JPH05151962A - Positive electrode plate for alkaline storage battery - Google Patents

Positive electrode plate for alkaline storage battery

Info

Publication number
JPH05151962A
JPH05151962A JP3310508A JP31050891A JPH05151962A JP H05151962 A JPH05151962 A JP H05151962A JP 3310508 A JP3310508 A JP 3310508A JP 31050891 A JP31050891 A JP 31050891A JP H05151962 A JPH05151962 A JP H05151962A
Authority
JP
Japan
Prior art keywords
active material
cobalt
anode plate
compound
hydrophilic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3310508A
Other languages
Japanese (ja)
Other versions
JP3097238B2 (en
Inventor
Makoto Konishi
真 小西
Takayuki Kitano
隆之 北野
Mitsunori Oda
光徳 織田
Seiji Tsunoda
誠司 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP03310508A priority Critical patent/JP3097238B2/en
Publication of JPH05151962A publication Critical patent/JPH05151962A/en
Application granted granted Critical
Publication of JP3097238B2 publication Critical patent/JP3097238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a positive electrode plate for alkaline storage battery with high energy density and good lifetime characteristic by lessening the adding amount of cobalt compound. CONSTITUTION:A compound layer 4 containing cobalt compound re-educed in the from of cobalt oxy-hydroxide is provided over the surface of an active material 3 to form an active material layer 2. A hydrophilic organic substance film 6 is formed over the surface of this active material layer 2. This permits lessning the adding amount of cobalt compound because the hydrophilic organic substance film 6 prevents the dissolved cobalt ions from dispersing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用陽極
板に関するものである。
FIELD OF THE INVENTION The present invention relates to an anode plate for an alkaline storage battery.

【0002】[0002]

【従来の技術】アルカリ蓄電池用陽極板はニッケル等の
陽極活物質が集電体に保持されて構成される。一般的
に、アルカリ蓄電池用陽極板は集電体の構成と活物質の
態様とによって焼結式陽極板とペースト式陽極板とに分
けられる。焼結式陽極板を製造するには、まずメチルセ
ルロース,カルボキシメチルセルロース等の粘結剤水溶
液とカルボニルニッケル粉末等の焼結用粉末とを練り合
わせたスラリをニッケルメッキした鉄等の穿孔板に塗布
した後、乾燥,焼結を行い集電体(焼結基体)を作る。
次に、硝酸ニッケル等を主成分とする酸性溶液にこの焼
結基体を浸漬した後、さらに水酸化ナトリウム等の水溶
液に浸漬する含浸工程を数回繰り返して、水酸化ニッケ
ルを主成分とする活物質を焼結基体に充填して製造す
る。ペースト式陽極板は、ポリビニルアルコール等の有
機糊料で結着した水酸化ニッケル粉末を発泡ニッケル等
の集電体(三次元網目構造体等)に直接充填して製造す
る。前者の焼結式陽極板は、含浸工程を繰り返し行わな
ければならないため、活物質の高密度充填が難かしく、
陽極板のエネルギ密度を十分に高くすることができな
い。これに対して後者のペースト式陽極板は、活物質の
体積当りの充填密度を高くできるものの、焼結式陽極板
に比べて集電体である三次元網目構造体のマトリックス
の孔部が大きいため、集電効果が悪くなって活物質の利
用率が低くなり、必ずしもエネルギ密度を十分に高める
ことができない。このように、焼結式陽極板もペースト
式陽極板も共にエネルギ密度を十分に高めることができ
ない。そこで、従来よりアルカリ蓄電池用陽極板のエネ
ルギ密度を高める技術が種々検討されている。
2. Description of the Related Art An anode plate for an alkaline storage battery is constructed by holding an anode active material such as nickel on a current collector. Generally, an anode plate for an alkaline storage battery is classified into a sintered type anode plate and a paste type anode plate depending on the constitution of the current collector and the mode of the active material. In order to manufacture a sintered anode plate, first, a slurry prepared by kneading an aqueous binder solution such as methyl cellulose or carboxymethyl cellulose and a sintering powder such as carbonyl nickel powder is applied to a perforated plate such as iron plated with nickel. Then, dry and sinter to make a current collector (sintered substrate).
Next, the impregnation step of immersing the sintered substrate in an acidic solution containing nickel nitrate as a main component and then further immersing it in an aqueous solution of sodium hydroxide etc. is repeated several times to obtain an active material containing nickel hydroxide as a main component. The material is manufactured by filling a sintered substrate. The paste type anode plate is manufactured by directly filling a nickel hydroxide powder bound with an organic paste such as polyvinyl alcohol into a current collector (three-dimensional mesh structure or the like) such as foamed nickel. In the former type of sintered anode plate, it is difficult to densely fill the active material because the impregnation process must be repeated.
The energy density of the anode plate cannot be made sufficiently high. On the other hand, the latter paste-type anode plate can increase the packing density per volume of the active material, but has larger pores in the matrix of the three-dimensional mesh structure, which is a current collector, than the sintering-type anode plate. Therefore, the current collecting effect is deteriorated, the utilization factor of the active material is lowered, and the energy density cannot always be sufficiently increased. Thus, neither the sintered type anode plate nor the paste type anode plate can sufficiently increase the energy density. Therefore, various techniques for increasing the energy density of the anode plate for an alkaline storage battery have been studied conventionally.

