JP3232661B2 - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JP3232661B2
JP3232661B2 JP17412392A JP17412392A JP3232661B2 JP 3232661 B2 JP3232661 B2 JP 3232661B2 JP 17412392 A JP17412392 A JP 17412392A JP 17412392 A JP17412392 A JP 17412392A JP 3232661 B2 JP3232661 B2 JP 3232661B2
Authority
JP
Japan
Prior art keywords
film
pzt
oriented
lower electrode
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17412392A
Other languages
Japanese (ja)
Other versions
JPH0621338A (en
Inventor
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17412392A priority Critical patent/JP3232661B2/en
Publication of JPH0621338A publication Critical patent/JPH0621338A/en
Application granted granted Critical
Publication of JP3232661B2 publication Critical patent/JP3232661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主に不揮発性半導体記
憶装置に用いられる強誘電体キャパシタの構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a ferroelectric capacitor mainly used for a nonvolatile semiconductor memory device.

【0002】[0002]

【従来の技術】従来、例えばジャーナル・オブ・アプラ
イド・フィジックス(J.Appl.Phys)199
1年、第70巻、第1号、382項〜388項に記載さ
れていた様に、強誘電体メモリ装置等に使用される白金
電極の結晶は多結晶からなり、その結晶方位は強い(1
11)配向をしていた。
2. Description of the Related Art Conventionally, for example, Journal of Applied Physics (J. Appl. Phys) 199
As described in 1 year, Vol. 70, No. 1, paragraphs 382 to 388, the crystal of a platinum electrode used in a ferroelectric memory device or the like is made of polycrystal and has a strong crystal orientation ( 1
11) It was oriented.

【0003】図2の強誘電体素子の断面構造図を基に従
来例を説明する。
A conventional example will be described based on a sectional structural view of a ferroelectric element shown in FIG.

【0004】すなわち、(111)配向した白金より成
る下部電極201上にPb(ZrXTi1-X)O3、略し
てPZT膜202が形成されており、その上に、上部電
極203が形成されていた。
That is, a Pb (Zr x Ti 1 -x) O 3 , abbreviated as a PZT film 202, is formed on a lower electrode 201 made of (111) oriented platinum, and an upper electrode 203 is formed thereon. It had been.

【0005】Zr組成比Xは誘電率が比較的大きくなる
ようにおよそ0.5である。
The Zr composition ratio X is about 0.5 so that the dielectric constant becomes relatively large.

【0006】また、PZT膜の多結晶の結晶性は、下地
の白金の配向性に影響されて、(111)に強く配向し
ていた。
In addition, the crystallinity of the polycrystal of the PZT film is strongly oriented to (111), affected by the orientation of the underlying platinum.

【0007】強誘電体記憶装置の情報の書き込みは、強
誘電体キャパシタ中の強誘電体膜の分極の向きにより行
なう。
Writing of information in the ferroelectric memory device is performed according to the direction of polarization of the ferroelectric film in the ferroelectric capacitor.

【0008】従来例の場合、PZT膜の結晶構造は、菱
面体構造を成しており、PZT膜中のプラスイオンとマ
イナスイオンの平均位置が、相反する(111)方向の
にずれるために分極を生じる。
In the case of the conventional example, the crystal structure of the PZT film has a rhombohedral structure, and polarization is caused because the average positions of the positive ions and the negative ions in the PZT film are shifted in the opposite (111) directions. Is generated.

【0009】ここでは、プラスイオンは、Pb、Ti、
Zrであり、マイナスイオンは、Oである。
Here, the positive ions are Pb, Ti,
Zr, and the negative ion is O.

【0010】すなわち上部電極203が下部電極201
に対してプラスの電位となるようにPZT膜202の抗
電界以上のバイアスをかけたとき、分極の向きは下向き
であり、上記方向と逆向きにバイアスをかけたとき上向
きとなる。
That is, the upper electrode 203 is
When a bias equal to or higher than the coercive electric field of the PZT film 202 is applied so as to have a positive potential with respect to the above, the polarization direction is downward, and when a bias is applied in the opposite direction to the above direction, the polarization direction is upward.

