JPH05151972A - Positive electrode plate for alkaline storage battery - Google Patents

Positive electrode plate for alkaline storage battery

Info

Publication number
JPH05151972A
JPH05151972A JP31482191A JP31482191A JPH05151972A JP H05151972 A JPH05151972 A JP H05151972A JP 31482191 A JP31482191 A JP 31482191A JP 31482191 A JP31482191 A JP 31482191A JP H05151972 A JPH05151972 A JP H05151972A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
nickel
cobalt
hydroxide
active material
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31482191A
Other languages
Japanese (ja)
Inventor
Takayuki Kitano
Makoto Konishi
Mitsunori Oda
Seiji Tsunoda
隆之 北野
真 小西
光徳 織田
誠司 角田
Original Assignee
Shin Kobe Electric Mach Co Ltd
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier

Abstract

PURPOSE: To provide a positive electrode plate for alkaline storage battery having a long lifetime and presenting a high rate of active material utilization.
CONSTITUTION: The surface of a three-dimensional meshing structure part 1 of a nickel sintered matrix is covered with a nickel-cobalt alloy layer 2. Even though this sintered matrix is immersed in nickel salt aqueous solution, its corrosion is suppressed by the alloy layer 2. Eventual generation of local corrosion does not present serious problem, because the cobalt in the alloy layer 2 eludes into the nickel salt aqueous solution to cause the nickel to educe in the form of an admixture of cobalt hydroxide and nickel hydroxide. In the charged state, this admixture maintains the form of nickel β-oxy hydroxide having a high density, which suppresses swell of active material in the charged state.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム電池などのアルカリ蓄電池用の陽極板の改良に関するものである。 The present invention relates to relates to an improvement of the anode plate for alkaline storage batteries such as nickel-cadmium batteries.

【0002】 [0002]

【従来の技術】例えば焼結式ニッケル・カドミウム電池の陽極板では、カルボニル化合物を還元して得られたニッケル粉末を焼結して得た多孔質の三次元網目状構造部からなるニッケル焼結基体を集電体として用いている。 The anode plate of the Related Art For example sintered nickel-cadmium battery, a nickel sintered made from a three-dimensional network structure of the porous obtained by sintering a nickel powder obtained by reducing a carbonyl compound They are using the base as a current collector.
そしてニッケル焼結基体を硝酸ニッケル水溶液等のニッケル塩水溶液(含浸液)に浸漬してニッケル焼結基体中に硝酸ニッケルを含浸させ、その後ニッケル焼結基体中の硝酸ニッケルをアルカリ処理して水酸化ニッケルとして活物質をニッケル焼結基体に充填している。 The sintered nickel substrate was immersed in a nickel salt solution such as aqueous solution of nickel nitrate (impregnating solution) was impregnated with nickel nitrate in a nickel sintered substrate, hydroxide then the nickel nitrate in the nickel sintered substrate was alkali-treated an active material is filled in the sintered nickel substrate as a nickel.

【0003】一般的には、活物質利用率の向上や電極の膨脹抑制のために、硝酸ニッケル水溶液に硝酸カドミウムと硝酸コバルトとを添加し、アルカリ処理の際に水酸化ニッケルと一緒に水酸化カドミウムと水酸化コバルトとを活物質として沈殿させている。 [0003] In general, for the expansion suppressing improved and the electrode active material utilization, the addition of a cadmium nitrate and cobalt nitrate aqueous solution of nickel nitrate, hydroxide along with nickel hydroxide in the alkali treatment the cobalt hydroxide and cadmium are precipitated as an active material. (特開昭48−53 (JP-A-48-53
228号公報他)しかしながらニッケル焼結基体が硝酸ニッケル等のニッケル塩水溶液に浸漬された際に、ニッケル焼結基体を構成する三次元網目状構造部の一部が腐食されることが知られている。 When 228 JP other), however the sintered nickel substrate was immersed in a nickel salt solution, such as nickel nitrate, it is known that part of the three-dimensional network structure portion constituting the sintered nickel substrate is corroded there. この腐食は、以下の反応式により発生する硝酸ニッケル水溶液中に遊離した酸(H )により、ニッケル焼結基体の三次元網目状構造部の一部が腐食されて発生するものと考えられている。 This corrosion, by the following reaction liberated acid nickel nitrate aqueous solution produced by the formula (H +), a part of the three-dimensional network structure of the sintered nickel substrate is believed to occur is corroded there.