【0003】焼結式陽極板の活物質利用率を高める技術
としては、例えば活物質の表面にオキシ水酸化コバルト
として再析出される水酸化コバルト等のコバルト化合物
を主成分とする層を形成して、放電時の活物質の利用率
を上げる技術が特開昭59−163753号公報に開示
されている。活物質の表面に水酸化コバルト等のコバル
ト化合物が添加された陽極板では、電池を組み立てるた
めに電解液内に配置されると、コバルト化合物が溶解化
学種[ヒドロオクソコバルト(II)酸イオン(HCoO
2 - )]として電解液中に溶解する。そして電池に最初
の充電が行われるとHCoO 2 - が導電性の高いオキシ
水酸化コバルトとして活物質表面に再析出して陽極板の
活物質の表面の導電性が向上する。また、ペースト式陽
極板の活物質利用率を高める技術としては、特開昭62
−256367号公報に、水酸化ニッケル粉末に水酸化
コバルトや酸化コバルト等のコバルト化合物または金属
コバルトの粉末を加えた混合粉末を活物質材料として用
いたペーストを用いて、陽極板の放電時の活物質の利用
率を高くする技術が開示されている。また特公平3−2
0860号公報には、ニッケル、コバルト、カドミウム
及びこれらの金属の化合物からなる層を活物質の表面に
形成して放電容量の高い陽極板を得る技術が開示されて
いる。
As a technique for increasing the utilization rate of the active material of the sintered type anode plate, for example, a layer containing a cobalt compound such as cobalt hydroxide reprecipitated as cobalt oxyhydroxide on the surface of the active material is formed. Japanese Patent Application Laid-Open No. 59-163753 discloses a technique for increasing the utilization rate of the active material during discharge. In an anode plate in which a cobalt compound such as cobalt hydroxide is added to the surface of an active material, when the cobalt compound is placed in an electrolytic solution to assemble a battery, the cobalt compound dissolves into a dissolved species [hydrooxocobalt (II) ion ( HCoO
2 -)] as dissolved in the electrolyte. When the battery is first charged, HCoO 2 is re-precipitated on the surface of the active material as highly conductive cobalt oxyhydroxide, and the conductivity of the surface of the active material of the anode plate is improved. Further, as a technique for increasing the utilization rate of the active material of the paste type anode plate, there is disclosed in Japanese Patent Laid-Open No. Sho 62-62.
No. 256367, a paste containing a powder of a cobalt compound such as cobalt hydroxide or cobalt oxide or a powder of metallic cobalt added to a powder of nickel hydroxide as an active material is used to activate an anode plate at the time of discharging. Techniques for increasing the utilization rate of substances are disclosed. In addition, 3-2
Japanese Unexamined Patent Publication No. 0860 discloses a technique in which a layer composed of nickel, cobalt, cadmium and a compound of these metals is formed on the surface of an active material to obtain an anode plate having a high discharge capacity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
陽極板では電解液に溶解したHCoO 2 - の多くが活物
質表面に再析出することなく電解液中へ散逸するため、
比較的多量のコバルト化合物を活物質層に添加してHC
oO 2 - の活物質表面への必要な再析出量を確保してい
た。例えば、焼結式陽極板では、活物質に対して少なく
とも0.5wt% 以上、望ましくは2〜4wt% のコバルト
化合物を添加していた。また、ペースト式陽極板では活
物質に対して5〜30wt%のコバルト化合物を添加して
いた。コバルト化合物の添加量が多くなると、活物質で
ある水酸化ニッケルの充填量が相対的に減少することに
なるため、容量が低下して、コバルト化合物を添加した
にもかかわらず充分に陽極板のエネルギ密度を高くする
ことができなかった。
However, in the conventional anode plate, most of HCoO 2 dissolved in the electrolytic solution is diffused into the electrolytic solution without being reprecipitated on the surface of the active material.
By adding a relatively large amount of cobalt compound to the active material layer, HC
The necessary amount of redeposition of oO 2 − on the surface of the active material was secured. For example, in a sintered anode plate, at least 0.5 wt% or more, preferably 2 to 4 wt% of a cobalt compound was added to the active material. Further, in the paste type anode plate, 5 to 30 wt% of the cobalt compound was added to the active material. If the addition amount of the cobalt compound is increased, the filling amount of the nickel hydroxide as the active material is relatively decreased, so that the capacity is lowered and the anode plate is sufficiently charged even though the cobalt compound is added. The energy density could not be increased.

