JPH05136426A - Semiconductor element with ferroelectric layer and manufacture thereof - Google Patents

Semiconductor element with ferroelectric layer and manufacture thereof

Info

Publication number
JPH05136426A
JPH05136426A JP3320884A JP32088491A JPH05136426A JP H05136426 A JPH05136426 A JP H05136426A JP 3320884 A JP3320884 A JP 3320884A JP 32088491 A JP32088491 A JP 32088491A JP H05136426 A JPH05136426 A JP H05136426A
Authority
JP
Japan
Prior art keywords
layer
ferroelectric
substrate
type
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3320884A
Other languages
Japanese (ja)
Other versions
JP3116048B2 (en
Inventor
Takashi Nakamura
孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP03320884A priority Critical patent/JP3116048B2/en
Publication of JPH05136426A publication Critical patent/JPH05136426A/en
Application granted granted Critical
Publication of JP3116048B2 publication Critical patent/JP3116048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To form a ferroelectric film having excellent crystallizability, and to obtain an MFS type semiconductor element, in which ions are hardly diffused, by reducing the difference of lattice constants. CONSTITUTION:The specified section of a semiconductor element composed of a ferroelectric layer 3 bridged and laminated onto a P-type SiC substrate 1, to which an N-type impurity diffusion layer 2 is formed, and a gate electrode 4 laminated onto the layer 3 is insulated by a layer insulating film 5, and a wiring-layer conductive film 6 is shaped to the impurity diffusion layer 2, thus constituting the semiconductor element. The P-type SiC substrate 1 is used as the substrate because the substrate 1 has a lattice constant of 4.36Angstrom , the difference of lattice constants between the substrate 1 has a small impurity diffusion coefficient as approximately one hundredth of Si. MFS type structure is formed of the impurity diffusion layer 2, the ferroelectric layer 3 and the gate electrode 4 in a ferroelectric memory transistor, and a large-sized semiconductor element can be manufactured though an SiC layer is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMFS型半導体素子及び
その製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MFS type semiconductor device and its manufacturing method.

【0002】[0002]

【従来の技術】従来より図7に示すように、不純物拡散
層102が形成された半導体基板101上に、強誘電体
層103及び電極104がこの順で積層されてなるMF
S型半導体素子及びそれを用いてなる半導体装置が用い
られている。
2. Description of the Related Art Conventionally, as shown in FIG. 7, an MF in which a ferroelectric layer 103 and an electrode 104 are laminated in this order on a semiconductor substrate 101 on which an impurity diffusion layer 102 is formed.
An S-type semiconductor element and a semiconductor device using the same are used.

【0003】しかるに従来のMFS型半導体素子におい
ては、半導体基板101にSi基板やGaAs基板を用
い、強誘電体103にPZT系強誘電体を用いているた
め、次のような問題が生じている。
However, in the conventional MFS type semiconductor device, since the Si substrate or the GaAs substrate is used for the semiconductor substrate 101 and the PZT type ferroelectric substance is used for the ferroelectric substance 103, the following problems occur. ..

【0004】格子定数の相違が大きいため、結晶性の
良い強誘電体膜が得られない。
Since the difference in lattice constant is large, a ferroelectric film having good crystallinity cannot be obtained.

【0005】強誘電体構成元素のイオン、例えばPZ
T系強誘電体の場合、PbイオンなどがSi基板やGa
As基板中に拡散してしまう。
Ions of ferroelectric constituent elements, such as PZ
In the case of T-based ferroelectrics, Pb ions, etc.
It diffuses in the As substrate.

