JPH05148031A - Sintered silicon nitride - Google Patents

Sintered silicon nitride

Info

Publication number
JPH05148031A
JPH05148031A JP3312150A JP31215091A JPH05148031A JP H05148031 A JPH05148031 A JP H05148031A JP 3312150 A JP3312150 A JP 3312150A JP 31215091 A JP31215091 A JP 31215091A JP H05148031 A JPH05148031 A JP H05148031A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
terms
present
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3312150A
Other languages
Japanese (ja)
Other versions
JP2883234B2 (en
Inventor
Takehiro Oda
武廣 織田
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3312150A priority Critical patent/JP2883234B2/en
Publication of JPH05148031A publication Critical patent/JPH05148031A/en
Application granted granted Critical
Publication of JP2883234B2 publication Critical patent/JP2883234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject sintered material having high strength and uniform properties while suppressing the formation of abnormal texture caused by Fe, thereby reducing the breaking frequency caused by abnormal texture. CONSTITUTION:The objective material is produced by adding 0.01-2wt.% (in terms of W metal) of a W compound to a system composed mainly of silicon nitride and containing 0.5-10mol% (in terms of oxide) of a compound of Y and/or a rare-earth element and 5-2,000ppm (in terms of metallic element) of Fe as an impurity, molding the mixture and baking the produced molding at 1600-2000 deg.C in a non-oxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度の窒化珪素質焼
結体に関するものであり、特に特性のばらつきを低減す
るための改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength silicon nitride sintered body, and more particularly to an improvement for reducing variations in characteristics.

【0002】[0002]

【従来技術】窒化珪素質焼結体は、従来より高温強度に
優れた材料として各種のエンジニアリングセラミックス
として高温用材料等への応用が進められている。
2. Description of the Prior Art Sintered silicon nitride materials have been applied to high temperature materials as various engineering ceramics as materials excellent in high temperature strength.

【0003】かかる窒化珪素は、それ自体難焼結性であ
ることから、従来よりY2 3 などの周期律表第3a族
元素の酸化物やAl23 等の各種の金属酸化物を添加
し焼成することが行われている。
Since such silicon nitride itself is difficult to sinter, it has hitherto been possible to form oxides of Group 3a elements of the periodic table such as Y 2 O 3 and various metal oxides such as Al 2 O 3. It is added and fired.

【0004】最近に至り、窒化珪素質焼結体の使用温度
が1400℃以上の高温域まで広がりつつあり、これに
伴い焼結体の高温特性の改善が望まれている。そこで、
高温特性が窒化珪素質焼結体の粒界の組成等やそれによ
る粒界の融点等により大きく変化するという観点から、
Al2 3 等の低融点物質の添加を抑制し、Y2 3
希土類元素の酸化物、あるいはこれに酸化珪素等を添加
した系の焼結体が提案され、さらに粒界相を結晶化させ
ることにより粒界の高融点化を図ることが提案されてい
る。
Recently, the operating temperature of the silicon nitride sintered body is expanding to a high temperature range of 1400 ° C. or higher, and along with this, improvement of the high temperature characteristics of the sintered body is desired. Therefore,
From the viewpoint that the high temperature characteristics greatly change depending on the composition of the grain boundaries of the silicon nitride sintered body and the melting point of the grain boundaries due to the composition,
It has been proposed to suppress the addition of a low-melting substance such as Al 2 O 3 and to add Y 2 O 3 or an oxide of a rare earth element, or a sintered body of a system to which silicon oxide or the like is added, and to further crystallize the grain boundary phase. It has been proposed to increase the melting point of the grain boundaries by increasing the melting point.

【0005】[0005]

【発明は解決しようとする問題点】しかしながら、上記
の焼結体は、従来品に比較して抗折強度、耐酸化性につ
いては優れた特性を有するが、特性のばらつきがいまだ
解決されず、生産性において特性の安定した焼結体を得
ることが困難であるという欠点を有していた。
However, although the above-mentioned sintered body has excellent characteristics in bending strength and oxidation resistance as compared with the conventional products, the variation in the characteristics has not been solved yet. It has a drawback that it is difficult to obtain a sintered body having stable properties in terms of productivity.