【0005】本発明の目的は、エネルギ密度が高く寿命
特性が良好なアルカリ蓄電池に用いる陽極板を提供する
ことにある。
An object of the present invention is to provide an anode plate used in an alkaline storage battery having high energy density and good life characteristics.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、オキ
シ水酸化コバルトとして再析出されるコバルト化合物を
含む化合物層が活物質の表面に形成された活物質層を備
えたアルカリ蓄電池用陽極板を対象として、活物質層の
表面に親水性有機物被膜を形成する。
According to the invention of claim 1, an alkaline storage battery anode is provided with an active material layer in which a compound layer containing a cobalt compound re-deposited as cobalt oxyhydroxide is formed on the surface of the active material. A hydrophilic organic film is formed on the surface of the active material layer for the plate.

【0007】請求項2の発明は、請求項1の発明のアル
カリ蓄電池用陽極板の化合物層に水酸化カドミウムを含
有させる。
According to a second aspect of the invention, the compound layer of the alkaline storage battery anode plate of the first aspect contains cadmium hydroxide.

【0008】[0008]

【作用】請求項1の発明のように、活物質層の表面に親
水性有機物被膜を形成すると、コバルト化合物が、HC
oO 2 - として電解液中に溶解しても、親水性有機物被
膜によりHCoO 2 - が陽極板外へ散逸するのを防ぐこ
とができる。そのため、比較的多くのオキシ水酸化コバ
ルトを電池の最初の充電時に活物質表面に再析出させる
ことができる。したがって、少ないコバルト化合物の添
加量で必要十分なオキシ水酸化コバルト層を形成するこ
とができ、コバルト化合物の添加量が少なくてすむ分だ
け活物質の量を増やすことができる。そのため、活物質
の充填密度を高めて、陽極板のエネルギ密度を高めるこ
とができる。尚、親水性有機物被膜は少なくとも電池形
成後の最初の充電時まで活物質層の表面に形成されてい
れば、その機能を果たすが、最初の充電を行った後にお
いても、活物質層の表面に親水性有機物被膜が形成され
ていれば、活物質表面に再析出されたオキシ水酸化コバ
ルトの脱落を抑制する機能を果たす。
When a hydrophilic organic film is formed on the surface of the active material layer as in the first aspect of the invention, the cobalt compound is converted into HC.
Even if dissolved in the electrolytic solution as oO 2 , it is possible to prevent HCoO 2 − from being dissipated to the outside of the anode plate due to the hydrophilic organic film. Therefore, a relatively large amount of cobalt oxyhydroxide can be re-precipitated on the surface of the active material during the initial charging of the battery. Therefore, the necessary and sufficient cobalt oxyhydroxide layer can be formed with a small amount of the cobalt compound added, and the amount of the active material can be increased by the amount of the cobalt compound added. Therefore, the packing density of the active material can be increased and the energy density of the anode plate can be increased. If the hydrophilic organic film is formed on the surface of the active material layer at least until the first charging after the battery is formed, it fulfills its function, but even after the initial charging, the surface of the active material layer is fulfilled. If the hydrophilic organic substance coating is formed on the surface of the active material, it has a function of suppressing the dropout of cobalt oxyhydroxide re-precipitated on the surface of the active material.

【0009】請求項2の発明のように、化合物層に水酸
化カドミウムを含有させると、コバルト化合物が電解液
中に溶解するのが助長されるため、オキシ水酸化コバル
トの活物質表面への再析出量が増えて陽極板のエネルギ
密度を高めることができる。さらに、化合物層に水酸化
カドミウムを含有させると陽極板の膨潤による活物質の
脱落を抑制できる。
When the compound layer contains cadmium hydroxide as in the invention of claim 2, dissolution of the cobalt compound in the electrolytic solution is promoted, so that the cobalt oxyhydroxide is re-applied to the surface of the active material. The amount of precipitation increases, and the energy density of the anode plate can be increased. Further, when the compound layer contains cadmium hydroxide, it is possible to prevent the active material from falling off due to the swelling of the anode plate.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0011】(実施例1)図1は本発明を焼結式ニッケ
ル陽極板に適用した実施例の表面部を拡大して示した模
式図である。図1において1は集電体を構成する焼結基
体であり、この焼結基体1はニッケル粉末が焼結されて
形成されている。2は活物質層であり、この活物質層2
は水酸化ニッケルを主成分とする活物質3の表面にコバ
ルト化合物を主成分とする化合物層4が形成されて構成
されている。本実施例の陽極板では、化合物層4はオキ
シ水酸化コバルトとして活物質3の表面に再析出される
酸化コバルトまたは水酸化コバルト等のコバルト化合物
に水酸化カドミウムが添加された材料から形成されてい
る。化合物層4は活物質3の表面と、焼結基体1の露出
した表面とを覆う形で形成されており、この化合物層4
により活物質3と焼結体1との間の密着性が向上する。
5は活物質層2内に形成された多孔部であり、この多孔
部5内に電解液が浸入して、電池の充放電が行われる。
6は活物質層2の表面に形成された耐アルカリ性を有す
る親水性有機物被膜であり、本実施例では親水性有機物
被膜6をポリビニルアルコール(PVA)により形成し
ている。親水性有機物被膜6は電解液は透過するがHC
oO2 - が簡単に透過しないものであればよく、PVA
の他に、例えばカルボキシメチルセルロース,メチルセ
ルロース等のセルロース誘導体等によってこの被膜6を
形成しても良い。
(Embodiment 1) FIG. 1 is an enlarged schematic view showing a surface portion of an embodiment in which the present invention is applied to a sintered nickel anode plate. In FIG. 1, reference numeral 1 denotes a sintered base that constitutes a current collector, and this sintered base 1 is formed by sintering nickel powder. 2 is an active material layer, and this active material layer 2
Is formed by forming a compound layer 4 containing a cobalt compound as a main component on the surface of an active material 3 containing nickel hydroxide as a main component. In the anode plate of this embodiment, the compound layer 4 is formed of a material obtained by adding cadmium hydroxide to a cobalt compound such as cobalt oxide or cobalt hydroxide which is redeposited on the surface of the active material 3 as cobalt oxyhydroxide. There is. The compound layer 4 is formed so as to cover the surface of the active material 3 and the exposed surface of the sintered substrate 1.
Thereby, the adhesion between the active material 3 and the sintered body 1 is improved.
Reference numeral 5 denotes a porous portion formed in the active material layer 2, and the electrolytic solution penetrates into the porous portion 5 to charge and discharge the battery.
Reference numeral 6 denotes a hydrophilic organic substance coating film having alkali resistance formed on the surface of the active material layer 2. In this embodiment, the hydrophilic organic substance coating film 6 is formed of polyvinyl alcohol (PVA). The hydrophilic organic substance coating 6 is permeable to the electrolytic solution but is HC
oO 2 - is as long as it does not easily transparent, PVA
Alternatively, the coating 6 may be formed of a cellulose derivative such as carboxymethyl cellulose or methyl cellulose.

