silicon substrate 1 that absorbs light and performs photoelectric conversion.
1 and 1 are attached and integrated. This bonding method can be performed by applying hydrophilic treatment to each of the substrates 10 and 11 and then bringing them into close contact with each other, and further performing heat treatment at 700 ° C. or higher. According to the hydrophilic treatment and the heat treatment, the hydroxyl groups (—OH) attached to the surfaces of the substrates 10 and 11 are hydrogen-bonded to each other by the hydrophilic treatment, and the hydroxyl groups hydrogen-bonded by the heat treatment are H 2 O. Since it causes dehydration condensation, sufficient strength can be obtained as a substrate for forming a solid-state imaging device.

【0012】そして、シリコン基板11側を研磨して最
後にエッチングを施し、図2に示すように、シリコン基
板11の厚さを最終的に10μm程度とする。このシリ
コン基板11は、石英基板10側の表面付近で発生した
キャリアを反対側の表面に形成されるチャネル領域に再
結合前に取り込むことができ、且つ、入射された光を十
分に吸収できるだけの厚さに形成される。なお、石英基
板10の厚さは、500μm前後に形成される。
Then, the silicon substrate 11 side is polished and finally subjected to etching to finally set the thickness of the silicon substrate 11 to about 10 μm as shown in FIG. The silicon substrate 11 can take in carriers generated near the surface on the quartz substrate 10 side into a channel region formed on the opposite surface before recombination and can sufficiently absorb incident light. Formed to a thickness. The quartz substrate 10 is formed to have a thickness of about 500 μm.

【0013】続いて、P型の導電型を成すシリコン基板
11の表面に、図3に示すように、チャネル領域を形成
するためのN型の拡散領域12を形成する。さらに、図
4に示すように、酸化膜13を介して多結晶シリコンを
積層し、これに所定のパターンを転写して転送電極14
を形成する。そして、転送電極14上に酸化膜15を介
して再度多結晶シリコンを積層し、図5に示すように、
1層目の転送電極14の間隙を被う領域に2層目の転送
電極16を形成する。この転送電極14、16の製造工
程については、図6に示す従来の固体撮像素子と同一で
ある。
Subsequently, as shown in FIG. 3, an N type diffusion region 12 for forming a channel region is formed on the surface of the silicon substrate 11 of P type conductivity type. Further, as shown in FIG. 4, polycrystalline silicon is laminated with an oxide film 13 interposed therebetween, and a predetermined pattern is transferred to this to form the transfer electrode 14.
To form. Then, polycrystalline silicon is laminated again on the transfer electrode 14 via the oxide film 15, and as shown in FIG.
The transfer electrode 16 of the second layer is formed in the region covering the gap of the transfer electrode 14 of the first layer. The manufacturing process of the transfer electrodes 14 and 16 is the same as that of the conventional solid-state imaging device shown in FIG.

【0014】このようにして得られる固体撮像素子は、
基板が石英基板10とシリコン基板11との2層構造を
成しているため、石英基板10側から入射される光は、
石英基板10を透過してシリコン基板11に達し、シリ
コン基板11で吸収される。即ち、酸化シリコン(Si
2)を主成分とする石英基板10は、可視光(赤外光
を含む)に対して光学的に透明であるため、入射した光
を吸収することなく透過してシリコン基板11に照射す
る。これに対してシリコン基板11は、照射された光を
吸収して光電変換し、情報電荷となるキャリアを発生す
る。従って、ガラス基板10により、シリコン基板11
への光の入射に影響を与えることなくチップに機械的強
度が与えられ、製造工程でのチップの取扱いが簡単とな
る。
The solid-state image sensor thus obtained is
Since the substrate has a two-layer structure of the quartz substrate 10 and the silicon substrate 11, the light incident from the quartz substrate 10 side is
The light passes through the quartz substrate 10, reaches the silicon substrate 11, and is absorbed by the silicon substrate 11. That is, silicon oxide (Si
Since the quartz substrate 10 containing O 2 ) as a main component is optically transparent to visible light (including infrared light), the incident light is transmitted through the silicon substrate 11 without being absorbed. .. On the other hand, the silicon substrate 11 absorbs the irradiated light and photoelectrically converts the light to generate carriers that become information charges. Therefore, the glass substrate 10 allows the silicon substrate 11
Mechanical strength is imparted to the chip without affecting the incidence of light on the chip, which simplifies the handling of the chip during the manufacturing process.