【0004】 Ni(NO +H 2 O→Ni(NO )(OH)+H +NO そこで、このような腐食を防止するために、ニッケル焼結基体の表面に酸化被膜を設けたり、ニッケル焼結基体を不活性状態の電位域に保持(特開昭53−32348 [0004] Ni (NO 3) 2 + H 2 O → Ni (NO 3) (OH) + H + + NO 3 - In order to prevent such corrosion, or provided an oxide film on the surface of the sintered nickel substrate , nickel sintered substrate wo inert state field potential pass second holding (JP-A-53-32348
号公報)したり、ニッケル塩水溶液中にアルキルアンモニウム化合物を添加(特開昭53−112434号公報)する技術が提案されている。 JP) or, added alkylammonium compounds (JP 53-112434 JP) technique has been proposed in the nickel salt solution.

【0005】 [0005]

【発明が解決しようとする課題】しかしながら、上記従来の技術を用いても、ニッケル焼結基体のニッケルのいくらかはニッケル塩水溶液中への浸漬中に溶け出し、p However [0007] Even using the above prior art, some of the nickel sintered nickel substrate leach in the immersion into aqueous nickel salt solution, p
Hの上昇等により水酸化物となって活物質化する。 Active material of become hydroxides by H increases, etc.. このようにして活物質化したニッケルの水酸化物は、コバルトまたはカドミウムを含有していない純粋な水酸化ニッケルに近く、このような純粋な水酸化ニッケルに対しては水酸化コバルト添加による活物質利用率の向上は見られない。 Active material by this way hydroxide active material of nickel are close to pure nickel hydroxide containing no cobalt or cadmium, cobalt hydroxide added for such pure nickel hydroxide improvement of the utilization rate is not observed. また純粋な水酸化ニッケルは、充電により密度の小さいγ−オキシ水酸化ニッケルに変化しやすく、γ The pure nickel hydroxide is easy to change to a small γ- nickel oxyhydroxide density by charging, gamma
−オキシ水酸化ニッケルに変化すると充電時に膨脹し急激な体積変化を起こすようになり、電極からの活物質の剥がれ、脱落等が起こり、電池の寿命が短くなるという問題点があった。 - expands during charging and changing the nickel oxyhydroxide now cause a rapid volume change, peeling of the active material from the electrode, occurs falling off or the like, there is a problem that the battery life is shortened.

【0006】本発明の目的は、上記課題を解決して、活物質利用率が高く寿命の長いアルカリ蓄電池に用いる陽極板を提供することである。 An object of the present invention is to solve the above problems, it is to provide an anode plate used in long alkaline storage battery active material utilization of high life.

【0007】 [0007]

【課題を解決するための手段】請求項1の発明では、ニッケル焼結基体がニッケル塩水溶液に浸漬されて活物質が充填されるアルカリ蓄電池用陽極板を対象にして、ニッケル焼結基体の三次元網目状構造部の表面にニッケル−コバルト合金層を被覆する。 In [SUMMARY OF] of claim 1 invention, the sintered nickel substrate in the target anode plate for an alkaline storage battery in which an active material is filled is immersed in the aqueous nickel salt solution, tertiary sintered nickel substrate coating the cobalt alloy layer - nickel based network structure portion surface. 尚、ニッケル塩水溶液には、ニッケル塩のみを含む水溶液だけでなく、カドミウム塩やコバルト塩などが添加されている混合塩水溶液も含まれる。 Incidentally, the aqueous nickel salt solution, not only an aqueous solution containing only nickel salts also include mixed salt solution such as cadmium salts and cobalt salts are added.

【0008】請求項2の発明では、活物質の主成分を水酸化ニッケルとし、副成分として水酸化コバルト及び水酸化カドミウムのうち少なくとも一方を含有させる。 [0008] In the present invention of claim 2, the main component of the active material nickel hydroxide, is contained at least one of cobalt hydroxide and cadmium hydroxide as an auxiliary component.