【0012】電池を組立てるため、または化成処理のた
めに、本実施例の陽極板を電解液内に配置すると、電解
液が陽極板の多孔部5内に入り、化合物層4の酸化コバ
ルトまたは水酸化コバルトは多孔部5内の電解液中に溶
出する。溶出したHCoO 2 - は、親水性有機物被膜6
により囲まれた領域から放出されずに、その殆どが、電
池の最初の充電時にオキシ水酸化コバルトとして活物質
3の表面に析出する。オキシ水酸化コバルトが活物質3
に析出された後も、この親水性有機物被膜6はオキシ水
酸化コバルトが脱落するのを抑制する。
When the anode plate of this embodiment is placed in the electrolytic solution for assembling a battery or for chemical conversion treatment, the electrolytic solution enters the porous portion 5 of the anode plate and the cobalt oxide or the water of the compound layer 4 is added. Cobalt oxide is eluted in the electrolytic solution in the porous portion 5. The eluted HCoO 2 - is a hydrophilic organic film 6
Most of it is not released from the area surrounded by and is deposited on the surface of the active material 3 as cobalt oxyhydroxide during the first charge of the battery. Cobalt oxyhydroxide is the active material 3
The hydrophilic organic film 6 prevents the cobalt oxyhydroxide from falling off even after being deposited.

【0013】次にこの実施例のアルカリ蓄電池用陽極板
を製造する方法を説明する。まず、多孔度85%のニッ
ケルからなる焼結基体1を硝酸ニッケル6mol/l を含有
する溶液(温度50℃)に15分間浸漬した後に70℃
で20分間乾燥し、その後に、20%水酸化カリウム水
溶液中に浸漬した後に余分なアルカリを水洗で除去して
乾燥する工程を4〜5回繰り返して焼結基体1に所定量
の活物質3を充填した。次に、活物質3を充填した焼結
基体1を硝酸カドミウム及び硝酸コバルトの水溶液(温
度50℃)に20分間浸漬し、この浸漬の後に90℃で
20分間乾燥した後、20%水酸化カリウム水溶液にさ
らに20分間浸漬した。その後、余分なアルカリを水洗
で除去した後、乾燥を行って活物質3の表面に化合物層
4を形成して活物質層2を形成した。次に活物質層2を
形成した焼結基体1を所定の濃度のポリビニルアルコー
ル水溶液に浸漬した後に乾燥を行い活物質層2の表面に
親水性有機物被膜6が形成された未化成のアルカリ蓄電
池用ニッケル陽極板を製造した。
Next, a method of manufacturing the anode plate for alkaline storage batteries of this embodiment will be described. First, the sintered substrate 1 made of nickel having a porosity of 85% was dipped in a solution containing nickel nitrate 6 mol / l (temperature 50 ° C.) for 15 minutes, and then at 70 ° C.
For 20 minutes, and then, dipping in a 20% aqueous solution of potassium hydroxide, and then removing excess alkali by washing with water and drying the same, which is repeated 4 to 5 times. Was filled. Next, the sintered substrate 1 filled with the active material 3 is immersed in an aqueous solution of cadmium nitrate and cobalt nitrate (temperature: 50 ° C.) for 20 minutes, and after this immersion, dried at 90 ° C. for 20 minutes, and then 20% potassium hydroxide. It was further immersed in the aqueous solution for 20 minutes. Then, after removing excess alkali by washing with water, it was dried to form the compound layer 4 on the surface of the active material 3 to form the active material layer 2. Next, the sintered substrate 1 on which the active material layer 2 is formed is immersed in an aqueous solution of polyvinyl alcohol having a predetermined concentration and then dried to form a hydrophilic organic film 6 on the surface of the active material layer 2 for an unformed alkaline storage battery. A nickel anode plate was manufactured.