【0011】この分極の向きが情報の0、1と対応して
いる。
The direction of this polarization corresponds to information 0 and 1.

【0012】従って、強誘電体記憶装置の記録方法とし
て、PZTの分極反転を利用しているので、10年保証
するためには、分極反転を1015回を繰り返した後のス
イッチング電荷量を保証しなければならない。
Therefore, since the polarization inversion of PZT is used as the recording method of the ferroelectric memory device, in order to guarantee 10 years, the switching charge after repeating the polarization inversion 10 15 times is guaranteed. Must.

【0013】また、別の従来例としてジャーナル・オブ
・アプライド・フィジックス(J.Appl.Phy
s)1991年、第69巻、第12号、8352項〜8
357項に記載され図3に示す様に、(001)配向の
PZT膜を形成する場合の下地は、MgO(100)単
結晶基板(マグネシア)301やSrTiO3(10
0)単結晶基板(チタン酸ストロンチウム)を用いてい
た。
As another conventional example, a journal of applied physics (J. Appl. Phys.
s) 1991, Vol. 69, No. 12, 8352-8
As shown in FIG. 357 and shown in FIG. 3, when forming a (001) -oriented PZT film, the underlayer is made of a MgO (100) single crystal substrate (magnesia) 301 or SrTiO 3 (10
0) A single crystal substrate (strontium titanate) was used.

【0014】すなわち、MgO(100)単結晶基板3
01上にPtをスパッタ膜で形成すると下地の影響を受
けて、(100)配向した、多結晶のPt302が形成
され、その上に、PZT膜303を形成すると下地のP
tに影響を受けて(001)配向となる。
That is, the MgO (100) single crystal substrate 3
When Pt is formed by sputtering on Pt. 01, a polycrystalline Pt 302 having a (100) orientation is formed under the influence of the base, and when a PZT film 303 is formed thereon, Pt of the base is formed.
The orientation becomes (001) orientation under the influence of t.

【0015】[0015]

【発明が解決しようとする課題】しかし、従来のZr組
成比X〜0.5のPZT膜を(111)配向した白金電
極上に形成した場合、下地の白金電極に影響を受けて
(111)配向のPZT膜が形成されるため、PZTは
歪を持ちながら配向する。
However, when a conventional PZT film having a Zr composition ratio of X to 0.5 is formed on a (111) oriented platinum electrode, the PZT film is affected by the underlying platinum electrode (111). Since an oriented PZT film is formed, PZT is oriented while having a strain.

【0016】なぜなら、バルクの白金の格子定数とバル
クのPZTの格子定数が、若干異なることによって生じ
る格子不整合を緩和するからである。
This is because the lattice mismatch caused by a slight difference between the lattice constant of bulk platinum and the lattice constant of bulk PZT is reduced.

【0017】そのため従来の強誘電体キャパシタの構造
では、分極反転を繰り返すと、膜疲労を起こし、残留分
極の大きさが小さくなったり、リーク電流が増えてしま
うという問題点を有していた。
Therefore, the structure of the conventional ferroelectric capacitor has a problem that repeated polarization reversal causes film fatigue, resulting in a decrease in remanent polarization and an increase in leak current.

【0018】また、MgO(100)単結晶基板や、S
rTiO3(001)単結晶基板上にPZT膜を(00
1)配向させて、エピタキシャル成長することができる
が、電界効果形トランジスタが形成された基板上に単結
晶のMgOやSrTiO3を形成することは、不可能で
あるため、(001)配向のPZT膜を電界効果型トラ
ンジスタと集積化することはできなかった。
Further, an MgO (100) single crystal substrate, S
A PZT film was formed on an rTiO 3 (001) single crystal substrate by (00
1) Although it can be oriented and epitaxially grown, it is impossible to form single-crystal MgO or SrTiO 3 on a substrate on which a field-effect transistor is formed. Therefore, a (001) -oriented PZT film is used. Cannot be integrated with a field-effect transistor.