【0009】請求項3の発明では、ニッケル−コバルト合金層を、三次元状網目構造部の上にめっきしたコバルトめっき層を加熱処理して形成する。 [0009] In the present invention of claim 3, nickel - cobalt alloy layer is formed by heating a cobalt plating layer plated on a three-dimensional-like mesh structure. このニッケル−コバルト合金層ではコバルトめっき層と三次元状網目構造部との境界部分にニッケルとコバルトとが合金になった層を有している。 The nickel - a cobalt alloy layer has a layer of nickel and the cobalt became alloy the boundary between the cobalt plated layer and the three-dimensional like network portion.

【0010】請求項4の発明では、めっき金属としてニッケルとコバルトとを用いてニッケル−コバルト合金層をめっきにより形成する。 [0010] In the present invention of claim 4, nickel with nickel and cobalt as a plated metal - it is formed by plating a cobalt alloy layer.

【0011】 [0011]

【作用】ニッケル−コバルト合金は純粋なニッケルに比べて耐酸性に優れている。 [Action] Nickel - cobalt alloy is excellent in acid resistance compared to pure nickel. そのため、請求項1の発明のように三次元網目状構造部の表面をニッケル−コバルト合金層により被覆すると、活物質を充填するためにニッケル焼結基体をニッケル塩水溶液(含浸液)に浸漬した際に、ニッケル焼結基体が腐食されるのを防止できる。 Therefore, the three-dimensional network structure portion surface as in the invention of claim 1 Nickel - Upon coating the cobalt alloy layer to the sintered nickel substrate for filling the active material was dipped in a nickel salt solution (impregnation solution) when, it is possible to prevent the sintered nickel substrate is corroded.
また、腐食が発生したとしても、焼結基体からニッケルが含浸液中に溶け出す際に、コバルトと一緒に含浸液中に溶け出す。 Further, even as corrosion occurs, when the nickel sintered substrate from dissolving in the impregnating solution, seep into the impregnating solution with cobalt. 含浸液中に溶け出したニッケルは、アルカリ処理によって水酸化コバルトを含有した水酸化ニッケル−水酸化コバルト混合物としてニッケル焼結基体に析出するため、純粋な水酸化ニッケルが発生することはない。 Nickel eluted during the impregnation solution nickel hydroxide containing cobalt hydroxide by alkaline treatment - for depositing the sintered nickel substrate as a cobalt hydroxide mixture, pure nickel hydroxide does not occur. 水酸化ニッケル−水酸化コバルト混合物中の水酸化ニッケルは、充電をしても純粋な水酸化ニッケルのようにγ−オキシ水酸化ニッケルには変化せず密度の高いβ Nickel hydroxide - nickel hydroxide in the cobalt hydroxide mixture, dense without change in the γ- nickel oxyhydroxide as pure nickel hydroxide even when the charging β
−オキシ水酸化ニッケルの形態を維持できる。 - it can be maintained in the form of nickel oxyhydroxide. そのため、充電時の活物質の膨脹量が小さく、活物質剥離や脱落が少なくなる。 Therefore, expansion of the active material during charge is small, the active material separation and falling is reduced.

【0012】請求項2の発明のように活物質を構成すると、活物質の導電性が向上し、活物質の利用率が高くなる。 [0012] constituting the active material as in the invention of claim 2, improves the conductivity of the active material, utilization of the active material is increased.

【0013】請求項3の発明におけるニッケル−コバルト合金層では、ニッケルとコバルトとが合金になった層の上にあるコバルトめっき層が腐食してから、実際の合金が腐食する。 [0013] Nickel in the invention of claim 3 - The cobalt alloy layer, since the cobalt plated layer is corrosion overlying the layer of nickel and the cobalt becomes an alloy, the actual alloy is corroded.

【0014】請求項4の発明におけるニッケル−コバルト合金層では、ニッケルとコバルトとの合金の厚みが厚く、それだけ腐食しにくい。 [0014] Nickel in the invention of claim 4 - the cobalt alloy layer thicker the thickness of an alloy of nickel and cobalt, the more difficult corrode. また合金層の全体に、ニッケルとコバルトとがほぼ均等に分散しているため、合金層が腐食された際に析出される沈殿物は水酸化コバルト−水酸化ニッケル混合物の活物質となり、活物質の利用率が向上する。 Also the whole of the alloy layer, since the nickel and cobalt are substantially evenly distributed, the precipitate which is deposited in the alloy layer is corroded cobalt hydroxide - becomes the active material of the nickel hydroxide mixture, the active material utilization of is improved.