【0006】そこで、このばらつきの原因について調査
を行ったところ、そのほとんどの破壊源の組織内に異常
組織が存在することがわかった。さらに、この異常組織
部分について分析したところ、鉄(Fe)が存在し、こ
れがケイ素(Si)と共晶反応を生じ、その周囲に添加
した希土類元素が過剰に集まったものであることを突き
止めた。
Therefore, when the cause of this variation was investigated, it was found that an abnormal tissue was present in most of the tissue of the destruction source. Furthermore, analysis of this abnormal structure portion revealed that iron (Fe) was present, which caused a eutectic reaction with silicon (Si), and the rare earth elements added around it were excessively collected. ..

【0007】[0007]

【問題点を解決するための手段】本発明者等は、かかる
問題点に対して不純物としてのFeの悪影響を低減する
方法について詳細に検討したところ、かかる系に対して
Wを所定の割合で添加含有させることにより前記異常組
織の生成を顕著に低減できることにより、特性のばらつ
きが改善されることを見出し本発明に至った。
The inventors of the present invention have made a detailed study on a method for reducing the adverse effect of Fe as an impurity on the above problems. The present inventors have found that the addition of and containing the abnormal structure can remarkably reduce the generation of the abnormal structure, thereby improving the characteristic variation.

【0008】即ち、本発明の窒化珪素質焼結体は、窒化
珪素を主成分とし、少なくともYまたは希土類元素を酸
化物換算で0.5〜10mol%を含有し、且つ不純物
としてFeを重量比で5ppm〜2000ppmの割合
で含有する焼結体に対して、Wを0.01重量%〜2重
量%の割合で添加含有したことを特徴とするものであ
る。
That is, the silicon nitride sintered body of the present invention contains silicon nitride as a main component, contains at least 0.5 to 10 mol% of Y or a rare earth element in terms of oxide, and Fe as an impurity in a weight ratio. It is characterized in that W is added and contained in a proportion of 0.01 wt% to 2 wt% with respect to the sintered body contained in a proportion of 5 ppm to 2000 ppm.

【0009】以下、本発明を詳述する。本発明の焼結体
は、組成上、窒化珪素を主成分とし、さらに焼結助剤と
して少なくともYまたは希土類元素を0.5〜10mo
l%の含有するものであるが、純度の低い原料を用いた
り、あるいは製造過程において混合工程において系中に
Feが混入する場合がある。このFeは、その量が5p
pm以下と非常に少ない場合には、格別に焼結体の特性
に影響を及ぼすことはないが、その量が5ppm以上の
割合で混入すると、前述したように焼結体中に破壊源と
なる異常組織を形成し、これにより焼結体の特性を低下
させ、特性にばらつきを発生させる。
The present invention will be described in detail below. The composition of the sintered body of the present invention is mainly composed of silicon nitride, and further contains 0.5 to 10 mo of Y or a rare earth element as a sintering aid.
Although it is contained in an amount of 1%, Fe may be mixed in the system in a raw material having a low purity or in the mixing step in the manufacturing process. The amount of this Fe is 5 p
When the amount is very small, such as pm or less, the characteristics of the sintered body are not particularly affected, but when the amount is mixed in a ratio of 5 ppm or more, it becomes a destruction source in the sintered body as described above. An abnormal structure is formed, which deteriorates the characteristics of the sintered body and causes variations in the characteristics.

【0010】本発明は、このようなFeを含有するよう
な系に対して、Wを金属換算で0.01〜2重量%、特
に0.05〜2重量%の割合で存在させることが重要で
ある。このWの存在により、Feの焼結体中での挙動を
固定化することができるものである。よってWの量が
0.01重量%より少ないと、異常組織の発生を抑制す
ることができず、特性のばらつきが大きくなり、Wの量
が2重量%を超えるとW自体が凝集し、これが破壊源と
なり、焼結体の強度を低下させる要因となる。
In the present invention, it is important that W is present in an amount of 0.01 to 2% by weight, particularly 0.05 to 2% by weight in terms of metal, in such a system containing Fe. Is. Due to the presence of W, the behavior of Fe in the sintered body can be fixed. Therefore, if the amount of W is less than 0.01% by weight, the occurrence of abnormal tissue cannot be suppressed and the variation in characteristics becomes large, and if the amount of W exceeds 2% by weight, W itself agglomerates. It becomes a destruction source, and becomes a factor that reduces the strength of the sintered body.