【0019】そこで、本発明は従来のこの様な課題を解
決しようとするもので、その目的とするところは、電界
効果型トランジスタ等の能動素子の形成された同一基板
上に、格子歪の無い、すなわちバルクと同じ結晶構造と
格子定数を持つ強誘電体膜を形成し、書き換え回数を1
15回としても、保証期間10年以上の強誘電体記憶装
置を提供することである。
Therefore, the present invention is to solve such a conventional problem, and an object of the present invention is to provide a semiconductor device having no lattice distortion on the same substrate on which active elements such as field effect transistors are formed. That is, a ferroelectric film having the same crystal structure and lattice constant as the bulk is formed, and
The object of the present invention is to provide a ferroelectric memory device having a warranty period of 10 years or more even if the number of times is 15 times.

【0020】[0020]

【課題を解決するための手段】本発明の半導体記憶装置
は、 (1)動素子の形成された半導体基板上に形成された非
晶質膜と、前記非晶質膜上に(100)配向となるよう
に形成された下部電極と、前記下部電極上に(001)
配向となるように形成されたペロブスカイト結晶構造を
有する酸化物誘電体膜と、前記酸化物誘電体膜上に形成
された上部電極とを備えた誘電体キャパシタを備えた半
導体記憶装置であって、前記酸化物誘電体がチタン酸ジ
ルコン酸鉛Pb(Zr X Ti 1-X )O 3 であり、Zr組成
比Xが0.1以上0.2以下または0.8以上0.9以
下であることを特徴とする。
According to the present invention, there is provided a semiconductor memory device comprising: (1) an amorphous film formed on a semiconductor substrate on which a moving element is formed, and (100) oriented on the amorphous film. So that
A lower electrode formed, on the lower electrode (001)
A half provided with a dielectric capacitor comprising: an oxide dielectric film having a perovskite crystal structure formed to be oriented; and an upper electrode formed on the oxide dielectric film.
A conductive storage device, wherein the oxide dielectric comprises dititanate.
Lead ruconate Pb (Zr x Ti 1-x ) O 3 with Zr composition
Ratio X is 0.1 or more and 0.2 or less or 0.8 or more and 0.9 or less
It is characterized by being below.

【0021】また、本発明の半導体記憶装置は、 (2)上記構成において、前記下部電極の前記酸化物誘
電体膜に接する面が、(100)配向の白金層であるこ
とを特徴とする。
Further, according to the semiconductor memory device of the present invention, there is provided: (2) In the above structure, the oxide dielectric of the lower electrode is provided.
The surface in contact with the conductor film must be a (100) oriented platinum layer.
And features.

【0022】[0022]

【実施例】本発明の第1実施例を図1(a)〜(d)の
製造工程断構造図に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. 1 (a) to 1 (d).

【0023】図1(a)は、通常のMOSトランジスタ
の部分であるが、簡単に説明する。まず、シリコン基板
101上に熱窒化膜(Si34)を全面に形成した後、
フォトエッチング工程によりLOCOS102を形成す
る部分の窒化膜に穴を開け、水蒸気を用いた湿式酸化に
よりシリコン基板の露出部を酸化し、LOCOS102
を形成する。
FIG. 1A shows a part of a normal MOS transistor, which will be briefly described. First, after a thermal nitride film (Si 3 N 4 ) is formed on the entire surface of the silicon substrate 101,
A hole is formed in the nitride film at the portion where the LOCOS 102 is to be formed by a photoetching process, and the exposed portion of the silicon substrate is oxidized by wet oxidation using water vapor.
To form

【0024】次に、LOCOS102形成に用いた窒化
膜を除去した後、HCl酸化により厚さ150Åのゲー
ト酸化膜を形成する。
Next, after removing the nitride film used for forming the LOCOS 102, a gate oxide film having a thickness of 150 ° is formed by HCl oxidation.