【0015】 [0015]

【実施例】以下、本発明の実施例を図面を参照して詳細に説明する。 EXAMPLES Hereinafter, the embodiments of the present invention with reference to the accompanying drawings.

【0016】図1は、本発明をニッケル・カドミウム蓄電池の陽極板に適用した実施例の陽極板に用いる焼結基体の一部分を拡大した模式図である。 [0016] Figure 1 is a schematic diagram in which the present invention is a partially enlarged view of the sintered substrate used in the anode plate of the embodiment applied to the anode plate of the nickel-cadmium battery. 図1において1は集電体を構成するニッケル焼結基体の三次元網目状構造部の枝部の一部である。 1 is part of the branches of the three-dimensional network structure of the sintered nickel substrate constituting the current collector 1. 公知のようにニッケル焼結基体は、ニッケル粉末を焼結して得た多孔質の三次元網目状構造部により構成されている。 Sintered nickel substrate as is known, is constituted by three-dimensional network structure of the porous obtained by sintering nickel powder. 2はニッケル−コバルト合金層であり、このニッケル−コバルト合金層2はニッケル焼結基体の三次元網目状構造部の表面を被覆するようにして形成されている。 2 Nickel - a cobalt alloy layer, nickel - cobalt alloy layer 2 is formed so as to cover the surface of the three-dimensional network structure of the sintered nickel substrate. この合金層2は0.3〜2μ The alloy layer 2 0.3~2μ
mの厚みを有している。 And it has a thickness of m. 合金層2としては、全体がニッケルとコバルトとの合金からなる場合と、一部にニッケルとコバルトとの合金層が形成されている場合とがある。 The alloy layer 2 entirely and a case where an alloy layer is formed of a case made of an alloy of nickel and cobalt, a part of nickel and cobalt. 活物質としては、水酸化ニッケルを主成分として副成分として水酸化コバルト及び水酸化カドミウムを含有する活物質が好ましい。 As the active material, active material containing cobalt hydroxide and cadmium hydroxide as an auxiliary component of nickel hydroxide as a main component is preferable.

【0017】次にこの実施例の陽極板に用いる焼結基体の製造方法を説明する。 [0017] Next will be described a manufacturing method of the sintered substrate used in the anode plate of this embodiment. まず、ニッケル粉末720g First, nickel powder 720g
と,40gのメチルセルロースを1kgの水に溶解したバインダー溶液とを混練してスラリを作成した。 When to prepare a slurry by kneading a binder solution obtained by dissolving methylcellulose 40g to 1kg of water. そして、 And,
このスラリをニッケルメッキしたパンチング鋼板芯材に塗布した後、還元雰囲気中で焼結して多孔度が80〜8 After applying this slurry to the perforated metal plate core material nickel-plated, the porosity sintered in a reducing atmosphere 80-8
3%の焼結基体を製造した。 3% of the sintered body was produced. 尚、本実施例では、焼結基体の多孔度を比較的高くするために、ニッケル粉末はニッケルのカルボニル化合物を還元して得られる嵩密度の低い(0.4〜0.6g/cm 2 )粉末を用いた。 In the present embodiment, in order to relatively increase the porosity of the sintered substrate, the nickel powder is less bulk density obtained by reducing a carbonyl compound of nickel (0.4~0.6g / cm 2) powder was used.

【0018】次に焼結基体を塩化コバルト0.05mo [0018] Next, the sintered body the cobalt chloride 0.05mo
l/l,塩酸ヒドラジン1.0mol/l及び酒石酸ナトリウム0.4mol/lを含有するpH12、温度9 l / l, containing hydrazine hydrochloride 1.0 mol / l and sodium tartrate 0.4 mol / l pH 12, temperature 9
0℃のめっき浴に20〜60分浸漬して無電解めっきを施した後、水洗・乾燥を行い、焼結基体の三次元網目状構造部の表面に厚さ0.3〜2μm のコバルトめっき層を形成した。 0 After plating bath immersed in an electroless plating 20 to 60 minutes ° C., followed by washing with water and drying, cobalt plating thickness 0.3~2μm the three-dimensional network structure portion surface of the sintered body to form a layer. 次にコバルトめっき層を形成した焼結基体を還元雰囲気中で700〜900℃で2〜20分間加熱処理して、コバルトめっき層と三次元網目状構造部の表面部とを溶融結合させて焼結基体の三次元網目状構造部の表面に厚みが0.03〜1μm のコバルトとニッケルとの合金層とコバルトめっき層とからなる二層構造のニッケル−コバルト合金層2を形成した。 Then the sintered body was formed a cobalt plating layer was heat treated 2-20 minutes at 700 to 900 ° C. in a reducing atmosphere, baked and surface portion of the cobalt plated layer and the three-dimensional network structure portion is melted bond the thickness in a three-dimensional network structure portion surface of the sintered substrate is a two-layer structure consisting of an alloy layer and a cobalt plating layer of cobalt and nickel 0.03~1μm nickel - forming a cobalt alloy layer 2. 尚、コバルトとニッケルとの合金層には約70%のコバルトが含有されていた。 Incidentally, cobalt about 70% in the alloy layer of cobalt and nickel were contained.