【0011】このWの添加効果は、Fe量が多く成り過
ぎるとその効果が充分に発揮されず、Fe量が重量比で
2000ppm、特に1000ppmが上限値である。
The effect of adding W is not sufficiently exhibited when the amount of Fe becomes too large, and the upper limit of the amount of Fe is 2000 ppm, particularly 1000 ppm in weight ratio.

【0012】また、本発明の焼結体を製造する方法とし
ては、出発原料として窒化珪素粉末および焼結助剤とし
て少なくともYまたは希土類元素の例えば酸化物粉末を
用いる。また、本発明によれば、かかる系に対してWの
化合物をW金属換算で0.01〜2重量%の割合で添加
することが重要である。用いられるW化合物としては、
Wの酸化物、炭化物、珪化物等が挙げられる。
In the method for producing the sintered body of the present invention, silicon nitride powder is used as a starting material and at least Y or an oxide powder of a rare earth element is used as a sintering aid. Further, according to the present invention, it is important to add the compound of W to such a system in a ratio of 0.01 to 2% by weight in terms of W metal. As the W compound used,
Examples thereof include W oxides, carbides, and silicides.

【0013】これらの出発原料は上記所定の割合で混合
した後、公知の方法で成形するが、Feは出発原料中に
含有される以外に、成形工程までの工程間で混入するこ
とも考えられる。本発明によれば、これらの混入量も考
慮し、最終成形体中でのFe量を金属換算で5〜200
0ppmに制御することが必要である。なお、成形手段
としてはプレス成形、押出成形、射出成形、鋳込み成
形、冷間静水圧成形等が挙げられる。
These starting materials are mixed by the above-mentioned predetermined ratios and then molded by a known method. In addition to Fe being contained in the starting materials, Fe may be mixed in between the molding steps. .. According to the present invention, the amount of Fe in the final molded body is 5 to 200 in terms of metal in consideration of these mixed amounts.
It is necessary to control to 0 ppm. Examples of the molding means include press molding, extrusion molding, injection molding, cast molding, cold isostatic molding and the like.

【0014】次に成形体を常圧焼成、窒素ガス圧力焼
成、ホットプレス焼成等の焼成手段により、窒素等の非
酸化性雰囲気中で1600〜2000℃で焼成する。ま
た、特殊な焼成方法として熱間静水圧焼成法では、上記
の方法にて対理論密度比95%以上に緻密化した後、1
000〜2000気圧の窒素を含有する雰囲気中で16
00〜2000℃で焼成する方法、また前記成形体の表
面にBNを塗布した後、ガラス粉末をその表面に塗布し
たり、ガラス製カプセル内に封入するか、または内部に
ガラス粉末が充填された耐熱容器内に埋めた後、高温下
でガラスを溶融しガラスシールを形成した後、1000
〜2000気圧下で1600〜2000℃で焼成する方
法等が採用される。
Next, the molded body is fired at 1600 to 2000 ° C. in a non-oxidizing atmosphere such as nitrogen by a firing means such as atmospheric pressure firing, nitrogen gas pressure firing, and hot press firing. In the hot isostatic firing method as a special firing method, after densifying to a theoretical density ratio of 95% or more by the above method, 1
16 in an atmosphere containing nitrogen of 000 to 2000 atm
A method of firing at 00 to 2000 ° C., or after coating the surface of the molded body with BN, coating the glass powder on the surface, enclosing it in a glass capsule, or filling the inside with glass powder. After burying it in a heat-resistant container and melting the glass at high temperature to form a glass seal, 1000
A method of firing at 1600 to 2000 ° C. under ˜2000 atmospheric pressure is adopted.