【0025】モノシラン(SiH4)ガスの熱分解によ
り多結晶シリコン103を全面に堆積し、その抵抗値を
下げるため燐(P)を1021/cm3程度イオン打ち込
みにより形成する。
Polycrystalline silicon 103 is deposited on the entire surface by thermal decomposition of monosilane (SiH 4 ) gas, and phosphorus (P) is formed by ion implantation at about 10 21 / cm 3 to reduce the resistance value.

【0026】その後、フォトエッチングとCF4ガス等
を用いたドライ・エッチングによって多結晶シリコン1
03を図1(a)のように加工し、ゲート電極が形成さ
れる。 次に、この多結晶シリコンをマスクにして砒素
(As)をイオン打ち込みし、セルフアラインでソース
104及びドレイン105を形成する。
Thereafter, the polycrystalline silicon 1 is formed by photoetching and dry etching using CF 4 gas or the like.
03 is processed as shown in FIG. 1A to form a gate electrode. Next, arsenic (As) is ion-implanted using the polycrystalline silicon as a mask to form a source 104 and a drain 105 by self-alignment.

【0027】更に、層間絶縁膜とする燐を含んだ化学気
相成長法(CVD)により、燐ガラス106の膜を形成
する。
Further, a film of phosphorus glass 106 is formed by chemical vapor deposition (CVD) containing phosphorus as an interlayer insulating film.

【0028】次に図1(b)に示すように、下部電極の
白金下部電極107を全面に形成する。
Next, as shown in FIG. 1B, a platinum lower electrode 107 as a lower electrode is formed on the entire surface.

【0029】下部電極107の形成方法を少し詳細に述
べる。
The method for forming the lower electrode 107 will be described in some detail.

【0030】実施例として、例えばバイアススパッタ法
がある。
As an embodiment, for example, there is a bias sputtering method.

【0031】直流(DC)マグネトロンスパッタ法で、
基板にマイナス500Vの直流バイアスをかけながら、
スパッタすることにより、白金107を形成する。
In a direct current (DC) magnetron sputtering method,
While applying a DC bias of minus 500 V to the substrate,
Platinum 107 is formed by sputtering.

【0032】アルゴン(Ar)ガス雰囲気、8mTor
rのガス圧力、入力パワー密度5.6W/cm2で30
0秒スパッタする事により、厚さ5000Å、(10
0)配向の白金電極107を全面に形成することができ
る。
Argon (Ar) gas atmosphere, 8 mTorr
30 at a gas pressure of r and an input power density of 5.6 W / cm 2 .
By sputtering for 0 seconds, a thickness of 5000 mm, (10
0) An oriented platinum electrode 107 can be formed on the entire surface.

【0033】別の実施例として、酸素を微量混ぜること
により、基板バイアスをかけない通常の直流(DC)マ
グネトロンスパッタ法でも可能である。
As another embodiment, a normal direct current (DC) magnetron sputtering method without applying a substrate bias by mixing a small amount of oxygen is also possible.

【0034】この場合、アルゴン分圧8mTorr、酸
素分圧0.1mTorr、入力パワー密度5.6W/c
2で、250秒スパッタすることにより、厚さ500
0Å、(100)配向の白金電極107を全面に形成す
ることができる。
In this case, the partial pressure of argon is 8 mTorr, the partial pressure of oxygen is 0.1 mTorr, and the input power density is 5.6 W / c.
m 2, and the by 250 seconds sputter, 500 thickness
A platinum electrode 107 of 0 ° and (100) orientation can be formed on the entire surface.

【0035】上記2つのいずれの方法を用いても、非晶
質の燐ガラス106上に(100)配向の白金膜を形成
することができる。
Either of the above two methods can be used to form a (100) oriented platinum film on the amorphous phosphorus glass 106.

【0036】更に、上記二つの方法を組み合わせてもよ
い。
Further, the above two methods may be combined.