【0019】また、上記のニッケル−コバルト合金層2 [0019] Also, the nickel - cobalt alloy layer 2
の形成方法において、めっき浴に塩化コバルト0.05 In the process of forming, cobalt chloride 0.05 in the plating bath
mol/lを含有させる代わりに、塩化ニッケルと塩化コバルトとをめっき金属としてそれぞれ0.025mo Instead of containing a mol / l, respectively nickel chloride and cobalt chloride as a plating metal 0.025mo
l/l含有させて、めっき浴に浸漬し無電解めっきにより、コバルトを65〜75%含有する厚さ0.3〜2μ l / and l is contained, the thickness 0.3~2μ that by immersing the electroless plating in a plating bath, containing cobalt 65% to 75%
m のニッケル−コバルト合金層を形成してもよい。 m nickel - may be formed cobalt alloy layer.

【0020】次に合金層2を被覆した焼結基体に以下のようにして活物質を充填した。 [0020] was filled with active material then as follows sintered substrate coated alloy layer 2. まず硝酸ニッケル1kgに硝酸カドミウム50g及び硝酸コバルト30gを加えて比重1.7とした90℃のニッケル塩を含む混合塩水溶液からなる含浸液を作成した。 First was prepared impregnation solution was added to cadmium nitrate 50g and cobalt nitrate 30g of nickel nitrate 1kg of a mixed salt solution containing 90 ° C. of nickel salt and the specific gravity 1.7. 次に合金層2で被覆した焼結基体をこの含浸液に浸漬して焼結基体の多孔部内に硝酸塩を含浸した後、120℃で乾燥し、80℃の20 Next, after impregnated with the nitrate into the porous portion of the immersed sintered body sintered substrate coated with an alloy layer 2 to the impregnating solution, dried at 120 ° C., of 80 ° C. 20
%水酸化ナトリウム水溶液中に浸漬する操作を数回繰り返して水酸化ニッケル,水酸化カドミウム及び水酸化コバルトの混合物からなる活物質を焼結基体の多孔部内に充填した。 % Several times repeatedly nickel hydroxide operation of immersing in a sodium hydroxide aqueous solution and filled with active material made of a mixture of cadmium hydroxide and cobalt hydroxide in the porous portion of the sintered body.