【0014】次に本実施例のアルカリ蓄電池用陽極板を
用いた電池の放電容量を調べるために各種の陽極板a〜
mを製造し、これらの陽極板を用いて製造した電池A〜
M(表1参照)を作って試験を行った。陽極板a〜iは
化合物層4を構成するコバルト化合物及びカドミウム化
合物の配合重量割合及び親水性有機物被膜6を作成する
ために用いるポリビニルアルコール水溶液の濃度(%)
を変えて製造したコバルトとカドミウムとの組成比率及
び活物質に対する親水性有機物被膜の重量%が異なる本
発明の実施例の陽極板である。陽極板j,kは親水性有
機被膜を有しない従来の陽極板である。陽極板l,mは
親水性有機被膜は有しているが、コバルト化合物を含有
する化合物層を有しない比較例の陽極板である。尚、陽
極板a〜mは、化合物層と親水性有機物被膜との構成及
び活物質量以外は全て同じ構成を有している。各陽極板
a〜mを用いて製造した電池は、焼結式カドミウム陰極
と組合わせたAA型ニッケル−カドミウム電池である。
各電池に600mAで1.5時間充電した後に600mAで
終始電圧1Vまで放電を行う充放電を繰り返し、各電池
の1サイクル目と300サイクル目終了時の1C放電容
量を測定した。測定結果は下記表1に示す通りである。
尚、表1中Co含量%とは活物質に対するコバルト化合
物中のコバルトの重量%を示し、有機物被膜量%とは活
物質に対する親水性有機物被膜の重量%を示している。
Next, in order to investigate the discharge capacity of a battery using the anode plate for an alkaline storage battery of this embodiment, various anode plates a ...
m manufactured by using these anode plates.
The test was performed by making M (see Table 1). For the anode plates a to i, the compounding weight ratios of the cobalt compound and the cadmium compound that compose the compound layer 4 and the concentration (%) of the polyvinyl alcohol aqueous solution used to form the hydrophilic organic substance coating film 6 are used.
The anode plates according to the examples of the present invention are different in the composition ratio of cobalt and cadmium and the weight% of the hydrophilic organic film with respect to the active material, which are manufactured by changing the above. Anode plates j and k are conventional anode plates having no hydrophilic organic coating. The anode plates 1 and m are comparative anode plates having a hydrophilic organic coating but not having a compound layer containing a cobalt compound. The anode plates a to m have the same structure except for the structure of the compound layer and the hydrophilic organic film and the amount of active material. The battery manufactured using each of the anode plates a to m is an AA type nickel-cadmium battery combined with a sintered cadmium cathode.
Each battery was charged at 600 mA for 1.5 hours and then repeatedly discharged and charged at 600 mA to a voltage of 1 V, and 1 C discharge capacity at the end of the first cycle and the 300th cycle of each battery was measured. The measurement results are as shown in Table 1 below.
In Table 1, the Co content% means the weight% of cobalt in the cobalt compound with respect to the active material, and the organic substance coating amount% means the weight% of the hydrophilic organic substance coating with respect to the active material.

【0015】[0015]

【表1】 この測定結果より本実施例の陽極板a〜iを用いた電池
A〜Iは、親水性有機物被膜を有しない従来の陽極板
j,kやコバルト化合物を含有する化合物層を有しない
比較例の陽極板l,mを用いた電池J〜Mに比べ、活物
質利用率が高く、1C放電容量が高くなっているのが判
る。さらに、従来の陽極板jより少ない量のコバルト化
合物を化合物層に含有する本実施例の陽極板b,cを用
いた電池B,Cは、親水性有機物被膜を有しない従来の
陽極板jを用いた電池Jより、充放電300サイクル終
了時の1C放電容量が高く、寿命特性が向上しているの
が判る。これは活物質表面へ再析出したオキシ水酸化コ
バルトが陽極板外に散逸されるのを親水性有機物被膜6
が抑制しているためである。また、化合物層がコバルト
化合物のみで形成され、カドミウム化合物を含有しない
陽極板gを用いた電池Gは、初期放電容量は高いもの
の、充放電を繰り返し行うと放電容量は低下する。この
ことより、活物質にカドミウム化合物を添加すると、充
放電を繰り返し行っても放電容量は低下しにくくなり、
親水性有機物被膜の機能を向上できるのが判る。
[Table 1] From the measurement results, the batteries A to I using the anode plates a to i of the present example are the same as those of the comparative examples not including the conventional anode plates j and k having no hydrophilic organic film and the compound layer containing the cobalt compound. It can be seen that the active material utilization rate is higher and the 1C discharge capacity is higher than the batteries J to M using the anode plates 1 and m. Further, the batteries B and C using the anode plates b and c of this example containing a smaller amount of cobalt compound in the compound layer than the conventional anode plate j are the same as the conventional anode plate j having no hydrophilic organic film. From the battery J used, it can be seen that the 1C discharge capacity at the end of 300 cycles of charging and discharging is higher and the life characteristics are improved. This means that the cobalt oxyhydroxide re-precipitated on the surface of the active material is dissipated outside the anode plate by the hydrophilic organic film 6
Is suppressed. Further, in the battery G in which the compound layer is formed only of the cobalt compound and the anode plate g containing no cadmium compound is used, the initial discharge capacity is high, but the discharge capacity decreases when charging and discharging are repeated. From this, when the cadmium compound is added to the active material, the discharge capacity is less likely to decrease even after repeated charge and discharge,
It can be seen that the function of the hydrophilic organic substance coating can be improved.