【0015】なお、本発明においてYまたは希土類元素
の酸化物換算量を0.5〜10モル%に限定したのは、
0.5モル%より少ないと充分な緻密体が得られず、1
0モル%を超えると高温強度等の機械的特性が低下する
ためである。希土類元素としては、Er、Y、Sc、C
e、Yb、Dy、Tb、Ho等が挙げられる。
In the present invention, the amount of Y or rare earth element converted to oxide is limited to 0.5 to 10 mol%.
If it is less than 0.5 mol%, a sufficiently dense body cannot be obtained, and 1
This is because if it exceeds 0 mol%, mechanical properties such as high temperature strength are deteriorated. As rare earth elements, Er, Y, Sc, C
e, Yb, Dy, Tb, Ho and the like can be mentioned.

【0016】さらに、本発明によれば、上記系に対して
Al2 3 、MgO、CaO、AlN、ZrO2 、Si
2 等を10重量%以下の割合で添加しても何ら本発明
の効果に影響ないものであるが、これらのうち、Al2
3 、MgO、CaO等の低融点物質が存在するとFe
の存在による特性の劣化は顕著でないことから、本発明
の構成は、特にこれらの低融点物質が1重量%以下、特
に0.5重量%以下の組成系において効果的である。
Further, according to the present invention, Al 2 O 3 , MgO, CaO, AlN, ZrO 2 , Si is added to the above system.
Addition of O 2 or the like in a proportion of 10% by weight or less does not affect the effects of the present invention, but among these, Al 2
Fe in the presence of low melting point substances such as O 3 , MgO and CaO
Since the deterioration of the characteristics due to the presence of is not remarkable, the constitution of the present invention is effective especially in a composition system in which these low melting point substances are 1% by weight or less, particularly 0.5% by weight or less.

【0017】[0017]

【作用】本発明によれば、Feが系内に存在すると、焼
結過程において窒化珪素を分解し、発生したSiとの共
晶反応が生じる。このFe−Si共晶反応生成物の周囲
には、希土類元素が過剰に集まり、通常とは異なる異常
組織を形成する。
According to the present invention, when Fe is present in the system, silicon nitride is decomposed during the sintering process and a eutectic reaction with generated Si occurs. Rare earth elements are excessively gathered around the Fe-Si eutectic reaction product to form an abnormal structure different from usual.

【0018】これらの挙動に対して、Wが存在すると、
Feの上記挙動が低減される。この理由は、定かではな
いが、Wが焼結過程において珪化物等の化合物を生成
し、この化合物内にFeが積極的に固溶されることによ
り、Fe元素が不活性状態となり、窒化珪素の分解が抑
制され、結果としてFe−Si共晶反応生成物の生成が
抑制されるためと考えられる。
For these behaviors, if W exists,
The above behavior of Fe is reduced. The reason for this is not clear, but W produces a compound such as a silicide in the sintering process, and Fe is positively dissolved in this compound, so that the Fe element becomes inactive and silicon nitride is formed. It is considered that the decomposition of Fe is suppressed and, as a result, the generation of the Fe—Si eutectic reaction product is suppressed.

【0019】それにより、焼結体の破壊起点がFeの存
在による異常組織によるものから、常に焼結体表面とな
るために焼結体の特性が向上するとともにばらつきが低
減され、安定した特性を有する窒化珪素質焼結体を作製
することができる。
As a result, since the starting point of fracture of the sintered body is due to the abnormal structure due to the presence of Fe, the surface of the sintered body is always present, so that the characteristics of the sintered body are improved and variations are reduced, and stable characteristics are obtained. It is possible to produce a silicon nitride-based sintered body having the same.

【0020】また、Wによる上記添加効果により比較的
低純度の安価な窒化珪素原料を用いた場合においても焼
結体特性の安定化を図ることができるために、焼結体の
コストの低減を図ることもできる。
Further, due to the above addition effect of W, the characteristics of the sintered body can be stabilized even when an inexpensive silicon nitride raw material having a relatively low purity is used, so that the cost of the sintered body can be reduced. It can also be planned.