【0015】[0015]

【発明の効果】本発明によれば、裏面照射型の固体撮像
素子のチップの機械的強度を高くすることができるた
め、製造工程での取扱いが容易となり、製造歩留まりの
向上が望める。さらに、基板を薄くするための長時間の
エッチング処理が必要なくなるため、製造コストの低減
が図れる。
According to the present invention, since the mechanical strength of the chip of the backside illumination type solid-state image pickup device can be increased, the handling in the manufacturing process is facilitated and the manufacturing yield can be improved. Furthermore, since it is not necessary to perform a long etching process for thinning the substrate, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体撮像素子の製造方法の第1工程を
示す断面図である。
FIG. 1 is a cross-sectional view showing a first step of a method for manufacturing a solid-state image sensor according to the present invention.

【図2】本発明の固体撮像素子の製造方法の第2工程を
示す断面図である。
FIG. 2 is a cross-sectional view showing a second step of the method for manufacturing a solid-state imaging device of the present invention.

【図3】本発明の固体撮像素子の製造方法の第3工程を
示す断面図である。
FIG. 3 is a cross-sectional view showing a third step of the method for manufacturing a solid-state imaging device of the present invention.

【図4】本発明の固体撮像素子の製造方法の第4工程を
示す断面図である。
FIG. 4 is a cross-sectional view showing a fourth step of the method for manufacturing a solid-state imaging device of the present invention.

【図5】本発明の固体撮像素子の製造方法の第5工程を
示す断面図である。
FIG. 5 is a cross-sectional view showing a fifth step of the method for manufacturing a solid-state imaging device of the present invention.

【図6】従来の裏面照射型の固体撮像素子を示す断面図
である。
FIG. 6 is a cross-sectional view showing a conventional backside illumination type solid-state imaging device.

【符号の説明】[Explanation of symbols]

10 ガラス基板 1、11 シリコン基板 2、12 拡散領域 3、5、13、15 酸化膜 4、6、14、16 転送電極 10 glass substrate 1, 11 silicon substrate 2, 12 diffusion region 3, 5, 13, 15 oxide film 4, 6, 14, 16 transfer electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一方の面上に薄い絶縁膜を
介して複数のゲート電極が形成され、上記半導体基板の
他方の面側から照射される光により基板内に発生する情
報電荷を上記半導体基板の一方の面側の表面付近に形成
されるチャネル領域に集めて転送出力する固体撮像素子
の製造方法において、入射光を吸収して光電変換作用に
より情報電荷を発生する単結晶シリコンからなる第1の
基板と上記入射光に対して透明な酸化シリコンを主成分
とする第2の基板とを貼り合わせる工程、及び、上記第
1の基板をこの基板の他方の面側に発生する上記情報電
荷を再結合前に上記チャネル領域まで導くことができる
厚さまで薄くする工程、を含むことを特徴とする固体撮
像素子の製造方法。
1. A plurality of gate electrodes are formed on one surface of a semiconductor substrate via a thin insulating film, and information charges generated in the substrate by light emitted from the other surface side of the semiconductor substrate are formed. A method of manufacturing a solid-state imaging device, which collects and transfers and outputs to a channel region formed near the surface on one surface side of a semiconductor substrate, which is made of single crystal silicon that absorbs incident light and generates information charges by photoelectric conversion. A step of bonding a first substrate and a second substrate containing silicon oxide as a main component, which is transparent to the incident light, and the information generated on the other surface side of the first substrate A method of manufacturing a solid-state image sensor, comprising: a step of thinning electric charges to a thickness capable of leading to the channel region before recombination.
【請求項2】 第1の基板と第2の基板とを密着させ、
さらに加熱処理して両基板を貼り合わせる工程を有する
ことを特徴とする請求項1記載の固体撮像素子の製造方
法。
2. A first substrate and a second substrate are brought into close contact with each other,
The method for manufacturing a solid-state image pickup device according to claim 1, further comprising a step of performing heat treatment to bond both substrates.
【請求項3】 第2の基板と貼り合わされた第1の基板
を表面側から切削した後、エッチングして所定の厚さを
得ることを特徴とする請求項1記載の固体撮像素子の製
造方法。
3. The method for manufacturing a solid-state imaging device according to claim 1, wherein the first substrate bonded to the second substrate is cut from the front surface side and then etched to obtain a predetermined thickness. ..
JP3312581A 1991-11-27 1991-11-27 Manufacture of solid-state imaging device Pending JPH05152551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3312581A JPH05152551A (en) 1991-11-27 1991-11-27 Manufacture of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3312581A JPH05152551A (en) 1991-11-27 1991-11-27 Manufacture of solid-state imaging device