【0016】(実施例2)図2は本発明をペースト式ニ
ッケル陽極板に適用した実施例の表面部を拡大した模式
図である。図2において10は集電体を構成する三次元
網目構造体であり、この三次元網目構造体10はニッケ
ルからなる発泡金属多孔体で構成されている。20は活
物質層であり、この活物質層20は三次元網目構造体1
0内に充填された活物質30の表面に化合物層40が形
成されて構成されている。活物質30は水酸化ニッケル
を主成分とする粉体によって構成されている。本実施例
の陽極板では、化合物層40を、オキシ水酸化コバルト
として活物質30の表面に再析出される酸化コバルトま
たは水酸化コバルトのコバルト化合物に水酸化カドミウ
ムが添加された材料により形成している。50は活物質
層20内に形成された多孔部であり、この多孔部50内
に電解液が浸入して、電池の充放電が行われる。60は
活物質層20の表面に形成された耐アルカリ性を有する
親水性有機物被膜である。本実施例も親水性有機物被膜
60をポリビニルアルコール(PVA)により形成して
いる。
(Embodiment 2) FIG. 2 is an enlarged schematic view of a surface portion of an embodiment in which the present invention is applied to a paste type nickel anode plate. In FIG. 2, reference numeral 10 denotes a three-dimensional mesh structure that constitutes a current collector, and this three-dimensional mesh structure 10 is composed of a foam metal porous body made of nickel. 20 is an active material layer, and this active material layer 20 is the three-dimensional network structure 1
The compound layer 40 is formed on the surface of the active material 30 filled in 0. The active material 30 is composed of powder containing nickel hydroxide as a main component. In the anode plate of this embodiment, the compound layer 40 is formed of cobalt oxide re-deposited on the surface of the active material 30 as cobalt oxyhydroxide or a material obtained by adding cadmium hydroxide to a cobalt compound of cobalt hydroxide. There is. Reference numeral 50 denotes a porous portion formed in the active material layer 20, and the electrolytic solution penetrates into the porous portion 50 to charge and discharge the battery. Reference numeral 60 denotes a hydrophilic organic film having alkali resistance formed on the surface of the active material layer 20. Also in this embodiment, the hydrophilic organic film 60 is formed of polyvinyl alcohol (PVA).

【0017】本実施例においても、実施例1の陽極板と
同様に、親水性有機物被膜60がコバルトイオンの散逸
を防止している。そのため、電池の最初の充電時にコバ
ルトイオンの大部分はオキシ水酸化コバルトとして活物
質30に析出される。
Also in this embodiment, as in the anode plate of Embodiment 1, the hydrophilic organic coating 60 prevents the dissipation of cobalt ions. Therefore, most of the cobalt ions are deposited on the active material 30 as cobalt oxyhydroxide when the battery is first charged.

【0018】次にこの実施例2のアルカリ蓄電池用陽極
板を製造する方法を説明する。まず平均粒径10〜20
μm の水酸化ニッケル粉末を硝酸カドミウム及び硝酸コ
バルトを混合した水溶液(温度50℃)に浸漬した後に
90℃で5分間乾燥し、その後、20wt%水酸化カリウ
ム水溶液中に浸漬した後に余分なアルカリを水洗で除去
して乾燥を行い、化合物層40(コバルト含量:1.5
9%)が表面に形成された水酸化ニッケル粉末からなる
活物質30の粉末を作成した。次にこの活物質30の粉
末100gに、結着剤としてカルボキシメチルセルロー
ス1.2g及び水30gを加え混練してスラリを作成し
た。そして、多孔度95%のニッケルからなる発泡金属
多孔体で構成された三次元網目構造体10に該スラリを
充填した後、乾燥を行い、活物質層20を有する三次元
網目構造体10を得た。次に活物質層20を有する三次
元網目構造体10を濃度1%のPVA水溶液に浸漬して
から乾燥を行い親水性有機物被膜60を備えたアルカリ
蓄電池用陽極板を製造した。
Next, a method for manufacturing the anode plate for an alkaline storage battery of Example 2 will be described. First, the average particle size is 10 to 20
After immersing the nickel hydroxide powder of μm in an aqueous solution (temperature 50 ° C.) in which cadmium nitrate and cobalt nitrate are mixed, it is dried at 90 ° C. for 5 minutes and then immersed in a 20 wt% potassium hydroxide aqueous solution to remove excess alkali. The compound layer 40 (cobalt content: 1.5
A powder of the active material 30 made of nickel hydroxide powder having 9%) formed on the surface was prepared. Next, to 100 g of the powder of the active material 30, 1.2 g of carboxymethyl cellulose as a binder and 30 g of water were added and kneaded to prepare a slurry. Then, the slurry is filled in the three-dimensional network structure 10 made of a foamed metal porous body made of nickel having a porosity of 95%, and then dried to obtain the three-dimensional network structure 10 having the active material layer 20. It was Next, the three-dimensional network structure 10 having the active material layer 20 was immersed in a PVA aqueous solution having a concentration of 1% and then dried to manufacture an anode plate for an alkaline storage battery provided with the hydrophilic organic film 60.