【0006】Si基板やGaAs基板とPZT系強誘
電体層との界面にSiO2などの不要な膜が生成され
る。
An unnecessary film such as SiO 2 is formed at the interface between the Si or GaAs substrate and the PZT type ferroelectric layer.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる従来技
術の問題点に鑑みなされたものであって、格子定数の相
違を小さくすることにより結晶性の良い強誘電体膜が成
膜でき、しかも強誘電体構成元素のイオンが半導体基板
中に拡散することが少ないMFS型半導体素子及びその
製法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. By reducing the difference in lattice constant, a ferroelectric film having good crystallinity can be formed, and It is an object of the present invention to provide an MFS type semiconductor element in which ions of a ferroelectric constituent element are less likely to diffuse into a semiconductor substrate, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明の半導体素子は、
SiC基板からなる半導体基板と、該半導体基板の表層
部に所定の間隔をおいて形成された不純物拡散層と、前
記半導体基板上で前記不純物拡散層間に橋架された強誘
電体層と、該強誘電体層上に積層された電極とからなる
ことを特徴としている。
The semiconductor device of the present invention comprises:
A semiconductor substrate made of a SiC substrate, an impurity diffusion layer formed on the surface layer portion of the semiconductor substrate at a predetermined interval, a ferroelectric layer bridged between the impurity diffusion layers on the semiconductor substrate, and the ferroelectric layer. It is characterized by comprising an electrode laminated on a dielectric layer.

【0009】本発明の半導体素子においては、前記Si
C基板がSi基板上に積層されているのが好ましい。ま
た、本発明の半導体素子においては、前記強誘電体がP
b元素含有ペロブスカイト構造体であるのが好ましい。
In the semiconductor device of the present invention, the Si
The C substrate is preferably laminated on the Si substrate. In the semiconductor element of the present invention, the ferroelectric substance is P
It is preferably a b-element-containing perovskite structure.

【0010】本発明の半導体素子の製法は、Si基板に
SiC層を形成し、ついで強誘電体層およびゲート電極
をこの順で前記SiC層に形成することを特徴としてい
る。
The method of manufacturing a semiconductor device of the present invention is characterized in that a SiC layer is formed on a Si substrate, and then a ferroelectric layer and a gate electrode are formed in this order on the SiC layer.

【0011】[0011]

【作用】本発明においては、半導体基板としてPZT系
強誘電体と格子定数の相違が少なく、かつ不純物拡散係
数が小さいSiC基板を用いているので、結晶性の良い
強誘電体膜を成膜することができる。また、SiCは化
学的に安定であるので、強誘電体構成元素のイオンが半
導体基板へ拡散することが防止できる。
In the present invention, since a SiC substrate having a small difference in lattice constant and a small impurity diffusion coefficient from the PZT type ferroelectric is used as the semiconductor substrate, a ferroelectric film having good crystallinity is formed. be able to. Further, since SiC is chemically stable, it is possible to prevent the ions of the ferroelectric constituent elements from diffusing into the semiconductor substrate.

【0012】また、本発明の製法によればSi基板にS
iC層を成膜形成しているので、半導体素子の大型化に
対応することができる。
Further, according to the manufacturing method of the present invention, S is added to the Si substrate.
Since the iC layer is formed as a film, it is possible to cope with an increase in size of the semiconductor element.

【0013】[0013]

【実施例】以下添付図面を参照しながら本発明の実施例
について説明するが、本発明はかかる実施例のみに限定
されるものではない。
Embodiments of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

【0014】図1は本発明の半導体素子を用いた強誘電
体メモリトランジスタの一実施例の要部断面図、図2は
図1に示すメモリトランジスタの電圧と分極の関係を示
すグラフ、図3は本発明の半導体素子の第1実施例の成
膜プロセスの一実施例の説明図、図4は本発明の半導体
素子の第2実施例の成膜プロセスの一実施例の説明図、
図5は本発明の半導体素子の第3実施例の成膜プロセス
の一実施例の説明図、図6は本発明の半導体素子の第4
実施例の成膜プロセスの一実施例の説明図を示す。
FIG. 1 is a cross-sectional view of an essential part of an embodiment of a ferroelectric memory transistor using a semiconductor element of the present invention, FIG. 2 is a graph showing the relationship between voltage and polarization of the memory transistor shown in FIG. 1, and FIG. Is an explanatory view of an example of the film forming process of the first embodiment of the semiconductor element of the present invention; FIG. 4 is an explanatory view of an example of the film forming process of the second embodiment of the semiconductor element of the present invention;
FIG. 5 is an explanatory view of an example of a film forming process of the third embodiment of the semiconductor device of the present invention, and FIG. 6 is a fourth view of the semiconductor device of the present invention.
The explanatory view of one example of the film-forming process of an example is shown.