【0037】すなわち、スパッタガスに微量の酸素を添
加したバイアススパッタ法を用いてもよい。
That is, a bias sputtering method in which a slight amount of oxygen is added to a sputtering gas may be used.

【0038】次に図1(c)に示すように、白金電極1
07上に厚さ5000Åの(001)配向のZr組成比
Xが0.15のチタン酸ジルコン酸鉛(PZT)108
を高周波(RF)マグネトロンスパッタ法により形成す
る。
Next, as shown in FIG.
No. 07, lead zirconic titanate (PZT) 108 having a thickness of 5000 ° and a (001) -oriented Zr composition ratio X of 0.15.
Is formed by a high frequency (RF) magnetron sputtering method.

【0039】ターゲット組成をPb1.1(Zr0.15Ti
0.85)O3.1とした。
The target composition was Pb 1.1 (Zr 0.15 Ti
0.85 ) O 3.1 .

【0040】すなわち、ZrとTiの総和に対するZr
の組成比を0.15とし、化学量論的組成のPZTから
一酸化鉛(PbO)を10パーセント過剰に含むターゲ
ット組成を用いた。
That is, Zr with respect to the sum of Zr and Ti
Was set to 0.15, and a target composition containing a 10% excess of lead monoxide (PbO) from stoichiometric PZT was used.

【0041】Zr組成比を0.15としたのは、この組
成比のバルクのPZTが、直方体の結晶構造をもち、
(001)方向が分極の方向と一致するからであり、更
に、下部電極107の白金の格子定数と、PZTのa軸
の格子定数が殆ど一致し、PZTの薄膜を形成した場合
にも、格子の歪量が少なく、分極反転等の膜疲労特性に
対して非常に有効だからである。
The reason why the Zr composition ratio is set to 0.15 is that bulk PZT having this composition ratio has a rectangular parallelepiped crystal structure,
This is because the (001) direction coincides with the direction of polarization. Further, even when the lattice constant of platinum of the lower electrode 107 and the lattice constant of the a-axis of PZT almost coincide with each other and a thin film of PZT is formed, This is because the amount of strain is small and is very effective for film fatigue characteristics such as polarization reversal.

【0042】スパッタ条件としては、アルゴンガス9m
Torr、酸素ガス1mTorrの雰囲気、基板温度2
00℃、RFパワー密度6W/cm2である。
The sputtering conditions were as follows: 9 m of argon gas
Torr, atmosphere of oxygen gas 1 mTorr, substrate temperature 2
00 ° C., RF power density 6 W / cm 2 .

【0043】スパッタ後、ペロブスカイト構造のPZT
を得るために、酸素雰囲気中、500℃で熱処理を行な
った。
After sputtering, PZT having a perovskite structure
In order to obtain, heat treatment was performed at 500 ° C. in an oxygen atmosphere.

【0044】この結晶化熱処理により、(001)配向
のPZT多結晶を得ることができた。
By this crystallization heat treatment, a (001) oriented PZT polycrystal could be obtained.

【0045】次に、図1(d)に示すように、厚さ50
00Åの上部白金電極109をDCマグネトロンスパッ
タ法で形成した後、イオンミリング法を用いて下部白金
電極107、PZT108、上部白金電極109の加工
を行なう。
Next, as shown in FIG.
After the upper platinum electrode 109 of 00 ° is formed by DC magnetron sputtering, the lower platinum electrode 107, PZT 108 and upper platinum electrode 109 are processed by ion milling.

【0046】最後に、燐ガラス110をテトラ・エチル
・オルト・シリケート(TEOS)のプラズマ化学気相
成長法で形成し、コンタクトホールを開けた後、アルミ
配線111をDCスパッタとフォトプロセス、アルミエ
ッチングプロセスにより形成する。
Finally, a phosphor glass 110 is formed by plasma-enhanced chemical vapor deposition of tetra-ethyl-ortho-silicate (TEOS), and after a contact hole is opened, an aluminum wiring 111 is formed by DC sputtering, a photo process, and aluminum etching. It is formed by a process.