【0021】[0021]

【実施例】窒化珪素原料(酸素量1.0%、BET比表
面積10m2 /g、α率98%、Fe含有量30pp
m)と焼結助剤としてY2 3 、Yb2 3 、Sc2
3、Er2 3 、Ho2 3 、Dy2 3 、CeO2
Tb2 3 の各粉末を用いて、これらを表1に示す割合
で秤量後、ポリポットに入れ、メタノールを溶媒として
用い窒化珪素ボールにより72時間混合した。得られた
混合物を乾燥後、造粒し、80mm×45mm×5mm
にプレス成形した。得られた成形体に対して、Fe量を
ICP発光分光分析により測定した。そして、各成形体
を窒素ガス圧力10気圧の雰囲気中で表1の温度で焼成
した。なお、表中、試料No.16については表1の組成
からなる成形体の表面にBNを塗布しガラス浴中にて1
600℃の2000atmの圧力下で焼成した。
Example Silicon nitride raw material (oxygen amount 1.0%, BET specific surface area 10 m 2 / g, α ratio 98%, Fe content 30 pp
m) and Y 2 O 3 , Yb 2 O 3 and Sc 2 O as sintering aids.
3 , Er 2 O 3 , Ho 2 O 3 , Dy 2 O 3 , CeO 2 ,
Each powder of Tb 2 O 3 was weighed at the ratio shown in Table 1, put in a polypot, and mixed with a silicon nitride ball for 72 hours using methanol as a solvent. The resulting mixture is dried and then granulated to 80 mm x 45 mm x 5 mm
Was press molded. The Fe content of the obtained molded body was measured by ICP emission spectroscopy. Then, each compact was fired at a temperature shown in Table 1 in an atmosphere of nitrogen gas pressure of 10 atm. For sample No. 16 in the table, BN was applied to the surface of the molded body having the composition shown in Table 1 and the BN was applied in a glass bath.
It was fired at a pressure of 2000 atm at 600 ° C.

【0022】得られた焼結体に対して、元素分析したと
ころ、焼結後の組成は成形体の組成と実質的に変わらな
いことを確認した。また、この焼結体より試験片を20
個切り出し、JISR1601により室温における抗折
強度を測定しその平均値を調べた。さらにその抗折片の
破断面より、破壊源を調べ、破壊源が鉄による異常粒成
長であるものの個数を調べた。結果は表1に示した。
Elemental analysis of the obtained sintered body confirmed that the composition after sintering was substantially the same as the composition of the molded body. Also, 20 test pieces were prepared from this sintered body.
Each piece was cut out, and the bending strength at room temperature was measured by JISR1601 and the average value was examined. Furthermore, the fracture source was examined from the fracture surface of the transverse rupture piece, and the number of fracture sources of abnormal grain growth due to iron was examined. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、前記条件での製
造で、Fe含有量が数十ppmのレベルの不純物の混入
に対してWを全く添加しなかった試料No,1では、破壊
源の多くがFe−Siの異常組織によるもので、中には
強度が460MPaと非常に低いものもあった。
As is clear from Table 1, in the production under the above-mentioned conditions, in the sample No, 1 in which W was not added at all for the inclusion of impurities at the Fe content level of several tens ppm, the destruction source was Most of them were due to an abnormal structure of Fe-Si, and some of them had a very low strength of 460 MPa.

【0025】これに対してW化合物を添加すると、0.
01重量%の添加により、試料No,2に示すように異常
組織により破壊する焼結体の割合が減少し、しかもWの
量を増加するに従い、その平均強度が回復し、特性のば
らつきが改善されることが理解できる。しかしながら、
Wの量が2重量%を越える試料No,10ではWによる凝
集が観察され、これにより強度が劣化した。
On the other hand, when the W compound was added,
Addition of 01% by weight reduces the proportion of the sintered body that breaks due to an abnormal structure as shown in sample No. 2, and as the amount of W increases, the average strength of the sintered body recovers and the variation in characteristics is improved. I understand that it will be done. However,
Aggregation by W was observed in the samples No, 10 in which the amount of W exceeded 2% by weight, which deteriorated the strength.

【0026】また、Wの添加効果を確認するために系中
にFeを添加してFe量を増加させた系に対して評価し
たところ、Fe量が2000ppmを越える試料No,9
よりW添加効果が小さくなり、強度の低下が認められ
た。
Further, in order to confirm the effect of adding W, evaluation was carried out for a system in which Fe was added to the system to increase the amount of Fe.
The effect of W addition was further reduced, and a decrease in strength was observed.