【0015】図1に示す強誘電体メモリトランジスタ
は、n型不純物拡散層2が形成されたp型SiC基板1
上に、このn型不純物拡散層2に橋架して積層された強
誘電体層3およびこの強誘電体層3上に積層されたゲー
ト電極4からなる半導体素子の所定部分を層間絶縁膜で
絶縁し、しかるのち不純物拡散層2に配線層導電膜6を
形成してなるものである。
The ferroelectric memory transistor shown in FIG. 1 has a p-type SiC substrate 1 on which an n-type impurity diffusion layer 2 is formed.
A predetermined portion of the semiconductor element including the ferroelectric layer 3 and the gate electrode 4 laminated on the n-type impurity diffusion layer 2 and bridged to the n-type impurity diffusion layer 2 is insulated by an interlayer insulating film. After that, the wiring layer conductive film 6 is formed on the impurity diffusion layer 2.

【0016】図1に示す実施例において、基板としてp
型SiC基板1を用いるのは、格子定数が4.36Å
(3C)であり、強誘電体として用いられるPZT(格
子定数:約4.08〜4.12Å)との格子定数の相違
が小さいこと、不純物拡散係数がSiの1/100程度
と小さいこと、および高温で安定であり、特に酸化速度
が遅いのでSiO2膜などの不要な膜が生成されないた
めである。
In the embodiment shown in FIG. 1, p is used as the substrate.
Type SiC substrate 1 has a lattice constant of 4.36Å
(3C), the difference in lattice constant from PZT (lattice constant: about 4.08 to 4.12Å) used as a ferroelectric is small, and the impurity diffusion coefficient is as small as about 1/100 of Si. It is also stable at high temperature, and since the oxidation rate is particularly slow, an unnecessary film such as a SiO 2 film is not formed.

【0017】強誘電体層3としては、ABO3型である
ペロブスカイト構造を有する、PZT、PLZT、Pb
TiO3、BaTiO3など(以下、ペロブスカイト構造
体ともいう)が用いられるが、これに限定されるもので
はなく、強誘電性を示すものならいかなるものも用いる
ことができる。その具体例としては、BaMgF4、N
aCaF3、K2ZnCl4などのハロゲン化合物、Zn
1-xCdxTe、GeTe、Sn226などのカルコゲ
ン化合物などが挙げられる。
The ferroelectric layer 3 has PZT, PLZT, Pb having an ABO 3 type perovskite structure.
TiO 3 , BaTiO 3 or the like (hereinafter, also referred to as a perovskite structure) is used, but the material is not limited to this, and any material having ferroelectricity can be used. Specific examples thereof include BaMgF 4 , N
aCaF 3 , a halogen compound such as K 2 ZnCl 4 , Zn
Examples thereof include chalcogen compounds such as 1-x Cd x Te, GeTe, and Sn 2 P 2 S 6 .