【0047】図4に本実施例で示したPZTキャパシタ
の書き換え回数に対するスイッチング電荷の変化のグラ
フを示す。
FIG. 4 is a graph showing a change in switching charge with respect to the number of times of rewriting of the PZT capacitor shown in this embodiment.

【0048】ここではキャパシタの大きさを100μm
×100μmとし、5Vのバイアス電圧とした。
Here, the size of the capacitor is set to 100 μm.
× 100 μm and a bias voltage of 5V.

【0049】白丸が従来の(111)Pt下部電極上
に、(111)配向PZT膜を形成したキャパシタを用
いた場合で、黒丸が本発明の実施例で示した(100)
配向のPt下部電極上に(001)配向のPb(Zr
0.15Ti0.85)O3膜を形成したキャパシタを用いた場
合である。
An open circle indicates the case where a capacitor having a (111) -oriented PZT film formed on a conventional (111) Pt lower electrode is used, and a solid circle indicates the embodiment of the present invention (100).
The (001) oriented Pb (Zr
This is the case where a capacitor having a 0.15 Ti 0.85 ) O 3 film formed thereon is used.

【0050】書き換え回数、すなわち分極の反転繰り返
しに対して、本発明のPZTキャパシタのスイッチング
電荷の減少の割合は、従来に比べて、非常に優れている
ことが分かる。
It can be seen that the ratio of the reduction of the switching charge of the PZT capacitor of the present invention to the number of rewrites, that is, the repetition of the polarization reversal, is much better than the conventional one.

【0051】本実施例では、1015回書換え後に於いて
もスイッチング電荷の大きさの減少がほとんど無いこと
が推定される。
In this embodiment, it is estimated that the magnitude of the switching charge hardly decreases even after rewriting 10 15 times.

【0052】更に、リーク電流は、1012回書換え後に
於て、従来5Vで100μA/cm2以上であったが、
本実施例では、8μA/cm2と良好であった。
Further, the leak current after the rewriting was performed 10 12 times was conventionally 100 μA / cm 2 or more at 5 V,
In the present example, it was as good as 8 μA / cm 2 .

【0053】上記実施例では、PZT膜のZrの組成比
Xを0.15として説明したが、Xが0.8以上0.9
以下のいずれでも、Ptとの格子のミスマッチは非常に
少ないのでよい。
In the above embodiment, the composition ratio X of Zr in the PZT film was set to 0.15.
In any of the following, the lattice mismatch with Pt may be very small.

【0054】上記実施例では、PZTを用いて説明した
が、BaTiO3、PbTiO3、KNbO3、Pb(M
nNb)O3、(BaSr)TiO3等他のペロブスカイ
ト結晶構造を有する酸化物強誘電体または酸化物常誘電
体膜でもよい。
In the above embodiment, PZT has been described, but BaTiO 3 , PbTiO 3 , KNbO 3 , Pb (M
An oxide ferroelectric or oxide paraelectric film having another perovskite crystal structure, such as nNb) O 3 or (BaSr) TiO 3 may be used.

【0055】又、それらに、ランタン(La)、ネオジ
ウム(Nd)、ビスマス(Bi)、ナイオビウム(N
b)、アンチモン(Sb)、タンタル(Ta)等をドー
パントとして用いてもよい。
In addition, lanthanum (La), neodymium (Nd), bismuth (Bi), niobium (N
b), antimony (Sb), tantalum (Ta) or the like may be used as a dopant.

【0056】更に、上記実施例では、下部電極の下に形
成される非晶質膜としてSiO2を用いて説明したが、
窒化珪素膜(Si34)でもよい。
Further, in the above embodiment, the description has been made using SiO 2 as the amorphous film formed below the lower electrode.
A silicon nitride film (Si 3 N 4 ) may be used.