【0019】尚、本実施例では水酸化ニッケル粉末を硝
酸カドミウム及び硝酸コバルトを混合した水溶液に浸漬
した後、水酸化カリウム水溶液中に浸漬して中和により
化合物層40を形成したが、水酸化ニッケル粉末と酸化
カドミウム粉末と酸化コバルト粉末との混合粉末を用い
てスラリを形成し、該スラリを三次元網目構造体10に
充填した後にアルカリ溶液中に浸漬し、水酸化ニッケル
粉末の表面に水酸化カドミウムと水酸化コバルトとを含
む化合物層40を溶解析出により形成してもよい。
In this embodiment, the nickel hydroxide powder was dipped in an aqueous solution containing a mixture of cadmium nitrate and cobalt nitrate and then dipped in an aqueous potassium hydroxide solution to neutralize the compound layer 40. A slurry is formed by using a mixed powder of nickel powder, cadmium oxide powder, and cobalt oxide powder, and the slurry is filled in the three-dimensional network structure 10 and then immersed in an alkaline solution, and the surface of the nickel hydroxide powder is wetted with water. The compound layer 40 containing cadmium oxide and cobalt hydroxide may be formed by dissolution precipitation.

【0020】次に本実施例のアルカリ蓄電池用陽極板を
用いた電池の放電容量を調べるために各種陽極板n〜q
を製造し、これらの陽極板を用いて製造した電池N〜Q
(表1参照)を作って試験を行った。陽極板nは本実施
例の陽極板である。陽極板oはコバルト化合物のみで化
合物層40が形成され、親水性有機物被膜を有していな
い従来の陽極板である。陽極板pは親水性有機物被膜を
有し、化合物層を有していない従来の陽極板である。陽
極板qは親水性有機物被膜を有し、カドミウム化合物の
みで化合物層が形成された比較例の陽極板である。尚、
陽極板o〜qは化合物層と親水性有機物被膜との構成及
び活物質量以外は陽極板nと同じ構成を有している。各
陽極板n〜qを用いて製造した電池は、焼結式カドミウ
ム陰極と組合わせたAA型ニッケル−カドミウム電池で
ある。各電池に600mAで1.5時間充電した後に60
0mAで終始電圧1Vまで放電を行う充放電を繰り返し、
各電池の1サイクル目と300サイクル目終了時の1C
放電容量を測定した。測定結果は下記表2に示す通りで
ある。
Next, in order to investigate the discharge capacity of the battery using the anode plate for alkaline storage battery of this embodiment, various anode plates n to q were used.
And batteries N to Q manufactured by using these anode plates.
(See Table 1) was prepared and tested. The anode plate n is the anode plate of this embodiment. The anode plate o is a conventional anode plate in which the compound layer 40 is formed of only a cobalt compound and does not have a hydrophilic organic film. The anode plate p is a conventional anode plate that has a hydrophilic organic film and does not have a compound layer. Anode plate q is a comparative anode plate having a hydrophilic organic film and having a compound layer formed only of a cadmium compound. still,
The anode plates o to q have the same constitution as the anode plate n except for the constitution of the compound layer and the hydrophilic organic substance coating film and the amount of the active material. The battery manufactured using each of the anode plates n to q is an AA type nickel-cadmium battery combined with a sintered cadmium cathode. 60 after charging each battery at 600mA for 1.5 hours
Repeatedly charge and discharge to discharge voltage up to 1V at 0mA,
1C at the end of the 1st cycle and 300th cycle of each battery
The discharge capacity was measured. The measurement results are as shown in Table 2 below.

【0021】[0021]

【表2】 この測定結果より、本実施例の陽極板nを用いた電池N
が、親水性有機物被膜が形成されていない従来の陽極板
o、化合物層を有していない従来の陽極板p及びカドミ
ウム化合物のみで化合物層が形成された比較例の陽極板
qを用いたそれぞれの電池O〜Qよりも活物質利用率及
び寿命特性が向上しているのが判る。
[Table 2] From the measurement results, the battery N using the anode plate n of this example
However, a conventional anode plate o without a hydrophilic organic film, a conventional anode plate p without a compound layer, and an anode plate q of a comparative example in which a compound layer was formed only with a cadmium compound were used. It can be seen that the active material utilization rate and life characteristics are improved as compared with the batteries O to Q.