【0018】図1に示す強誘電体メモリトランジスタに
おいては、不純物拡散層2、強誘電体層3およびゲート
電極4によりMFS型構造が形成される。なおSiC基
板と強誘電体層3との間、および(または)強誘電体層
3とゲ−ト電極4との間にバッファ層が形成されてもよ
い。そしてこのMFS型強誘電体メモリトランジスタ
は、図2に示すような特性を有する。図2において、横
軸は電界を、縦軸は分極を示す。図2より明らかなよう
に、強誘電体層3にEsat以上の電界を生じさせる電
圧(Vmax>0)をゲート電極4に印加すると、Aの
状態まで分極しチャネルが形成される。この後、ゲート
電圧を0にしてもB状態となり、分極が残留しチャネル
が形成されたままとなる。この逆に、ゲート電極4に−
Vmaxの電圧(または基板1に+Vmaxの電圧)を
印加するとCの状態まで分極し、電圧を0にするとDの
状態となる。この過程においてはチャネルは形成されな
い。
In the ferroelectric memory transistor shown in FIG. 1, the impurity diffusion layer 2, the ferroelectric layer 3 and the gate electrode 4 form an MFS type structure. A buffer layer may be formed between the SiC substrate and the ferroelectric layer 3 and / or between the ferroelectric layer 3 and the gate electrode 4. The MFS type ferroelectric memory transistor has the characteristics shown in FIG. In FIG. 2, the horizontal axis represents the electric field and the vertical axis represents the polarization. As is apparent from FIG. 2, when a voltage (Vmax> 0) that causes an electric field of Esat or more in the ferroelectric layer 3 is applied to the gate electrode 4, the state is polarized to the state A and a channel is formed. After that, even if the gate voltage is set to 0, the state becomes B, the polarization remains, and the channel remains formed. On the contrary, the gate electrode 4
When a voltage of Vmax (or a voltage of + Vmax to the substrate 1) is applied, it is polarized to the C state, and when the voltage is set to 0, the D state is entered. No channels are formed in this process.

【0019】次に、本発明の半導体素子(半導体装置)
の成膜プロセスについて説明する。図3は本発明の半導
体素子の第1実施例の成膜プロセスの一実施例を示す。
図において、7はp型SiC基板、8は強誘電体薄膜、
9はゲート電極、10はn型不純物拡散層を示す。
Next, the semiconductor element (semiconductor device) of the present invention
The film forming process will be described. FIG. 3 shows an example of the film forming process of the first embodiment of the semiconductor device of the present invention.
In the figure, 7 is a p-type SiC substrate, 8 is a ferroelectric thin film,
Reference numeral 9 indicates a gate electrode, and 10 indicates an n-type impurity diffusion layer.

【0020】ステップ1:p型SiC基板7上にPZT
からなる強誘電体薄膜8およびゲート電極9をこの順で
膜厚をそれぞれ3000Å、3000Åにて成膜する。
成膜は、スパッタリング法、CVD法、ゾル−ゲル法等
を用いる。ただし、結晶化のため基板温度を約650℃
で成膜するか、あるいは成膜後650℃で熱処理を行
う。(図3(a)参照)
Step 1: PZT on p-type SiC substrate 7
The ferroelectric thin film 8 and the gate electrode 9 are formed in this order at a film thickness of 3000Å and 3000Å, respectively.
For the film formation, a sputtering method, a CVD method, a sol-gel method or the like is used. However, the substrate temperature is about 650 ° C for crystallization.
Or the heat treatment is performed at 650 ° C. after the film formation. (See Fig. 3 (a))

【0021】ステップ2:エッチングすることにより、
不要部分の強誘電体薄膜8およびゲ−ト電極9を除去す
る。エッチングは強酸によるウェットエッチングも可能
であるが、微細加工性を考えるとドライエッチングが好
ましい。具体的には、ArイオンやClイオンによるイ
オンミリング、ハロゲン化合物やCH4/H2等によるR
IE等がある。(図3(b)参照)
Step 2: By etching,
The unnecessary portion of the ferroelectric thin film 8 and the gate electrode 9 are removed. The etching can be wet etching with a strong acid, but dry etching is preferable in consideration of fine workability. Specifically, ion milling with Ar ions and Cl ions, R with halogen compounds and CH 4 / H 2 etc.
There are IE etc. (See Fig. 3 (b))

【0022】ステップ3:p型SiC基板7の強誘電体
薄膜8およびゲート電極9が積層されている側にイオン
注入法によりPを注入する。このとき、基板温度を高く
すると(700℃程度まで)注入しやすくなる。(図3
(c)参照)
Step 3: P is implanted into the p-type SiC substrate 7 on the side where the ferroelectric thin film 8 and the gate electrode 9 are laminated by the ion implantation method. At this time, if the substrate temperature is increased (up to about 700 ° C.), the injection becomes easy. (Fig. 3
(See (c))

【0023】以下、従来のMOS型トランジスタと同様
にして半導体装置を作製する。
Hereinafter, a semiconductor device is manufactured in the same manner as the conventional MOS type transistor.