【0057】[0057]

【発明の効果】本発明の半導体記憶装置は、以上説明し
たように能動素子の形成された半導体装置上に、酸化物
誘電体を集積化し、下部電極の結晶を(100)配向と
し、前記酸化物誘電体膜の結晶を(001)配向とする
ことで、本来前記酸化物誘電体がバルクとして持ってい
る結晶構造及び格子定数を薄膜にしても持ち得ることに
より、格子歪の無い、酸化物誘電体膜を形成することが
出来るので、情報の書き換えを1015回繰り返してもス
イッチング電荷量の減少を防ぐことができ、信頼性に優
れた大容量半導体記憶装置を提供することができると言
った効果を有する。
According to the semiconductor memory device of the present invention, an oxide dielectric is integrated on a semiconductor device on which active elements are formed as described above, the crystal of the lower electrode is (100) oriented, and the oxide By making the crystal of the dielectric material film have the (001) orientation, the oxide dielectric can have the bulk crystal structure and lattice constant even as a thin film. Since a dielectric film can be formed, a reduction in switching charge can be prevented even when information is rewritten 10 15 times, and a large-capacity semiconductor memory device with excellent reliability can be provided. Has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体記憶装置の製造工程断面図であ
る。
FIG. 1 is a sectional view showing a manufacturing process of a semiconductor memory device according to the present invention.

【図2】従来の半導体記憶装置に用いられる強誘電体素
子の断面構造図である。
FIG. 2 is a sectional structural view of a ferroelectric element used in a conventional semiconductor memory device.

【図3】従来の強誘電体素子の断面構造図である。FIG. 3 is a sectional structural view of a conventional ferroelectric element.

【図4】本発明の半導体記憶装置の書き換え回数に対す
るスイッチング電荷量の変化を示すグラフである。
FIG. 4 is a graph showing a change in a switching charge amount with respect to the number of times of rewriting of the semiconductor memory device of the present invention.

【符号の説明】[Explanation of symbols]

101 シリコン基板 102 LOCOS 103 多結晶シリコン 104 ソース 105 ドレイン 106 燐ガラス 107 下部白金電極 108 PZT 109 上部白金電極 110 燐ガラス 111 アルミ配線 201 (111)配向Pt下部電極 202 PZT膜 203 上部電極 301 MgO単結晶基板 302 (100)配向Pt 303 PZT膜 Reference Signs List 101 silicon substrate 102 LOCOS 103 polycrystalline silicon 104 source 105 drain 106 phosphorus glass 107 lower platinum electrode 108 PZT 109 upper platinum electrode 110 phosphorus glass 111 aluminum wiring 201 (111) oriented Pt lower electrode 202 PZT film 203 upper electrode 301 MgO single crystal Substrate 302 (100) -oriented Pt 303 PZT film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 能動素子の形成された半導体基板上に形
成された非晶質膜と、 前記非晶質膜上に(100)配向となるように形成され
下部電極と、 前記下部電極上に(001)配向となるように形成され
ペロブスカイト結晶構造を有する酸化物誘電体膜と、 前記酸化物誘電体膜上に形成された上部電極と を備えた誘電体キャパシタを有する半導体記憶装置であ
って、 前記酸化物誘電体がチタン酸ジルコン酸鉛Pb(Zr X
Ti 1-X )O 3 であり、 Zr組成比Xが0.1以上0.2以下または0.8以上
0.9以下であることを特徴とする半導体記憶装置。
An amorphous film formed on a semiconductor substrate on which an active element is formed; and an (100) oriented film formed on the amorphous film.
A lower electrode, the upper to the lower electrode (001) is formed to be oriented
A semiconductor storage device having a dielectric capacitor comprising: an oxide dielectric film having a perovskite crystal structure; and an upper electrode formed on the oxide dielectric film.
Thus, the oxide dielectric is made of lead zirconate titanate Pb (Zr X
Ti 1-X ) O 3 , and the Zr composition ratio X is 0.1 or more and 0.2 or less or 0.8 or more
A semiconductor memory device characterized by being 0.9 or less.
【請求項2】 前記下部電極の前記酸化物誘電体膜に接2. A method according to claim 1, wherein said lower electrode is in contact with said oxide dielectric film.
する面が、(100)配向の白金層であることを特徴とThe surface to be formed is a platinum layer of (100) orientation.
する請求項1記載の半導体記憶装置。The semiconductor memory device according to claim 1.
JP17412392A 1992-07-01 1992-07-01 Semiconductor storage device Expired - Lifetime JP3232661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17412392A JP3232661B2 (en) 1992-07-01 1992-07-01 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17412392A JP3232661B2 (en) 1992-07-01 1992-07-01 Semiconductor storage device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP11187568A Division JP2000068466A (en) 1999-07-01 1999-07-01 Semiconductor memory device
JP11187573A Division JP2000068468A (en) 1999-07-01 1999-07-01 Manufacture of semiconductor memory device
JP2001110443A Division JP2001352045A (en) 2001-04-09 2001-04-09 Method for manufacturing semiconductor memory