【0022】[0022]

【発明の効果】請求項1の発明によれば、少ないコバル
ト添加量でオキシ水酸化コバルト層を形成できるため、
活物質の量を増やすことができ、活物質の充填密度を高
めることができる。そのため、本発明の陽極板を用いる
と電池のエネルギー密度及び寿命性能を向上させること
ができる。
According to the invention of claim 1, since the cobalt oxyhydroxide layer can be formed with a small amount of cobalt added,
The amount of the active material can be increased, and the packing density of the active material can be increased. Therefore, when the anode plate of the present invention is used, the energy density and life performance of the battery can be improved.

【0023】請求項2の発明によれば、活物質層に水酸
化カドミウムを含有させるため、オキシ水酸化コバルト
の活物質表面への再析出量が増えて陽極板のエネルギ密
度を高めることができる。さらに、陽極板の膨潤による
活物質の脱落を抑制できるため、電池の寿命性能を向上
させることができる。
According to the second aspect of the invention, since the active material layer contains cadmium hydroxide, the amount of redeposition of cobalt oxyhydroxide on the surface of the active material is increased and the energy density of the anode plate can be increased. .. Further, since the active material can be prevented from falling off due to the swelling of the anode plate, the life performance of the battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼結式ニッケル陽極板に適用した実施例の表面
部を拡大した模式図である。
FIG. 1 is an enlarged schematic view of a surface portion of an example applied to a sintered nickel anode plate.

【図2】ペースト式ニッケル陽極板に適用した実施例の
表面部を拡大した模式図である。
FIG. 2 is an enlarged schematic view of a surface portion of an example applied to a paste type nickel anode plate.

【符号の説明】[Explanation of symbols]

1…焼結基体、10…三次元網目構造体、2,20…活
物質層、3,30…活物質、4,40…化合物層、6,
60…親水性有機物被膜。
DESCRIPTION OF SYMBOLS 1 ... Sintered substrate, 10 ... Three-dimensional network structure, 2, 20 ... Active material layer, 3, 30 ... Active material, 4, 40 ... Compound layer, 6,
60 ... Hydrophilic organic film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 誠司 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Tsunoda 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Shin-Kindo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】オキシ水酸化コバルトとして再析出される
コバルト化合物を含む化合物層が活物質の表面に形成さ
れてなる活物質層を備えたアルカリ蓄電池用陽極板であ
って、前記活物質層の表面に親水性有機物被膜が形成さ
れていることを特徴とするアルカリ蓄電池用陽極板。
1. An anode plate for an alkaline storage battery, comprising an active material layer comprising a compound layer containing a cobalt compound redeposited as cobalt oxyhydroxide on the surface of the active material, the active material layer comprising: An anode plate for an alkaline storage battery having a hydrophilic organic film formed on its surface.
【請求項2】前記化合物層は、水酸化カドミウムを含有
していることを特徴とする請求項1に記載のアルカリ蓄
電池用陽極板。
2. The anode plate for an alkaline storage battery according to claim 1, wherein the compound layer contains cadmium hydroxide.
JP03310508A 1991-11-26 1991-11-26 Anode plate for alkaline storage battery Expired - Fee Related JP3097238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03310508A JP3097238B2 (en) 1991-11-26 1991-11-26 Anode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03310508A JP3097238B2 (en) 1991-11-26 1991-11-26 Anode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH05151962A true JPH05151962A (en) 1993-06-18
JP3097238B2 JP3097238B2 (en) 2000-10-10

Family

ID=18006071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03310508A Expired - Fee Related JP3097238B2 (en) 1991-11-26 1991-11-26 Anode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3097238B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide

Also Published As

Publication number Publication date
JP3097238B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
EP0571630A1 (en) Method for production of nickel plate and alkali storage battery
JP3097238B2 (en) Anode plate for alkaline storage battery
JPH0677452B2 (en) Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof
JP3268795B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2003503821A (en) Nickel positive electrode plate for alkaline storage battery and method for producing the same
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3745583B2 (en) Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof
JP3354331B2 (en) Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate
JP3691281B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP2589750B2 (en) Nickel cadmium storage battery
JP3606123B2 (en) Manufacturing method of nickel positive electrode plate for alkaline storage battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP3825612B2 (en) Hydrogen storage alloy powder for hydrogen storage alloy electrode, hydrogen storage alloy electrode, and alkaline storage battery
JPH05151972A (en) Positive electrode plate for alkaline storage battery
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery
JPH09245827A (en) Manufacture of alkaline storage battery
JPH05225971A (en) Manufacture of nickel electrode
JPH05290839A (en) Manufacture of nickel positive electrode
JPH04344B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

LAPS Cancellation because of no payment of annual fees