【0021】次に本実施例のアルカリ蓄電池用陽極板の特性を調べるために各種の陽極板a〜fを製造して試験を行った。 [0021] Next, production of various anode plate a~f To investigate the characteristics of the alkaline storage battery positive electrode plate of the present embodiment were tested. 陽極板aはコバルトめっき層を形成した後、 After anode plate a is formed with cobalt plating layer,
加熱処理してニッケル−コバルト合金層を形成した実施例の陽極板である。 Heat treatment to nickel - is an anode plate of the embodiment to form a cobalt alloy layer. 陽極板bはニッケル−コバルト合金層をめっきのみにより形成した実施例の陽極板である。 Anode plate b is nickel - an anode plate of the embodiment is formed by only plating a cobalt alloy layer.
陽極板cは焼結基体の三次元網目状構造部の表面に酸化ニッケルからなる酸化被膜を形成した従来の陽極板である。 Anode plate c is a conventional anode plate to form an oxide film composed of nickel oxide in a three-dimensional network structure portion surface of the sintered body. 陽極板dは焼結基体を不活性状態の電位域(−1. Anode plate d tooth sintered substrate wo inert state field potential frequency (-1.
0V VS SHE)に保持しながら含浸液に浸漬して製造した従来の陽極板である。 It is a conventional anode plate produced by immersion in the impregnation solution while maintaining the 0V VS SHE). 陽極板eはアルキルアンモニウム化合物80gを添加した含浸液2 lに焼結基体を浸漬して製造した従来の陽極板である。 Anode plate e is a conventional anode plate produced by immersing the sintered substrate in the impregnation solution 2 l with the addition of alkylammonium compound 80 g. 陽極板fは焼結基体に腐食防止処理を施さない従来の陽極板である。 Anode plate f is a conventional anode plate not subjected to corrosion prevention treatment sintered substrate. 尚、陽極板a〜fには同形状の焼結基体を用い、同量,同材料の活物質を充填した。 Incidentally, the anode plate a~f a sintered body having the same shape, and filled the same amount, the active material of the same material. そして試験では陽極板a〜fの含浸液浸漬後の焼結基体の腐食度を測定した。 And in tests to measure the corrosion rates of the sintered substrate after impregnation liquid immersion of the anode plate a to f. 測定結果は下記表1に示す通りである。 Measurement results are shown in Table 1 below.

【0022】 [0022]

【表1】 [Table 1] 尚、表1中、焼結基体の腐食度は次の式より求めた。 In Table 1, the corrosion of the sintered body was calculated from the following equation.

【0023】 腐食度(%)=(1−Wa/Wo)×100 [Wa:含浸後、極板を硫酸ヒドラジン20gと酢酸2 The corrosion rate (%) = (1-Wa / Wo) × 100 [Wa: After impregnation, the electrode plate and hydrazine sulfate 20g acetate 2
0mlと水1 lとからなる溶液に浸漬して活物質を抽出した焼結基体の重量(g)、Wo:含浸前の焼結基体の重量(g)]この測定結果より、従来の陽極板c〜fに比べて本発明の陽極板a,bは腐食が非常に少ないのが判る。 0ml and weight of water 1 was immersed in l comprising a solution sintered body obtained by extracting an active material (g), Wo: weight of the sintered body before impregnation (g)] From this measurement result, the conventional anode plate anode plate a of the present invention as compared to c to f, b corrosion is found that very little.

【0024】次に各陽極板a〜fをニッケル対極(陰極としてニッケル極板を使用したもの)及びアルカリ電解液と組合わせて電池A〜Fを製造し、電池A〜Fを温度20℃において、1CmAの電流で90分充電した後に、1CmAの電流で端子電圧が−1.0Vになるまで放電をおこなう充放電を繰り返し、2サイクル目の活物質利用率を測定した。 [0024] Next, each anode plate a~f in combination with nickel counter electrode (those using nickel plate as the cathode) and alkaline electrolyte to produce a battery to F, at a temperature 20 ° C. The cell to F , after charging 90 minutes with a current of 1 CmA, repeated charging and discharging to discharge at a current of 1 CmA until the terminal voltage became -1.0 V, to measure the active material utilization rate of the second cycle. 測定結果は下記表2に示す通りである。 Measurement results are shown in Table 2 below.

【0025】 [0025]

【表2】 [Table 2] 尚、表2中活物質の利用率は次の式から求めた。 Note that utilization of Table 2 Chukatsu material was determined from the following equation.