Publications (2)

Publication Number Publication Date
JPH0621338A JPH0621338A (en) 1994-01-28
JP3232661B2 true JP3232661B2 (en) 2001-11-26

Family

ID=15973057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17412392A Expired - Lifetime JP3232661B2 (en) 1992-07-01 1992-07-01 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JP3232661B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403798B1 (en) * 1996-03-11 2004-06-26 삼성전자주식회사 Overlapping ferroelectric random access memory and method for fabricating and driving the same
TW456027B (en) 1999-08-18 2001-09-21 Matsushita Electronics Corp Method of making ferroelectric thin film, ferroelectric capacitor, ferroelectric memory and method for fabricating ferroelectric memory
KR20030028115A (en) * 2001-09-27 2003-04-08 주식회사 포스코 Screen Control Method for Blast Furnace Return Fine
JP4365712B2 (en) 2004-03-25 2009-11-18 富士通株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH0621338A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
JP3363301B2 (en) Ferroelectric thin film-coated substrate, method of manufacturing the same, and nonvolatile memory constituted by ferroelectric thin-film-coated substrate
JP3251625B2 (en) Field effect transistor
JPH11502673A (en) Laminated superlattice material and low-temperature manufacturing method of electronic device including the same
JP2009152235A (en) Ferroelectric stacked-layer structure and fabrication method thereof, field effect transistor and fabrication method thereof, and ferroelectric capacitor and fabrication method thereof
JP2000068466A (en) Semiconductor memory device
KR100378276B1 (en) Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device
US6352898B2 (en) Method of manufacturing a semiconductor memory device incorporating a capacitor therein
US6291292B1 (en) Method for fabricating a semiconductor memory device
JP4438963B2 (en) Ferroelectric capacitor
JP3474352B2 (en) Thin film capacitor and semiconductor device
US20010028582A1 (en) Ferroelectric memory element
US6080593A (en) Method of manufacturing ferroelectric memory
US6495412B1 (en) Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
US6146963A (en) Methods for forming ferroelectric capacitors having a bottom electrode with decreased leakage current
JP3232661B2 (en) Semiconductor storage device
JP2001237402A (en) Structured metal oxide containing layer, and method of manufacturing semiconductor structure element
JPH11307736A (en) Manufacture of semiconductor memory element
JPH06283706A (en) Electrode for crystalline thin film
JP3604253B2 (en) Semiconductor storage device
JP2000068468A (en) Manufacture of semiconductor memory device
JP2001352045A (en) Method for manufacturing semiconductor memory
JP3116048B2 (en) Semiconductor device having ferroelectric layer and method of manufacturing the same
JP2002083937A (en) Ferroelectric film, semiconductor device, and method of manufacturing these
JP3246483B2 (en) Method for manufacturing semiconductor device
KR100321709B1 (en) Method for forming capacitor of semiconductor memory device by using ain as glue layer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

EXPY Cancellation because of completion of term