【0024】図4は本発明の第2実施例の成膜プロセス
の一実施例を示す。図において、11はn型SiCエピ
タキシャル層、12は導電膜を示す。なお、図3と同一
符号を付したものは同一または類似の要素を示す。
FIG. 4 shows an embodiment of the film forming process of the second embodiment of the present invention. In the figure, 11 is an n-type SiC epitaxial layer, and 12 is a conductive film. The same reference numerals as in FIG. 3 indicate the same or similar elements.

【0025】ステップ1:p型SiC基板7上にエピタ
キシャル成膜層によりn型SiCエピタキシャル層11
を膜厚を2μmまでに成膜する。(図4(a)参照)
Step 1: The n-type SiC epitaxial layer 11 is formed on the p-type SiC substrate 7 by the epitaxial film formation layer.
To a film thickness of 2 μm. (See Fig. 4 (a))

【0026】ステップ2:このn型SiCエピタキシャ
ル層11上にLP−CVD法により、所定パターンでポ
リシコンからなる導電膜12を膜厚3000Åで成膜す
る。(図4(a)参照)
Step 2: A conductive film 12 made of polysilicon is formed in a predetermined pattern on the n-type SiC epitaxial layer 11 by the LP-CVD method to a film thickness of 3000 Å. (See Fig. 4 (a))

【0027】ステップ3:この導電膜12が形成された
p型SiC基板7上にPZTからなる強誘電体膜8を前
記と同様に膜厚を3000Åで成膜する。(図4(c)
参照)
Step 3: A ferroelectric film 8 made of PZT is formed on the p-type SiC substrate 7 on which the conductive film 12 is formed with a film thickness of 3000 Å in the same manner as described above. (Fig. 4 (c)
reference)

【0028】ステップ4:強誘電体膜8を前記と同様
に、所定パターンでパタ−ニングする。しかるのち、P
tまたはAlからなる配線層13を通常の方法、例えば
スパッタリング法により、所定パターンで膜厚3000
Åで成膜する。(図4(d)参照)
Step 4: The ferroelectric film 8 is patterned in a predetermined pattern as described above. After that, P
The wiring layer 13 made of t or Al is formed in a predetermined pattern with a film thickness of 3000 by an ordinary method such as a sputtering method.
Deposition with Å. (See Fig. 4 (d))

【0029】図5は第3実施例の成膜プロセスの一実施
例を示す。図において、14はp型Si基板、15はn
型SiC層、16は強誘電体薄膜、17はゲート電極、
18はp型不純物拡散層を示す。
FIG. 5 shows an embodiment of the film forming process of the third embodiment. In the figure, 14 is a p-type Si substrate, and 15 is n.
-Type SiC layer, 16 is a ferroelectric thin film, 17 is a gate electrode,
Reference numeral 18 denotes a p-type impurity diffusion layer.

【0030】ステップ1:p型シリコン基板14上にn
型SiC層15を、常圧CVD法により、膜厚を2μm
までに成膜する。その際、反応ガスとしてSiH4、C3
8を用い、基板温度約1400℃、ガス圧力約0.1
μTorrで行う。また、n型とするために反応ガスに
PH3を適量混入する。
Step 1: n on the p-type silicon substrate 14
Type SiC layer 15 is formed to a thickness of 2 μm by an atmospheric pressure CVD method.
To form a film. At that time, as reaction gases, SiH 4 , C 3
Using H 8, a substrate temperature of about 1400 ° C., the gas pressure of about 0.1
Perform at μTorr. In addition, an appropriate amount of PH 3 is mixed into the reaction gas in order to make it n-type.