【0026】 利用率(%)=(C/Co)/Wb×100 [C:放電容量(mAh)、Co:Ni(OH) 2 1g The utilization rate (%) = (C / Co ) / Wb × 100 [C: discharge capacity (mAh), Co: Ni ( OH) 2 1g
当たりの放電容量(289mAh/g)、Wb:極板から抽出された活物質量(g)]この測定結果より、従来の陽極板c〜fを用いた電池C〜Fに比べて本発明の陽極板a,bを用いた電池A,Bは活物質の利用率が高いのが判る。 Discharge capacity per (289mAh / g), Wb: active material amount extracted from the electrode plate (g)] From this measurement result, the present invention as compared to the battery C~F using a conventional anode plate c~f anode plate a, the battery a using the b, B is seen that a high utilization of the active material. これは、本発明の陽極板a,bは腐食が発生しにくいためであり、従来の陽極板では純粋な水酸化ニッケルが生成されやすいためである。 This anode plate a, b of the present invention is because the corrosion hardly occurs, the conventional anode plate is because pure nickel hydroxide is easily generated. また、コバルト及びカドミウムが活物質全体に均一に添加され、活物質の利用率が向上したものとも考えられる。 Moreover, cobalt and cadmium are uniformly added to the whole active material is also considered to have improved utilization of the active material. 次に電池A, Then the battery A,
C,Fを表2に示される試験と同様に充放電を行い、放電終始電圧が1.0Vになる時間を測定して、電池のサイクル数と放電容量との関係を調べた。 C, F and subjected to the same charge and discharge the test shown in Table 2, the discharge throughout voltage by measuring the time to become 1.0 V, was studied the relation between the cycle number and the discharge capacity of the battery. 図2は測定結果を示している。 Figure 2 shows the measurement results. 図2より従来の陽極板c,fを用いた電池C,Fは焼結基体が腐食によって大量に活物質化しているため初期の容量は高いが、腐食により発生した活物質が充電によりγ−オキシ水酸化ニッケルに変化するため、活物質が膨化して脱落しやすく、電池の寿命は短くなるのが判る。 Figure 2 than conventional anode plate c, the battery C using the f, F is higher initial capacity for sintering the substrate are large quantities Katsubutsu structure forming by erosion, by the active material generated by the corrosion charging γ- to change the nickel oxyhydroxide active material is likely to fall off by swelling, the battery life is the is seen shortened. これに対して本発明の陽極板aを用いた電池Aは、腐食により発生した活物質はβ−オキシ水酸化ニッケルの形態を維持しているため、活物質が脱落しにくく、600サイクルを超えても電池は高い容量を維持できるのが判る。 Battery A using the positive electrode plate a of the present invention for this, because it maintains the form of the active material is β- nickel oxyhydroxide generated by corrosion, the active material is less likely to fall off, over 600 cycles even if the battery is found to be able maintain a high capacity.

【0027】 [0027]

【発明の効果】本発明によれば、活物質を充填するために、ニッケル焼結基体をニッケル塩水溶液に浸漬しても、ニッケル焼結基体は腐食されにくい。 According to the present invention, in order to fill an active material, be immersed sintered nickel substrate in a nickel salt solution, the sintered nickel substrate is less likely to be corroded. また、腐食しても、アルカリ処理後において含浸液中に溶け出したニッケルは水酸化ニッケル−水酸化コバルト混合物としてニッケル焼結基体に析出するため、活物質利用率が低下しない。 Further, even if corrosion is nickel eluted during the impregnation solution after the alkali treatment nickel hydroxide - for depositing the sintered nickel substrate as a cobalt hydroxide mixture, the active material utilization rate is not reduced. また電池の充電の際に、析出した混合物は密度の大きいβ−オキシ水酸化ニッケルの形態を維持できるため、充電時の活物質の膨脹は抑制される。 Also during the charge of the battery, it precipitated mixture because it can maintain the form of large β- nickel oxyhydroxide density, expansion of the active material during charge is suppressed. したがって、本発明の陽極板を用いると活物質利用率が高く、寿命の長い電池を得ることができる。 Thus, with the anode plate of the present invention high active material utilization rate, it is possible to obtain a long life battery.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明をニッケル・カドミウム蓄電池の陽極板に適用した実施例の陽極板に用いる焼結基体の一部分を拡大した模式図である。 [1] The present invention is a schematic view enlarging a portion of the sintered substrate used in the anode plate of the embodiment applied to the anode plate of the nickel-cadmium battery.

【図2】電池のサイクル数と放電時間との関係を示す図である。 2 is a diagram showing the relationship between the number of cycles and the discharge time battery.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…三次元網目状構造部の一部、2…ニッケル−コバルト合金層。 1 ... three-dimensional network structure portion part of, 2 ... nickel - cobalt alloy layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 誠司 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Seiji Tsunoda Tokyo Nishi-Shinjuku, Shinjuku-ku, chome No. 1 No. 1 Shin Kobe electric within Co., Ltd.