【0027】さらに、焼結体中のY2 3 の添加量を変
化させたところ、添加量が0.5モル%より少ない試料
No,11では十分に緻密化が達成されず、10モル%を
越えると強度の劣化が認められた。
Further, when the addition amount of Y 2 O 3 in the sintered body was changed, the sample No. 11 in which the addition amount was less than 0.5 mol% did not achieve sufficient densification and 10 mol% When it exceeded, deterioration of strength was recognized.

【0028】なお、焼成条件を熱間静水圧焼成法にて行
っても本発明の効果が認められ、さらにW化合物として
WO3 以外のWSi2 やWCを用いても、さらにはその
他の希土類元素においても同様な効果が認められた。
The effect of the present invention is recognized even when the hot isostatic firing method is used as the firing condition. Further, even when WSi 2 or WC other than WO 3 is used as the W compound, other rare earth elements are used. A similar effect was observed in.

【0029】[0029]

【発明の効果】以上詳述した通り、本発明によれば、F
eを含む系に対してWを添加することによりFeによる
異常組織の生成を抑制することにより異常組織による破
壊を低減し、高強度で特性のばらつきのない焼結体を作
製することができる。
As described in detail above, according to the present invention, F
By adding W to a system containing e, the generation of an abnormal structure due to Fe is suppressed, the destruction due to the abnormal structure is reduced, and it is possible to produce a sintered body having high strength and no variation in characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主成分とし、少なくともYまた
は希土類元素を酸化物換算で0.5〜10mol%を含
有し、且つ不純物としてFeを重量比で5ppm〜20
00ppmの割合で含有する焼結体に対して、Wを0.
01重量%〜2重量%の割合で添加含有したことを特徴
とする窒化珪素質焼結体。
1. A main component of silicon nitride, containing 0.5 to 10 mol% of at least Y or a rare earth element in terms of oxide, and Fe as an impurity in a weight ratio of 5 ppm to 20.
W is 0.
A silicon nitride-based sintered body, characterized by being contained in an amount of 01 wt% to 2 wt%.
JP3312150A 1991-11-27 1991-11-27 Silicon nitride sintered body Expired - Lifetime JP2883234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3312150A JP2883234B2 (en) 1991-11-27 1991-11-27 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3312150A JP2883234B2 (en) 1991-11-27 1991-11-27 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH05148031A true JPH05148031A (en) 1993-06-15
JP2883234B2 JP2883234B2 (en) 1999-04-19

Family

ID=18025852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3312150A Expired - Lifetime JP2883234B2 (en) 1991-11-27 1991-11-27 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2883234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005019133A1 (en) * 2003-08-26 2007-11-01 京セラ株式会社 Silicon nitride-based sintered body, method for producing the same, member for molten metal using the same, and member for wear resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005019133A1 (en) * 2003-08-26 2007-11-01 京セラ株式会社 Silicon nitride-based sintered body, method for producing the same, member for molten metal using the same, and member for wear resistance
US7642209B2 (en) 2003-08-26 2010-01-05 Kyocera Corporation Silicon nitride sintered material and method for manufacturing
JP4717635B2 (en) * 2003-08-26 2011-07-06 京セラ株式会社 Silicon nitride-based sintered body, method for producing the same, member for molten metal using the same, and member for wear resistance

Also Published As

Publication number Publication date
JP2883234B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
EP0079678B1 (en) Method for sintering silicon nitride
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2883234B2 (en) Silicon nitride sintered body
US4810678A (en) Gas pressure sintering of silicon nitride with addition of rare earth oxides
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP3208181B2 (en) Silicon nitride based sintered body
JPS6346031B2 (en)
JPH05148030A (en) Silicon nitride-silicon carbide composite sintered material
JP2742619B2 (en) Silicon nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH07187790A (en) Silicon nitride-based sintered compact
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JP2720201B2 (en) Method for producing silicon nitride sintered body
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH07187792A (en) Production of silicon nitride-based sintered compact
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JP2858994B2 (en) Method for producing aluminum nitride sintered body
JP2694354B2 (en) Silicon nitride sintered body
JP3492648B2 (en) TiN-Al2O3-based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

EXPY Cancellation because of completion of term