【0031】ステップ2:PZTからなる強誘電体薄膜
16およびPtまたはAlからなるゲート電極17を前
記と同様に膜厚をそれぞれ3000Åおよび3000Å
で成膜する。(図5(b)参照)
Step 2: The ferroelectric thin film 16 made of PZT and the gate electrode 17 made of Pt or Al have film thicknesses of 3000 Å and 3000 Å, respectively, as described above.
To form a film. (See FIG. 5 (b))

【0032】ステップ3:強誘電体薄膜16およびゲー
ト電極17の不要部分を、前記と同様にエッチングによ
り除去する。(図5(c)参照)
Step 3: The unnecessary portions of the ferroelectric thin film 16 and the gate electrode 17 are removed by etching as in the above. (See FIG. 5 (c))

【0033】ステップ4:p型不純物拡散層18をイオ
ン注入法によりボロンを注入することによりn型SiC
層15中の所定範囲に形成する。このとき、基板温度を
高くすると(700℃程度まで)注入しやすくなる。
(図5(d)参照)
Step 4: p-type impurity diffusion layer 18 is doped with boron by ion implantation to form n-type SiC.
It is formed in a predetermined area in the layer 15. At this time, if the substrate temperature is increased (up to about 700 ° C.), the injection becomes easy.
(See FIG. 5 (d))

【0034】図6は本発明の第4実施例の成膜プロセス
の一実施例を示す。図において、19はp型SiCエピ
タキシャル層、20は導電膜、21は配線層を示す。な
お、図5と同一符号を付したものは同一または類似の要
素を示す。
FIG. 6 shows an embodiment of the film forming process of the fourth embodiment of the present invention. In the figure, 19 is a p-type SiC epitaxial layer, 20 is a conductive film, and 21 is a wiring layer. The same reference numerals as those in FIG. 5 indicate the same or similar elements.

【0035】ステップ1:p型シリコン基板14上にn
型SiC層15を前記と同様に膜厚を2μmまでに成膜
し、しかるのち、エピヤキシャル成膜法によりp型Si
Cエピタキシャル層19を膜厚を2μmまでに成膜す
る。(図6(a)参照)
Step 1: n on the p-type silicon substrate 14
The type SiC layer 15 is formed to a film thickness of up to 2 μm in the same manner as described above, and then the p-type Si layer 15 is formed by the epitaxial film forming method.
The C epitaxial layer 19 is formed to a thickness of 2 μm. (See FIG. 6 (a))

【0036】ステップ2:ポリシコンからなる導電膜2
0を前記と同様に、所定パターンにて膜厚3000Åで
成膜する。(図6(b)参照)
Step 2: Conductive film 2 made of polysilicon
Similarly to the above, 0 is formed in a predetermined pattern with a film thickness of 3000 Å. (See FIG. 6 (b))

【0037】ステップ3:強誘電体層16を前記と同様
に膜厚3000Åで、導電膜20が成膜されたp型シリ
コン基板14上に成膜する。(図6(c)参照)
Step 3: The ferroelectric layer 16 is formed on the p-type silicon substrate 14 on which the conductive film 20 is formed in a thickness of 3000 Å as described above. (See FIG. 6 (c))

【0038】ステップ4:強誘電体層16を所定パター
ンにパターニングし、しかるのち、スパッタリング法す
ることにより、PtまたはAlからなる配線層21を所
定パターンにて膜厚3000Åで成膜する。(図6
(d)参照)
Step 4: The ferroelectric layer 16 is patterned into a predetermined pattern, and then the wiring layer 21 made of Pt or Al is formed into a predetermined pattern with a film thickness of 3000 Å by sputtering. (Fig. 6
(See (d))

【0039】[0039]

【発明の効果】以上説明したように本発明によれば次の
ような効果が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0040】格子定数の相違が小さいため、結晶性の
良い強誘電体膜が得られる。
Since the difference in lattice constant is small, a ferroelectric film having good crystallinity can be obtained.

【0041】強誘電体構成元素のイオン(Pb含有ペ
ロブスカイト構造体、例えばPZT系強誘電体の場合、
Pbイオン)などがSi基板やGaAs基板中に拡散す
ることがない。
Ions of ferroelectric constituent elements (in the case of a Pb-containing perovskite structure, for example, a PZT type ferroelectric,
(Pb ions) do not diffuse into the Si substrate or GaAs substrate.