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】ニッケル焼結基体がニッケル塩水溶液に浸漬されて活物質が充填されてなるアルカリ蓄電池用陽極板において、 前記ニッケル焼結基体の三次元網目状構造部の表面をニッケル−コバルト合金層により被覆したことを特徴とするアルカリ蓄電池用陽極板。 1. A nickel sintered substrate moth nickel salt solution similar immersed in hand active material moth filled hand-made alkaline storage batteries use anode plate Nioite, the nickel sintered substrate mounting three-dimensional mesh-Jo structure part mounting surface wo nickel - cobalt alloy layer Niyori coated other matters wo feature door to the alkaline storage batteries use anode plate.
  2. 【請求項2】前記活物質は水酸化ニッケルを主成分として副成分として水酸化コバルト及び水酸化カドミウムのうち少なくとも一方を含有する請求項1に記載のアルカリ蓄電池用陽極板。 Wherein said active material of cobalt hydroxide as an auxiliary component as a main component of nickel hydroxide and alkali storage battery anode plate according to claim 1 containing at least one of cadmium hydroxide.
  3. 【請求項3】前記ニッケル−コバルト合金層は、前記三次元状網目構造部の上にめっきされたコバルトめっき層が加熱処理されて形成されている請求項1または2に記載のアルカリ蓄電池用陽極板。 Wherein the nickel - cobalt alloy layer, the three-dimensionally mesh structures anode for an alkaline storage battery according to claim 1 or 2 plated cobalt plated layer is formed by heat treatment on the plate.
  4. 【請求項4】前記ニッケル−コバルト合金層はめっきにより形成されている請求項1または2に記載のアルカリ蓄電池用陽極板。 Wherein said nickel - cobalt alloy layer for an alkaline storage battery positive electrode plate according to claim 1 or 2 is formed by plating.
JP31482191A 1991-11-28 1991-11-28 Positive electrode plate for alkaline storage battery Withdrawn JPH05151972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31482191A JPH05151972A (en) 1991-11-28 1991-11-28 Positive electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31482191A JPH05151972A (en) 1991-11-28 1991-11-28 Positive electrode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH05151972A true true JPH05151972A (en) 1993-06-18

Family

ID=18058008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31482191A Withdrawn JPH05151972A (en) 1991-11-28 1991-11-28 Positive electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH05151972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251898A (en) * 1999-02-25 2000-09-14 Wilson Greatbatch Ltd Cobalt-based alloy as positive electrode current collector in nonaqueous electrochemical battery
US6120937A (en) * 1997-05-15 2000-09-19 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120937A (en) * 1997-05-15 2000-09-19 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same
JP2000251898A (en) * 1999-02-25 2000-09-14 Wilson Greatbatch Ltd Cobalt-based alloy as positive electrode current collector in nonaqueous electrochemical battery

Similar Documents

Publication Publication Date Title
US5393616A (en) Metal hydride electrode
US4091181A (en) Rechargeable galvanic cell
US6136473A (en) Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
US5344728A (en) Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells
EP0757395A1 (en) A non-sintered nickel electrode, an alkaline storage cell and manufacturing method
US6193871B1 (en) Process of forming a nickel electrode
US5773169A (en) Active material and positive electrode for alkaline storage battery
USRE34752E (en) Alkaline battery with a nickel electrode
JPH05225975A (en) Hydrogen storage alloy electrode
US6348284B1 (en) Non-sintered nickel electrode for a secondary electro-chemical cell having an alkaline electrolyte
US5660952A (en) Active material powder for non-sintered nickel electrode and non-sintered nickel electrode for alkaline battery
US3873367A (en) Zinc-container electrode
JP2000223119A (en) Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
US4337124A (en) Non-pulsed electrochemical impregnation of flexible metallic battery plaques
JPH0982319A (en) Positive active material for alkaline storage battery and manufacture thereof
US5547784A (en) Alkaline storage battery and method for producing the same
JPH07320735A (en) Non-sintered nickel electrode for alkaline storage battery
JP2004247288A (en) Sealed type nickel-hydrogen storage battery and manufacturing method therefor
US5549992A (en) Preparing method for a nickel hydroxide for a nickel electrode, a manufacturing method for the nickel electrode, and an alkaline secondary battery incorporating the nickel electrode therein
US3408231A (en) Method of making flexible electrodes
JPH0963581A (en) Surface treatment method for hydrogen storage alloy powder and alkaline secondary battery obtained by applying this method
JP2004296299A (en) Alkaline storage battery
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
US6455197B1 (en) Positive active material for alkaline electrolyte storage battery nickel electrodes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204