Publications (1)

Publication Number Publication Date
JPH05152551A true JPH05152551A (en) 1993-06-18

Family

ID=18030929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3312581A Pending JPH05152551A (en) 1991-11-27 1991-11-27 Manufacture of solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH05152551A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907767A (en) * 1996-06-11 1999-05-25 Nec Corporation Backside-illuminated charge-coupled device imager and method for making the same
JP2010118675A (en) * 2010-01-12 2010-05-27 Sony Corp Solid-state image sensing device and production method of the same
JP2010258463A (en) * 2010-06-18 2010-11-11 Sony Corp Method of manufacturing solid-state imaging device
US7834413B2 (en) 2003-12-04 2010-11-16 Hamamatsu Photonics K.K. Semiconductor photodetector and method of manufacturing the same
US7943968B1 (en) 1996-12-24 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Charge transfer semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907767A (en) * 1996-06-11 1999-05-25 Nec Corporation Backside-illuminated charge-coupled device imager and method for making the same
US7943968B1 (en) 1996-12-24 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Charge transfer semiconductor device and manufacturing method thereof
US7834413B2 (en) 2003-12-04 2010-11-16 Hamamatsu Photonics K.K. Semiconductor photodetector and method of manufacturing the same
JP2010118675A (en) * 2010-01-12 2010-05-27 Sony Corp Solid-state image sensing device and production method of the same
JP2010258463A (en) * 2010-06-18 2010-11-11 Sony Corp Method of manufacturing solid-state imaging device

Similar Documents

Publication Publication Date Title
JP3924352B2 (en) Backside illuminated light receiving device
KR101067619B1 (en) Solid state imaging device and method of manufacturing the same
JP3713418B2 (en) Manufacturing method of three-dimensional image processing apparatus
JP4915107B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP3620936B2 (en) Back-illuminated light receiving device and manufacturing method thereof
JP3719947B2 (en) Solid-state imaging device and manufacturing method thereof
JP4165129B2 (en) Back-illuminated solid-state image sensor
JP4304927B2 (en) Solid-state imaging device and manufacturing method thereof
JP4691939B2 (en) Manufacturing method of back-illuminated solid-state imaging device
JP2797984B2 (en) Solid-state imaging device and method of manufacturing the same
JP2005259828A (en) Solid state imaging device and its manufacturing method
JP2003078826A (en) Solid-state imaging device
JPH05167056A (en) Lamination-type solid-state image sensing device
JP2866328B2 (en) Solid-state imaging device
JPH05152551A (en) Manufacture of solid-state imaging device
JPH07169931A (en) Semiconductor device and its manufacture
JPH04103168A (en) Solid-state image sensing element
WO2022149362A1 (en) Solid-state imaging device and electronic apparatus
JPH0945884A (en) Solid-state image pickup device and manufacture thereof
JPH09172156A (en) Solid-state image pick-up device and its fabrication
JP3310051B2 (en) Back-illuminated semiconductor device and method of manufacturing the same
JPH0645575A (en) Method of manufacturing semiconductor energy detector
JPH04263469A (en) Solid-state image sensing device
TW200425491A (en) Solid-state image pickup device, charge transferring method of solid-state image pickup device, and manufacturing method of solid-state image pickup device
WO2022145138A1 (en) Solid-state imaging device and method for manufacturing same, and electronic instrument