【0042】Si基板やGaAs基板とPZT系強誘
電体層との界面にSiO2などの不要な膜が生成される
ことがない。
An unnecessary film such as SiO 2 is not formed at the interface between the Si substrate or GaAs substrate and the PZT system ferroelectric layer.

【0043】また、本発明の製法によればSiC層を用
いているにもかかわらず、大型の半導体素子を作製する
ことができる。
Further, according to the manufacturing method of the present invention, a large-sized semiconductor element can be manufactured although the SiC layer is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子用いた強誘電体メモリトラ
ンジスタの一実施例の要部断面図である。
FIG. 1 is a sectional view of an essential part of an embodiment of a ferroelectric memory transistor using a semiconductor device of the present invention.

【図2】図1に示すメモリトランジスタの電圧と分極の
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the voltage and polarization of the memory transistor shown in FIG.

【図3】本発明の半導体素子の第1実施例の成膜プロセ
スの一実施例の説明図である。
FIG. 3 is an explanatory diagram of an example of a film forming process of the first example of the semiconductor device of the present invention.

【図4】本発明の半導体素子の第2実施例の成膜プロセ
スの一実施例の説明図である。
FIG. 4 is an explanatory view of an example of a film forming process of the second example of the semiconductor device of the present invention.

【図5】本発明の半導体素子の第3実施例の成膜プロセ
スの一実施例の説明図である。
FIG. 5 is an explanatory diagram of an example of a film forming process of the third example of the semiconductor device of the present invention.

【図6】本発明の半導体素子の第4実施例の成膜プロセ
スの一実施例の説明図である。
FIG. 6 is an explanatory view of an example of a film forming process of the fourth example of the semiconductor device of the present invention.

【図7】従来のMFS型半導体素子の要部断面図であ
る。
FIG. 7 is a cross-sectional view of essential parts of a conventional MFS type semiconductor device.

【符号の説明】[Explanation of symbols]

1 p型SiC基板 2 n型不純物拡散層 3 強誘電体層 4 ゲ−ト電極 5 層間絶縁膜 6 配線層導電膜 7 p型SiC基板 8 強誘電体薄膜 9 ゲ−ト電極 10 n型不純物拡散層 11 n型SiCエピタキシャル層 12 導電膜 13 配線層 14 p型Si基板 15 n型SiC層 16 強誘電体薄膜 17 ゲ−ト電極 18 p型不純物拡散層 19 p型SiCエピタキシャル層 20 導電膜 21 配線層 1 p-type SiC substrate 2 n-type impurity diffusion layer 3 ferroelectric layer 4 gate electrode 5 interlayer insulating film 6 wiring layer conductive film 7 p-type SiC substrate 8 ferroelectric thin film 9 gate electrode 10 n-type impurity diffusion Layer 11 n-type SiC epitaxial layer 12 conductive film 13 wiring layer 14 p-type Si substrate 15 n-type SiC layer 16 ferroelectric thin film 17 gate electrode 18 p-type impurity diffusion layer 19 p-type SiC epitaxial layer 20 conductive film 21 wiring layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SiCからなる半導体基板と、該半導体
基板の表層部に所定の間隔をおいて形成された不純物拡
散層と、前記半導体基板上で前記不純物拡散層間に橋架
された強誘電体層と、該強誘電体層上に積層された電極
とからなることを特徴とする半導体素子。
1. A semiconductor substrate made of SiC, an impurity diffusion layer formed on the surface layer portion of the semiconductor substrate at a predetermined interval, and a ferroelectric layer bridged between the impurity diffusion layers on the semiconductor substrate. And an electrode laminated on the ferroelectric layer.
【請求項2】 前記SiCからなる半導体基板がSi基
板上に積層されてなることを特徴とする請求項1記載の
半導体素子。
2. The semiconductor device according to claim 1, wherein the semiconductor substrate made of SiC is laminated on the Si substrate.
【請求項3】 前記強誘電体がPb元素含有ペロブスカ
イト構造体であることを特徴とする請求項1または2記
載の半導体素子。
3. The semiconductor device according to claim 1, wherein the ferroelectric is a Pb element-containing perovskite structure.
【請求項4】 Si基板にSiC層を形成し、ついで強
誘電体層およびゲート電極をこの順で前記SiC層に形
成することを特徴とする半導体素子の製法。
4. A method of manufacturing a semiconductor device, comprising forming a SiC layer on a Si substrate, and then forming a ferroelectric layer and a gate electrode in this order on the SiC layer.
JP03320884A 1991-11-09 1991-11-09 Semiconductor device having ferroelectric layer and method of manufacturing the same Expired - Fee Related JP3116048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03320884A JP3116048B2 (en) 1991-11-09 1991-11-09 Semiconductor device having ferroelectric layer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03320884A JP3116048B2 (en) 1991-11-09 1991-11-09 Semiconductor device having ferroelectric layer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05136426A true JPH05136426A (en) 1993-06-01
JP3116048B2 JP3116048B2 (en) 2000-12-11

Family

ID=18126342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03320884A Expired - Fee Related JP3116048B2 (en) 1991-11-09 1991-11-09 Semiconductor device having ferroelectric layer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3116048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023563A1 (en) * 2002-09-05 2004-03-18 Japan Science And Technology Agency Field-effect transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636819B2 (en) 1994-12-20 1997-07-30 日本たばこ産業株式会社 Oxazole-based heterocyclic aromatic compounds
KR102293738B1 (en) * 2018-11-22 2021-08-26 김해하 Protecting device for toe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023563A1 (en) * 2002-09-05 2004-03-18 Japan Science And Technology Agency Field-effect transistor
KR100731960B1 (en) * 2002-09-05 2007-06-27 독립행정법인 과학기술진흥기구 Field-effect transistor
KR100731959B1 (en) * 2002-09-05 2007-06-27 독립행정법인 과학기술진흥기구 Field-effect transistor

Also Published As

Publication number Publication date
JP3116048B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
US5468684A (en) Integrated circuit with layered superlattice material and method of fabricating same
US5719416A (en) Integrated circuit with layered superlattice material compound
US5378905A (en) Ferroelectric field effect transistor with fluoride buffer and IV-VI ferroelectric
KR950000156B1 (en) Semiconductor device
US20040048455A1 (en) Method of making layered superlattice material with improved microstructure
WO1994010704A1 (en) Integrated circuit with layered superlattice material and method of fabricating same
US20060108623A1 (en) Oxidative top electrode deposition process, and microelectronic device structure
US6537830B1 (en) Method of making ferroelectric FET with polycrystalline crystallographically oriented ferroelectric material
WO2001024237A1 (en) Integrated circuits with barrier layers and methods of fabricating same
KR100422893B1 (en) Reduced diffusion of a mobile ion from a metal oxide ceramic into the substrate
JP2000068466A (en) Semiconductor memory device
US6291292B1 (en) Method for fabricating a semiconductor memory device
JPH04326766A (en) Thin film transistor for liquid crystal and its method of manufacturing
KR100405146B1 (en) Process for producing a structured metal oxide-containing layer
US4873203A (en) Method for formation of insulation film on silicon buried in trench
JP4230243B2 (en) Semiconductor device and manufacturing method thereof
JP3116048B2 (en) Semiconductor device having ferroelectric layer and method of manufacturing the same
JPH1022467A (en) Semiconductor device and manufacture thereof
US20040113186A1 (en) Method of making layered superlattice material with ultra-thin top layer
JP2004023086A (en) Method of manufacturing semiconductor device
JP3232661B2 (en) Semiconductor storage device
JPH09148535A (en) Semiconductor storage device
JP2003168647A (en) Method of manufacturing semiconductor device and semiconductor device
JPH0294559A (en) Semiconductor storage device and manufacture thereof
JP2880039B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000627

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees