WO2004023563A1 - Field-effect transistor - Google Patents

Field-effect transistor Download PDF

Info

Publication number
WO2004023563A1
WO2004023563A1 PCT/JP2003/011300 JP0311300W WO2004023563A1 WO 2004023563 A1 WO2004023563 A1 WO 2004023563A1 JP 0311300 W JP0311300 W JP 0311300W WO 2004023563 A1 WO2004023563 A1 WO 2004023563A1
Authority
WO
WIPO (PCT)
Prior art keywords
effect transistor
field
layer
ferromagnetic layer
oxide
Prior art date
Application number
PCT/JP2003/011300
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Tanaka
Tomoji Kawai
Teruo Kanki
Young-Geun Park
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2004534157A priority Critical patent/JPWO2004023563A1/en
Priority to US10/526,470 priority patent/US20060017080A1/en
Priority to EP03794228A priority patent/EP1548843A4/en
Publication of WO2004023563A1 publication Critical patent/WO2004023563A1/en
Priority to US11/520,628 priority patent/US20070007568A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • H10N99/03Devices using Mott metal-insulator transition, e.g. field-effect transistor-like devices

Definitions

  • the present invention relates to a field-effect transistor, and more particularly to a field-effect transistor that can be used for a magnetic recording element that can be written by an electric field, a new-function semiconductor-magnetic integrated circuit, an electric-field control magnetic actuator, and the like.
  • Non-Patent Document 3 (Non-Patent Document 3)
  • Non-patent document 4 (Non-patent document 4)
  • the above-mentioned conventional field effect element has a problem that the magnetic transition temperature is low and a high electric field needs to be applied, or the magnetic transition temperature does not change.
  • the Mn oxide ferroelectric oxide of (2) most of the field effect elements having the above configuration do not show a change in magnetic transition temperature. Further, even in the case of a compound exhibiting a change in magnetic transition temperature, its magnetic transition temperature is low, and the width of the change in magnetic transition temperature is small.
  • the magnetic transition temperature of the ferromagnetic layer having the above-described structure rapidly decreases when the ferromagnetic layer is formed into a thin film necessary for producing a depiice. Therefore, the field effect element having the above configuration cannot control the transition temperature near room temperature, for example.
  • (L a, C a) M n O 3 (50 nm) / S r T i Changes in the magnetic transition temperature of an example using an O 3 field-effect element have been reported.
  • the present inventors have conducted intensive studies on the above problems, and as a result, in order to obtain a sufficient electric field effect, a Ba-based M having an optimum film thickness, Ba atom content, and a flat interface at the atomic level.
  • the present invention has been completed by combining an n-oxide and a dielectric or ferroelectric having an optimum remanent polarization value and insulating property.
  • the field effect transistor according to the present invention is made of a Ba-based Mn oxide having a film thickness of 50 nm or less and exhibiting ferromagnetism at 0 ° C. or more in order to solve the above problems. It is characterized in that a ferromagnetic layer and a dielectric layer made of a dielectric or ferroelectric are joined.
  • the field-effect transistor according to the present invention includes a Ba-based Mri oxide exhibiting ferromagnetism at 0 ° C. or higher as a ferromagnetic layer, System Mn oxide is used. Then, by joining the ferromagnetic layer and the dielectric or ferroelectric layer, a field effect transistor having a magnetic transition temperature of 0 ° C. or more can be obtained. As a result, the transistor of the present invention has a very high temperature,
  • the magnetic properties, the electric transport properties, and / or the magnetoresistive effect can be controlled at o ° C or higher.
  • Ba- based Mn oxide is a “strongly correlated electron system” in which the interaction between electrons is very strong as compared with, for example, a diluted magnetic semiconductor. Therefore, since the physical properties change with a slight change in the carrier concentration, control can be performed at a lower voltage than, for example, a dilute magnetic semiconductor.
  • the field-effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0 ° C. or higher) than before.
  • the field effect transistor of the present invention has a bottom gate structure.
  • the above-mentioned borate Tomuge preparative structure a channel layer (ferromagnetic layer) (L a, B a) Mn 0 3 layers, not in contact with the substrate, and a structure in which one surface is bared is there.
  • the yo Ri Specifically, a structure (L a, B a) Mn 0 3 layer is exposed.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a field-effect transistor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a schematic configuration of a field-effect transistor according to another embodiment of the present invention.
  • FIG. 3 is a graph showing a change in source-drain resistance when a top gate field-effect transistor is subjected to a Good-Pyase sweep.
  • Figure 4 is a graph showing the change in source-to-drain resistance due to the temperature change of a top-gate field-effect transistor.
  • FIG. 5 is a graph showing a change in source-to-drain resistance due to a temperature change of a bottom-gate type field effect transistor.
  • the field-effect transistor includes a ferromagnetic layer 2, a dielectric layer 1, a source electrode 4, a gate electrode 3, and a drain electrode 5.
  • the ferromagnetic layer 2 is formed on a substrate.
  • a ferromagnetic layer 2 is formed on a substrate, and a dielectric layer 1 is laminated on the surface of the substrate on which the ferromagnetic layer 2 is formed. That is, the substrate, the ferromagnetic layer 2 and the dielectric layer 1 are laminated in this order, and the ferromagnetic layer 2 and the dielectric layer 1 are joined (hetero junction).
  • the gate electrode 3 is provided on the dielectric layer 1, and the source electrode 4 and the drain electrode 5 are provided on the ferromagnetic layer 2 with the dielectric layer 1 interposed therebetween. At this time, the area where the dielectric layer 1 and the ferromagnetic layer 2 are joined is the electric field effect transistor. Operating range.
  • the substrate is not particularly limited as long as it can form the ferromagnetic layer 2 uniformly and flat on the surface.
  • a material constituting the substrate specifically, for example, (but, 0 ⁇ q ⁇ 1. 0) (S r preparative q B a q) T i 0 3, or, such as M G_ ⁇ Single crystals can be suitably used.
  • the ferromagnetic layer 2 is composed of a Ba-based Mn oxide which is a ferromagnetic material.
  • the Ba-based Mn oxide has a perovskite structure (L a, B a
  • the Ba-based Mn oxide according to the present embodiment has a thickness of 50 nm or less and exhibits ferromagnetism at 0 ° C or more.
  • the lower limit of X is preferably larger than 0.05, more preferably larger than 0.1, and particularly preferably 0.15 or more. If the above X is less than 0.05, the carrier concentration becomes insufficient, so that good electric conduction cannot be obtained and the ferromagnetic material cannot be obtained. Also, When x is 0.1 or more, more preferably 0.15 or more, ferromagnetic properties can be exhibited at 0 ° C. or more, and a wider change in magnetic transition temperature can be obtained.
  • the upper limit value of X is preferably smaller than 0.3, and more preferably 0.2 or less. If the above X is 0.3 or more, when the film thickness is 50 nm or less, it does not show ferromagnetism at 0 ° C or more, so if it is a field effect transistor, operate at 0 ° C or more. It is not preferable because it cannot be done.
  • Mn deficiency and oxygen deficiency there may be Mn deficiency and oxygen deficiency, but Mn deficiency or oxygen deficiency is a factor that lowers the temperature at which ferromagnetism is developed.
  • Mn deficiency or oxygen deficiency is a factor that lowers the temperature at which ferromagnetism is developed.
  • the ferromagnetic layer 2 composed of a Ba-based Mn oxide having the above composition has a characteristic that the thinner the thickness, the higher the ferromagnetic transition temperature. Therefore, the ferromagnetic layer 2 in the field-effect transistor according to the present embodiment is preferably thinner.
  • the thickness of the ferromagnetic layer 2 made of a Ba-based Mn oxide is preferably 50 nm or less, more preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the thickness of the ferromagnetic layer 2 composed of Ba-based M ⁇ oxide having the above composition is preferably greater than 0.8 nm. When the thickness is less than 0.8 nm, the ferromagnetism theoretically disappears.
  • the temperature at which ferromagnetism is exhibited is higher. That is, the temperature exhibiting ferromagnetism is preferably 0 ° C. or higher, more preferably 25 ° C. or higher, and further preferably 40 ° C. or higher.
  • the ferromagnetic temperature is high. Means that the magnetic transition temperature of the transistor can be increased.
  • the temperature at which ferromagnetism is exhibited is, for example, room temperature (25 ° C.)
  • a field effect transistor can be operated at room temperature by using this ferromagnetic layer 2. Therefore, the field-effect transistor according to the present embodiment uses the Ba-based Mn oxide exhibiting ferromagnetism at 0 ° C. or higher as the ferromagnetic layer 2, and therefore, is to be operated at 0 ° C. or higher. Can be.
  • the dielectric layer 1 is made of a ferroelectric or a dielectric.
  • the ferroelectric or dielectric constituting the dielectric layer 1 is not particularly limited, and various types can be used.
  • the dielectric constant of the magnitude and more preferably S r T i ⁇ 3 in terms of ease of availability.
  • the upper limit of the thickness of the dielectric layer 1 is more preferably 400 nm or less. Preferably, it is less than 100 nm.
  • the field-effect transistor according to the present embodiment has a ferromagnetic layer 2 made of Ba-based Mn oxide having a thickness of 50 nm or less and exhibiting ferromagnetism at 0 ° C. or more, This is a configuration in which a dielectric layer 1 made of a dielectric or a ferroelectric is joined.
  • the transistor of the present invention In comparison, it can be operated at a very high temperature, that is, 0 ° C or higher. Specifically, the magnetic properties, the electric transport properties, and / or the magnetoresistance effect can be controlled at o ° c or more.
  • Ba-based Mn oxide is a “strongly correlated electron system” in which the interaction between electrons is very strong as compared with, for example, a diluted magnetic semiconductor. Therefore, since the physical properties change with a slight change in the carrier concentration, control can be performed at a lower voltage than, for example, a dilute magnetic semiconductor.
  • the field effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0 ° C. or higher) than before.
  • a dielectric e.g., S r T i ⁇ 3 in the case of using the electric field effect transistor that acts as a switcher switching element can do.
  • a ferroelectric e.g., P b (Z r, T i) in the case of using the T i O a
  • the carrier (hole) concentration near the junction interface between the dielectric layer 1 and the ferromagnetic layer 2 is higher than when no electric field is applied. Layers or lower layers are formed. This part with a high carrier concentration is called the accumulate layer.
  • the field effect transistor having the above configuration utilizes the above accumulate layer, and has a paramagnetism (having no magnetization). This makes it possible to switch from a high state to a ferromagnetic state (a state with large magnetization), which is advantageous for direct magnetic detection compared to, for example, a p-n type diode.
  • a film can be formed by a laser abrasion method.
  • a film can be formed by MBE (Molecular Beam Epitaxy), laser MBE, sputtering, CVD, or the like.
  • the film can be formed by the method exemplified above.
  • Rezaa Buresho is a film-forming conditions in the case of down method using a substrate temperature range 6 5 0 ⁇ 7 3 5 0 ° C, 1. 1 0 X 1 0- 1 ⁇ 5. 0 X 1 0 1 O in the range of P a
  • ferromagnetic layer 2 in order to form a film thickness of 50 nm or less, for example, it is necessary to form a film at a film forming speed of about 10 nm (100 A) / 20 min. Is more preferred.
  • the (L a, B a) in making a thin film of ferromagnetic layer 2 made of M n O 3 in the substrate is likely to show ferromagnetism as performing thinning with ⁇ Moto ⁇ , at low oxygen pressure
  • the carrier (hole) concentration is increased by increasing the amount of oxygen in the ferromagnetic layer 2, and the temperature of the carrier is increased as the carrier concentration is increased.
  • the field effect transistor according to the present embodiment has a bottom gate structure (bottom gate type). It said a bottom gate type field effect transistor is the channel layer (L a B a) Mn 0 3 is not in contact with the substrate, one surface is exposed. That is, in the field-effect transistor according to the present embodiment, (L a, B a) ⁇ 3 which is the channel layer can receive light.
  • the field effect transistor according to the present embodiment can be used as an optical modulator that controls the polarization plane of incident light by the electric field as a result of controlling the magnetism by the electric field. Further, in the field effect transistor, since one surface of (L a B a) Mn ⁇ 3 which is a channel layer is exposed, light can be advantageously transmitted and received.
  • the field effect transistor according to this embodiment Remind as in FIG. 2, (L a B a between P b (Z r, T i ) T i 0 3 is a substrate and the gate layer ) Mn 0 3 or S r R u 0 3 made of an oxide gate electrode is formed.
  • a bottom-gate field-effect transistor has an oxide gate electrode, a gate layer (dielectric layer), and a channel layer (ferromagnetic layer) stacked in this order on a substrate (substrate and oxide gate). Contact with the electrode). Then, the field effect transistor, which is the channel layer (L a B a) Mn_ ⁇ third surface, is provided with drain and source electrodes, the oxide gate electrode, a gate electrode provided ing.
  • the field effect transistor according to the present embodiment is a bottom gate type. That is, the top gate type in the first embodiment, i.e., with both the (L a, B a) Mn_ ⁇ 3 substrate and the gate layer (P b (Z r, T i) T i 0 3) compared with the configuration in contact, (L a B a) Mn 0 3 is tangent to the substrate Not in contact with the gate layer only. Generally, at the substrate interface, there is a layer called a dead layer, which is difficult to control. Since the field-effect transistor according to the present embodiment is not in contact with the substrate, a larger change in magnetic transition temperature can be expected.
  • the bottom-gate type field-effect transistor is the same as the method of manufacturing the top-gate type (gate electrode at the top) in the first embodiment, and a detailed description is omitted.
  • the oxide gate electrode, (L a, B a) if consists M N_ ⁇ 3 Rereru is, in the yarn ⁇ ratio of L a and B a, of the channel layer More preferably, it is the same as the composition ratio.
  • the field effect transistor according to the present invention has a thickness of 50 nm or less, a ferromagnetic layer of Ba-based Mn oxide exhibiting ferromagnetic properties at 0 ° C. or more, and a dielectric layer. It is characterized by being bonded to a dielectric layer made of a body or a ferroelectric.
  • the field-effect transistor according to the present invention includes a Ba-based Mn oxide exhibiting ferromagnetism at 0 ° C. or higher as a ferromagnetic layer, for example, a Ba having a specific composition.
  • System Mn oxide is used.
  • a field effect transistor having a magnetic transition temperature of 0 ° C. or more can be obtained.
  • the transistor of the present invention has a very high temperature, that is, 0 It can be operated above ° C. Specifically, at 0 ° C. or higher, the magnetism, electric transport characteristics, and / or magnetoresistance effect can be controlled.
  • the: 6 & system ⁇ 111 oxide is a "strongly correlated electron system" in which the interaction between electrons is much stronger than that of a dilute magnetic semiconductor, for example. Therefore, since the physical properties change with a slight change in the carrier concentration, control can be performed at a lower voltage as compared with, for example, a diluted magnetic semiconductor.
  • the field-effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0 ° C. or higher) than before.
  • the dielectric or ferroelectric material B a T i ⁇ 3, S r T i ⁇ 3, (B a one y S r y) T i O ⁇ (however, y A is 0 rather than meet the y rather than one relationship), P b T i 0 3 , P b (Z r! _ Z T i z) T i O 3 ( where, Z is 0 rather than Z rather than one relationship Meet) or
  • the configuration is A 1 2_Rei 3 is more preferable.
  • the field effect transistor of the present invention has a bottom gate structure.
  • the field effect transistor according to the present invention is formed by a laser abrasion method. An example of the production will be described below.
  • a r F excimer laser ( ⁇ 1 9 3 nm) a (L a 0. 87 B a 0. 13) irradiating the Mn 0 3, the temperature of the substrate 7 0 0 ° C, an oxygen gas pressure 1. 0 X 1 0- conditions, S r T i ⁇ 3 (0 0 1) surface on a single crystal substrate (L a 0. 87 B a 0. 13 ) thin films have been prepared of M n O 3 (thickness 3. 6 nm). Thus, a ferromagnetic layer was formed.
  • a dielectric layer was formed. That is, a substrate, a ferromagnetic layer, and a dielectric layer are sequentially stacked. Also, the dielectric layer is not in contact with the substrate.
  • a gate electrode was provided on the dielectric layer, and a source electrode and a drain electrode were formed on the ferromagnetic layer. Specifically, the source electrode and the drain electrode were formed so as to sandwich the dielectric layer formed on the ferromagnetic layer. At this time, the source electrode and the drain electrode may be brought into contact with the dielectric layer, or may not be brought into contact.
  • the field-effect transistor according to the present example was manufactured.
  • the depth operation range of the field-effect transistor obtained by the above manufacturing method was 200 ⁇ ⁇ 200 0 ⁇ .
  • Fig. 4 shows the results. As can be seen from Fig. 4, the ferromagnetic transition temperature (metal-insulator transition temperature) reaches 280 K.
  • the source-drain resistance is polarized by the dielectric layer and the ferromagnetic layer is carried. It was confirmed whether the carrier concentration of the ferromagnetic layer was effectively changed, as in Example 1, when it was confirmed whether or not the carrier concentration was effectively changed.
  • the source-to-drain resistance was measured when the temperature of the field effect transistor was changed with a 5 V electric field applied as the gate bias. did.
  • a magnetic transition temperature change of 3.0 K was confirmed at 282 K with an electric field of 5 V applied as a gate bias.
  • a bottom gate type field effect transistor was manufactured by a laser application method.
  • a Chiyane Le layer (L a 0 85 B a 0 . 15) Mn O 3 layer thickness (film thickness)
  • S r T and i O 3 (0 0 1) plane of the single crystal substrate, between the P b (Z r, T i ) 0 3 is a dielectric layer (gate layer), (L a, to form an oxide gate electrode made of B a) Mn O 3.
  • the source-to-drain resistance was measured when the temperature of the field-effect transistor was changed with a 5 V electric field applied as a gate bias.
  • a magnetic transition temperature change of 3.0 K was confirmed at 282 K with an electric field of 5 V applied as a gate bias.
  • the source-to-drain resistance was measured when the temperature of the field-effect transistor was changed in a state where a 5 V electric field was applied as a gate bias.
  • Figure 5 shows the results. As can be seen from Fig. 5, the ferromagnetic transition temperature (metal-insulator transition temperature) reaches 313 K.
  • a magnetic transition temperature change of 160 K was confirmed at 313 K with an electric field of 5 V applied as a gate bias. This means that a ferromagnetic-paramagnetic switch is being performed. Therefore, the field effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0.1 C 'or more) than ever before.
  • the field-effect transistor according to the present invention can be used, for example, for a magnetic recording element that can be written by an electric field, a new-function semiconductor-magnetic integrated circuit, an electric-field control magnetic actuator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

A field-effect transistor has a film thickness of 50 nm or less and comprises a ferromagnetic layer adhering to a dielectric layer. The ferromagnetic layer is composed of a Ba Mn oxide which shows ferromagnetism at 0 ˚C or higher, and the dielectric layer is composed of a dielectric material or a ferroelectric material. With this constitution, magnetism, electricity-transporting characteristics and/or magnetoresistive effect can be controlled at 0 ˚C or higher.

Description

明 細 書 電界効果トランジスタ 技術分野  Description Field-effect transistor Technical field
本発明は、 電界効果トランジスタ、 特に、 電界で書込みが可能である 磁気記録素子、 新機能半導体一磁気集積回路、 電界制御磁気ァクチユエ ータ等に利用可能な電界効果トランジスタに関するものである。 背景技術  The present invention relates to a field-effect transistor, and more particularly to a field-effect transistor that can be used for a magnetic recording element that can be written by an electric field, a new-function semiconductor-magnetic integrated circuit, an electric-field control magnetic actuator, and the like. Background art
電子の流れを制御する半導体デバイスに加え、 磁性の源であるスピン を半導体的手法により、 制御するス ピントロ二タスが近年発展しつつあ る。 そして、 これらスピントロ二タスの発展は、 電圧を印加することで 磁気半導体中のキャリア濃度の変化を利用させる強磁性のスィツチング を可能とし、 電界で情報の書込みが可能な新規な磁気記録素子や、 新機 能半導体一磁気集積回路等を実現させることができると期待される。 強磁性を電界で制御する電界効果素子と しては、 例えば、 ( 1 ) 希薄 磁性半導体を用いたもの報告されている (非特許文献 1参照) 。 該報告 では、 希薄磁性体として ( I n , M n ) A s を使用している。  In addition to semiconductor devices that control the flow of electrons, spintronics that control spin, which is the source of magnetism, using a semiconductor method have been recently developed. The development of these spintronics has led to the development of new magnetic recording elements that enable ferromagnetic switching by using the change in carrier concentration in a magnetic semiconductor by applying a voltage, and that allow information to be written in an electric field. It is expected that new functional semiconductor-magnetic integrated circuits can be realized. As a field effect element that controls ferromagnetism by an electric field, for example, (1) a device using a diluted magnetic semiconductor has been reported (see Non-Patent Document 1). In this report, (I n, M n) As is used as a diluted magnetic material.
また、 他の電界効果素子と しては、 ( 2 ) M n酸化物/強誘電体酸化 物を用いたものも報告されている (例えば、 非特許文献 2〜 4参照) 。  Other field effect devices using (2) Mn oxide / ferroelectric oxide have also been reported (for example, see Non-Patent Documents 2 to 4).
〔非特許文献 1〕  (Non-patent document 1)
H. Ohno et al . , Nature 408, 944 - 946 (2000)  H. Ohno et al., Nature 408, 944-946 (2000)
〔非特許文献 2〕 S. Mathews et al., Science 276 (1997) 238 (Non-patent document 2) S. Mathews et al., Science 276 (1997) 238
〔非特許文献 3〕  (Non-Patent Document 3)
T. Wu et al. , Phys. Rev. Lett. 86(2001) 5998  T. Wu et al., Phys. Rev. Lett. 86 (2001) 5998
〔非特許文献 4〕  (Non-patent document 4)
S.B Ogale et al. , Phys. Rev. Lett. 77 (1996) 1159  S.B Ogale et al., Phys. Rev. Lett. 77 (1996) 1159
ところが、 上記従来構成の電界効果素子では、 磁性転移温度が低く、 かつ、 高電界を印加する必要がある、 または、 磁性転移温度変化がない という問題を生じている。  However, the above-mentioned conventional field effect element has a problem that the magnetic transition temperature is low and a high electric field needs to be applied, or the magnetic transition temperature does not change.
具体的には、 上記 ( 1 ) の希薄磁性半導体を用いた電界効果素子は、 磁性転移温度が極低温 ( 2 2. 5 K- - 2 5 0 °C) である。 また、 その 際、 磁性転移温度変化を得るためには、 高電界を必要と しており。 具体 的には、 磁性転移温度変化 (A T c ) は、 1 2 5 Vの高電界を印加した とき、 1 K ( Δ T c = 1 K) である。 さらには、 上記構成の電界効果素 子は、 メモリ効果を有していない。  Specifically, the field effect element using the diluted magnetic semiconductor of the above (1) has a very low magnetic transition temperature (22.5 K−−250 ° C.). At that time, a high electric field is required to obtain a change in the magnetic transition temperature. Specifically, the change in magnetic transition temperature (A Tc) is 1 K (ΔT c = 1 K) when a high electric field of 125 V is applied. Furthermore, the field effect element having the above configuration does not have a memory effect.
また、 上記 ( 2 ) の Mn酸化物ノ強誘電体酸化物を用いた場合では、 上記構成の電界効果素子の多くは、 磁性転移温度変化を示していない。 また、 磁性転移温度変化を示す化合物の場合でも、 その磁性転移温度は 低く、 また、 磁性転移温度変化の幅は小さい。 具体的には、 Venkatesan (米国) のグループ (非特許文献 2〜 4参照) は、 強磁性層と して、 ( L a, A) M n O 3 ( A = S r , C a , N d ) を用いている。 上記構成 の強磁性層は、 デパイスを作製する際に必要な薄膜化することによ り、 急激に磁性転移温度が減少することが知られている。 従って、 上記構成 の電界効果素子は、 例えば、 室温付近で転移温度を制御することができ ない。 一例と しては、 (L a , C a ) M n O 3 ( 5 0 n m) / S r T i O 3の電界効果型素子を用いた例について磁性転移温度変化が報告され ているが、 磁性転移温度変化は、 5 Vの電圧印加時で A T c = 1 5 0 K + 3 Kである。 Also, in the case of using the Mn oxide ferroelectric oxide of (2), most of the field effect elements having the above configuration do not show a change in magnetic transition temperature. Further, even in the case of a compound exhibiting a change in magnetic transition temperature, its magnetic transition temperature is low, and the width of the change in magnetic transition temperature is small. Specifically, the group of Venkatesan (USA) (see Non-Patent Literatures 2 to 4) proposes (La, A) MnO3 (A = Sr, Ca, Nd) as a ferromagnetic layer. ) Is used. It is known that the magnetic transition temperature of the ferromagnetic layer having the above-described structure rapidly decreases when the ferromagnetic layer is formed into a thin film necessary for producing a depiice. Therefore, the field effect element having the above configuration cannot control the transition temperature near room temperature, for example. For example, (L a, C a) M n O 3 (50 nm) / S r T i Changes in the magnetic transition temperature of an example using an O 3 field-effect element have been reported. The change in the magnetic transition temperature is AT c = 150 K + 3 K when a voltage of 5 V is applied.
従って、 0 °c以上で動作可能であり、 かつ、 従来と比べて低い電圧で 動作が可能である電界効果トランジスタが望まれている。 発明の開示  Therefore, a field effect transistor that can operate at 0 ° C. or higher and can operate at a lower voltage than before has been desired. Disclosure of the invention
本願発明者等は、 上記の問題を鋭意検討した結果、 十分な電界効果を 得るために、 最適な膜厚、 B a原子の含有量、 原子レベルでの平坦な界 面を有する B a系 M n酸化物と、 最適な残留分極値と絶縁性とを有する 誘電体または強誘電体とを組合わせることにより、 本発明を完成するに 至った。  The present inventors have conducted intensive studies on the above problems, and as a result, in order to obtain a sufficient electric field effect, a Ba-based M having an optimum film thickness, Ba atom content, and a flat interface at the atomic level. The present invention has been completed by combining an n-oxide and a dielectric or ferroelectric having an optimum remanent polarization value and insulating property.
すなわち、 本発明にかかる電界効果ト ランジスタは、 上記の課題を解 決するために、 5 0 n m以下の膜厚を有し、 0 °C以上で強磁性を示す B a系 M n酸化物からなる強磁性層と、 誘電体または強誘電体からなる誘 電体層とが接合されてなることを特徴と している。  That is, the field effect transistor according to the present invention is made of a Ba-based Mn oxide having a film thickness of 50 nm or less and exhibiting ferromagnetism at 0 ° C. or more in order to solve the above problems. It is characterized in that a ferromagnetic layer and a dielectric layer made of a dielectric or ferroelectric are joined.
上記の構成によれば、 本発明にかかる電界効果トランジスタは、 強磁 性層と して、 0 °C以上で強磁性を示す B a系 M ri酸化物、 例えば、 特定 の組成を有する B a系 M n酸化物を用いている。 そして、 上記強磁性層 と、 誘電体または強誘電体層とを接合することで 0 °C以上の磁性転移温 度を有する電界効果トランジスタを得ることができる。 これにより、 本 発明のトランジスタを、 従来と比べて、 非常に高い温度、 すなわち、 0 According to the above configuration, the field-effect transistor according to the present invention includes a Ba-based Mri oxide exhibiting ferromagnetism at 0 ° C. or higher as a ferromagnetic layer, System Mn oxide is used. Then, by joining the ferromagnetic layer and the dielectric or ferroelectric layer, a field effect transistor having a magnetic transition temperature of 0 ° C. or more can be obtained. As a result, the transistor of the present invention has a very high temperature,
°C以上で動作させることができる。 具体的には、 o °c以上で、 磁性、 電 気輸送特性および/または磁気抵抗効果を制御することができる。 また、 B a系Mn酸化物は、 例えば、 希薄磁性半導体と比べて、 電子 間の相互作用が非常に強い 「強相関電子系」 である。 従って、 わずかな キャ リ ア濃度の変化で物性が変化するため、 例えば、 希薄磁性半導体と 比べて、 低電圧での制御を行うことができる。 It can be operated above ° C. Specifically, the magnetic properties, the electric transport properties, and / or the magnetoresistive effect can be controlled at o ° C or higher. In addition, Ba- based Mn oxide is a “strongly correlated electron system” in which the interaction between electrons is very strong as compared with, for example, a diluted magnetic semiconductor. Therefore, since the physical properties change with a slight change in the carrier concentration, control can be performed at a lower voltage than, for example, a dilute magnetic semiconductor.
以上のよ うに、 本発明の電界効果トランジスタは、 従来より も、 よ り 低電圧、 かつ、 高温 ( 0°C以上) で動作させることができる。  As described above, the field-effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0 ° C. or higher) than before.
本発明の電界効果トランジスタは、 ボトムゲー ト構造を有することが より好ましい。  More preferably, the field effect transistor of the present invention has a bottom gate structure.
上記ボ トムゲー ト構造とは、 チャネル層 (強磁性層) である (L a, B a ) Mn 03層が、 基板と接しておらず、 かつ、 一方の面が剥き出し になっている構造である。 よ り具体的には、 ( L a, B a ) Mn 03層 、 露出している構造である。 The above-mentioned borate Tomuge preparative structure, a channel layer (ferromagnetic layer) (L a, B a) Mn 0 3 layers, not in contact with the substrate, and a structure in which one surface is bared is there. The yo Ri Specifically, a structure (L a, B a) Mn 0 3 layer is exposed.
上記の構成によれば、 ボ トムゲー ト構造を有しているので、 ( L a, B a ) Mn〇 3層が基板と接していない。 これによ り、 基板と ( L a, B a ) Mn O 3層との相互作用を無くすことができる。 従って、 0 °C以 上で強磁性を示すと ともに、 より一層広い磁性転移温度変化を得ること ができる。 According to the above structure, since they have volume Tomuge bets structure, (L a, B a) Mn_〇 3 layer is not in contact with the substrate. Thereby, the interaction between the substrate and the (La, Ba) MnO3 layer can be eliminated. Therefore, it is possible to exhibit ferromagnetism at 0 ° C. or higher and obtain a wider change in magnetic transition temperature.
本発明のさらに他の目的、 特徴、 および優れた点は、 以下に示す記載 によって十分わかるであろう。 また、 本発明の利益は、 添付図面を参照 した次の説明で明白になるであろう。 図面の簡単な説明  Further objects, features, and advantages of the present invention will be made clear by the description below. Also, the advantages of the present invention will become apparent in the following description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態にかかる電界効果トランジスタの概略の 構成を示す断面図である。 図 2は、 本発明の他の実施の形態にかかる電界効果トランジスタの概 略の構成を示す斜視図である。 FIG. 1 is a cross-sectional view illustrating a schematic configuration of a field-effect transistor according to an embodiment of the present invention. FIG. 2 is a perspective view showing a schematic configuration of a field-effect transistor according to another embodiment of the present invention.
図 3は、 トップゲート型の電界効果トランジスタにグートパイァス掃 引を行ったと きの、 ソース一 ドレイン抵抗の変化を示すグラフである。 図 4は、 トップゲート型の電界効果トランジスタの温度変化による、 ソース一 ドレイ ン抵抗の変化を示すダラフである。  FIG. 3 is a graph showing a change in source-drain resistance when a top gate field-effect transistor is subjected to a Good-Pyase sweep. Figure 4 is a graph showing the change in source-to-drain resistance due to the temperature change of a top-gate field-effect transistor.
図 5は、 ボトムゲート型の電界効果トランジスタの温度変化による、 ソース一 ドレイ ン抵抗の変化を示すグラフである。 発明を実施するための最良の形態  FIG. 5 is a graph showing a change in source-to-drain resistance due to a temperature change of a bottom-gate type field effect transistor. BEST MODE FOR CARRYING OUT THE INVENTION
〔実施の形態 1〕  [Embodiment 1]
本発明の実施の一形態について図 1に基づいて説明すれば、 以下の通 りである。  One embodiment of the present invention is described below with reference to FIG.
本実施の形態にかかる電界効果トランジスタは、 図 1に示すように、 強磁性層 2、 誘電体層 1 、 ソース電極 4、 ゲー ト電極 3およびドレイ ン 電極 5から構成されている。 そして、 上記強磁性層 2は、 基板上に形成 されている。  As shown in FIG. 1, the field-effect transistor according to the present embodiment includes a ferromagnetic layer 2, a dielectric layer 1, a source electrode 4, a gate electrode 3, and a drain electrode 5. The ferromagnetic layer 2 is formed on a substrate.
具体的には、 基板の上に強磁性層 2が形成されており、 基板の強磁性 層 2が形成されている面に誘電体層 1が積層されている。 すなわち、 基 板、 強磁性層 2、 誘電体層 1が、 この順に積層されており、 強磁性層 2 と誘電体層 1 とは接合 (ヘテロ接合) されている。 そして、 誘電体層 1 には、 ゲー ト電極 3が設けられており、 強磁性層 2には、 ソース電極 4 と ドレイン電極 5 とが誘電体層 1 を挟んで設けられている。 このとき、 誘電体層 1 と強磁性層 2 とが接合している面積が、 電界効果トランジス タと しての動作範囲となる。 Specifically, a ferromagnetic layer 2 is formed on a substrate, and a dielectric layer 1 is laminated on the surface of the substrate on which the ferromagnetic layer 2 is formed. That is, the substrate, the ferromagnetic layer 2 and the dielectric layer 1 are laminated in this order, and the ferromagnetic layer 2 and the dielectric layer 1 are joined (hetero junction). The gate electrode 3 is provided on the dielectric layer 1, and the source electrode 4 and the drain electrode 5 are provided on the ferromagnetic layer 2 with the dielectric layer 1 interposed therebetween. At this time, the area where the dielectric layer 1 and the ferromagnetic layer 2 are joined is the electric field effect transistor. Operating range.
基板は、 表面に強磁性層 2を、 均一、 かつ、 平坦に形成することがで きるものであればよく、 特に限定されるものではない。 基板を構成する 材料と しては、 具体的には、 例えば、 ( S rト q B a q ) T i 03 (ただ し、 0≤ q ≤ 1 . 0 ) 、 または、 M g〇等の単結晶を好適に用いること ができる。 上記例示の基板のうち、 q = 0である S r T i 03は、 安価 であり電気特性を制御しゃすいため、 一般に標準基板と してよく用いら れているため、 よ り好ましい。 特に、 単結晶 S r T i O 3基板の ( 0 0 1 ) 面上に l O O n m ( 1 0 0 0 A) 以下の膜厚で強磁性層 2を形成す ると、 そのキュリー温度は、 バルク状態でのキュ リー温度より上昇する 傾向にあるのでよ り好ましい。 また、 上記例示の単結晶を用いることに より、 上記基板上に強磁性層 2を、 例えば、 レーザアブレーシヨ ン法に て作成する際、 強磁性層 2の薄膜を容易に作成することができる。 The substrate is not particularly limited as long as it can form the ferromagnetic layer 2 uniformly and flat on the surface. Is a material constituting the substrate, specifically, for example, (but, 0≤ q ≤ 1. 0) (S r preparative q B a q) T i 0 3, or, such as M G_〇 Single crystals can be suitably used. Among the above-exemplified substrates, S r T i 0 3 is q = 0 is inexpensive and damage Chasse control electrical characteristics, for commonly are found using well as a standard substrate, good more preferable. In particular, if you forming a single crystal S r T i O 3 substrate (0 0 1) l OO nm (1 0 0 0 A) ferromagnetic layer 2 with the following thickness on the surface, the Curie temperature, It is more preferable because the temperature tends to be higher than the Curie temperature in the bulk state. Further, by using the single crystal exemplified above, when the ferromagnetic layer 2 is formed on the substrate by, for example, a laser abrasion method, a thin film of the ferromagnetic layer 2 can be easily formed. it can.
強磁性層 2は、 強磁性体である B a系 Mn酸化物で構成されている。 上記 B a系 M n酸化物とは、 ぺロブスカイ ト構造を有する (L a, B a The ferromagnetic layer 2 is composed of a Ba-based Mn oxide which is a ferromagnetic material. The Ba-based Mn oxide has a perovskite structure (L a, B a
) M n O 3を示す。 ) Shows MnO3.
本実施の形態にかかる B a系 M n酸化物は、 5 0 n m以下の膜厚を有 し、 0 °C以上で強磁性を示している。  The Ba-based Mn oxide according to the present embodiment has a thickness of 50 nm or less and exhibits ferromagnetism at 0 ° C or more.
上記性質を示す B a系 M n酸化物と しては、 例えば、 (L & 1X B a x ) M n O 3 (ただし、 xは、 0 . 0 5 く xく 0 . 3の関係を満たすIs a B a system M n oxide having the above properties, for example,.. (L & 1 - X B a x) M n O 3 ( here, x is 0 0 5 rather x rather 0 3 relationships Satisfy
) の組成が挙げられる。 上記 Xの下限値と しては、 0 . 0 5よ り大きい ことが好ましく、 0. 1 より大きいことがよ り好ましく、 0. 1 5以上 であることが特に好ましい。 上記 Xが 0. 0 5以下であると、 キャ リア 濃度が不足し、 良好な電気伝導が得られず強磁性体にならない。 また、 上記 xを 0. 1以上よ り好ましくは 0 . 1 5以上とすることにより、 0 °C以上で強磁性を示すと ともに、 より一層広い磁性転移温度変化を得る. ことができる。 )). The lower limit of X is preferably larger than 0.05, more preferably larger than 0.1, and particularly preferably 0.15 or more. If the above X is less than 0.05, the carrier concentration becomes insufficient, so that good electric conduction cannot be obtained and the ferromagnetic material cannot be obtained. Also, When x is 0.1 or more, more preferably 0.15 or more, ferromagnetic properties can be exhibited at 0 ° C. or more, and a wider change in magnetic transition temperature can be obtained.
一方、 上記 Xの上限値と しては、 0. 3 よ り小さいことが好ましく、 0. 2以下であることがより好ましい。 上記 Xが 0. 3以上であると、 膜厚を 5 0 n m以下にした場合、 0 °C以上で強磁性を示さないので、 電 界効果トランジスタとした場合、 0 °C以上で動作させることができない ため好ましくない。 なお、 上記の B a系 Mn酸化物の組成において、 M n欠損、 酸素欠損があってもよいが、 Mn欠損おょぴノまたは酸素欠損 は、 強磁性を発現する温度を下げる要因であり、 0 °C以上で強磁性を示 す強磁性体と してこれらの欠損はない方が望ましい。  On the other hand, the upper limit value of X is preferably smaller than 0.3, and more preferably 0.2 or less. If the above X is 0.3 or more, when the film thickness is 50 nm or less, it does not show ferromagnetism at 0 ° C or more, so if it is a field effect transistor, operate at 0 ° C or more. It is not preferable because it cannot be done. In the composition of the Ba-based Mn oxide, there may be Mn deficiency and oxygen deficiency, but Mn deficiency or oxygen deficiency is a factor that lowers the temperature at which ferromagnetism is developed, As a ferromagnetic material exhibiting ferromagnetism at 0 ° C or higher, it is preferable that these defects are not present.
上記組成の B a系 Mn酸化物からなる強磁性層 2は、 厚さが薄く なる ほど、 強磁性転移温度が高くなる特徴を有している。 従って、 本実施の 形態にかかる電界効果トランジスタにおける強磁性層 2はより薄いこと が好ましい。 具体的には、 B a系 M n酸化物からなる強磁性層 2の厚さ と しては、 5 0 n m以下が好ましく 、 1 0 n m以下がより好ましく、 5 n m以下が特に好ましい。 上記組成の B a系 M η酸化物から構成される 強磁性層 2の厚さを 5 0 n m以下とすることにより、 0 °C以上で強磁性 を発現させることができる。 一方、 上記強磁性層 2の厚さの下限値と し ては、 0. 8 n mよ り も厚いことがより好ましい。 上記厚さが 0. 8 n m以下となると、 理論的に強磁性が消失すること となる。  The ferromagnetic layer 2 composed of a Ba-based Mn oxide having the above composition has a characteristic that the thinner the thickness, the higher the ferromagnetic transition temperature. Therefore, the ferromagnetic layer 2 in the field-effect transistor according to the present embodiment is preferably thinner. Specifically, the thickness of the ferromagnetic layer 2 made of a Ba-based Mn oxide is preferably 50 nm or less, more preferably 10 nm or less, and particularly preferably 5 nm or less. By setting the thickness of the ferromagnetic layer 2 composed of Ba-based Mη oxide having the above composition to 50 nm or less, ferromagnetic properties can be exhibited at 0 ° C. or more. On the other hand, the lower limit of the thickness of the ferromagnetic layer 2 is more preferably greater than 0.8 nm. When the thickness is less than 0.8 nm, the ferromagnetism theoretically disappears.
また、 強磁性を示す温度と しては、 よ り高いことが好ましい。 すなわ ち、 強磁性を示す温度と しては、 0 °C以上が好ましく、 2 5 °C以上がよ り好ましく、 4 0 °C以上がさらに好ましい。 強磁性を示す温度が高いこ とは、 トランジスタの磁性転移温度を高くすることができる。 すなわち 、 強磁性を示す温度が、 例えば、 室温 ( 2 5 °C) である場合、 この強磁 性層 2を用いて電界効果トランジスタを構成すると、 室温で動作させる ことができる。 従って、 本実施の形態にかかる電界効果トランジスタは 、 強磁性層 2 と して、 0°C以上で強磁性を示す B a系 Mn酸化物を用い ているので、 0 °C以上で動作させることができる。 Further, it is preferable that the temperature at which ferromagnetism is exhibited is higher. That is, the temperature exhibiting ferromagnetism is preferably 0 ° C. or higher, more preferably 25 ° C. or higher, and further preferably 40 ° C. or higher. The ferromagnetic temperature is high. Means that the magnetic transition temperature of the transistor can be increased. In other words, when the temperature at which ferromagnetism is exhibited is, for example, room temperature (25 ° C.), a field effect transistor can be operated at room temperature by using this ferromagnetic layer 2. Therefore, the field-effect transistor according to the present embodiment uses the Ba-based Mn oxide exhibiting ferromagnetism at 0 ° C. or higher as the ferromagnetic layer 2, and therefore, is to be operated at 0 ° C. or higher. Can be.
誘電体層 1 は、 強誘電体または誘電体から構成されている。 上記誘電 体層 1 を構成している強誘電体または誘電体と しては、 特に限定される ものではなく、 種々のものが使用できる。  The dielectric layer 1 is made of a ferroelectric or a dielectric. The ferroelectric or dielectric constituting the dielectric layer 1 is not particularly limited, and various types can be used.
上記誘電体と しては、 具体的には、 S r T i O s、 A 1 203、 M gIs the above dielectric, specifically, S r T i O s, A 1 2 0 3, M g
O等が挙げられる。 上記例示の誘電体のうち、 誘電率の大きさ、 入手の し易さの点で S r T i 〇 3がより好ましい。 O and the like. Among the above-exemplified dielectric, the dielectric constant of the magnitude, and more preferably S r T i 〇 3 in terms of ease of availability.
また、 上記強誘電体と しては、 具体的には、 (B a i— y S r y ) T i O 3 (ただし、 yは、 0く yく 1 の関係を満たす) 、 P b T i O 3、 P b ( Z r ! _ z T i z ) T i O 3 (ただし、 zは、 0 < ζ < 1 の関係を 満たす) 、 B a T i O 3等が挙げられる。 上記例示の強誘電体のうち、 誘電分極の大きさの点で P b (Z r, T i ) T i 〇 3がより好ましい。 本実施の形態にかかる電界効果トランジスタにおいて、 強磁性層 2の 厚さが 5 ◦ n m以下である場合、 誘電体層 1の厚さの上限値と しては、 4 0 0 n m以下がよ り好ましく、 l O O n m以下がさらに好ましい。 本実施の形態にかかる電界効果トランジスタは、 以上のように、 5 0 nm以下の膜厚を有し、 0 °C以上で強磁性を示す B a系 Mn酸化物から なる強磁性層 2 と、 誘電体または強誘電体からなる誘電体層 1 とが接合 されてなる構成である。 これにより、 本発明の トランジスタを、 従来と 比べて、 非常に高い温度、 すなわち、 0 °C以上で動作させることができ る。 具体的には、 o°c以上で、 磁性、 電気輸送特性および/または磁気 抵抗効果を制御することができる。 Further, as the above ferroelectric, specifically, (B ai- y S r y ) T i O 3 ( however, y satisfy a relationship rather 0 rather y), P b T i O 3, P b (Z r ! _ z T i z) T i O 3 ( provided that, z satisfies 0 <ζ <1 relationship), etc. B a T i O 3 and the like. Among the above-exemplified ferroelectric, P b (Z r, T i) in terms of the magnitude of the dielectric polarization T i 〇 3 is more preferable. In the field-effect transistor according to the present embodiment, when the thickness of the ferromagnetic layer 2 is 5 nm or less, the upper limit of the thickness of the dielectric layer 1 is more preferably 400 nm or less. Preferably, it is less than 100 nm. As described above, the field-effect transistor according to the present embodiment has a ferromagnetic layer 2 made of Ba-based Mn oxide having a thickness of 50 nm or less and exhibiting ferromagnetism at 0 ° C. or more, This is a configuration in which a dielectric layer 1 made of a dielectric or a ferroelectric is joined. As a result, the transistor of the present invention In comparison, it can be operated at a very high temperature, that is, 0 ° C or higher. Specifically, the magnetic properties, the electric transport properties, and / or the magnetoresistance effect can be controlled at o ° c or more.
また、 B a系 Mn酸化物は、 例えば、 希薄磁性半導体と比べて、 電子 間の相互作用が非常に強い 「強相関電子系」 である。 従って、 わずかな キャリア濃度の変化で物性が変化するため、 例えば、 希薄磁性半導体と 比べて、 低電圧での制御を行うことができる。  Also, Ba-based Mn oxide is a “strongly correlated electron system” in which the interaction between electrons is very strong as compared with, for example, a diluted magnetic semiconductor. Therefore, since the physical properties change with a slight change in the carrier concentration, control can be performed at a lower voltage than, for example, a dilute magnetic semiconductor.
従って、 本発明の電界効果トランジスタは、 従来より も、 よ り低電圧 、 かつ、 高温 (0 °C以上) で動作させることができる。  Therefore, the field effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0 ° C. or higher) than before.
また、 本実施の形態において、 強磁性層 2 と して、 (L a ix B a x ) M n O 3 (ただし、 xは、 0. 0 5く xく 0. 3の関係を満たす) の B a系 Mn◦ 3を用いて、 誘電体層 1 と して、 誘電体 (例えば、 S r T i 〇 3) を用いる場合には、 スイ ッチング素子と して機能する電界効 果トランジスタとすることができる。 In the present embodiment, as the ferromagnetic layer 2, (L aix B a x ) M n O 3 (where x satisfies the relationship of 0.05 to x x 0.3) using a B a system Mn◦ 3, and the dielectric layer 1, a dielectric (e.g., S r T i 〇 3) in the case of using the electric field effect transistor that acts as a switcher switching element can do.
—方、 本実施の形態において、 強磁性層 2 と して、 (L 3 lx B a x) M n O 3 (ただし、 xは、 0. 0 5 < x < 0. 3の関係を満たす) の B a系 Mn O 3を用いて、 誘電体層 1 と して、 強誘電体 (例えば、 P b (Z r, T i ) T i O a ) を用いる場合には、 電圧を印加していない 状態でも変調が保持されるために、 メモリ効果を有する。 また、 上記構 成の電界効果ト ランジスタに電界を印加した場合、 誘電体層 1 と強磁性 層 2 との接合界面付近に、 電界無印加時と比べて、 キャ リ ア (ホール) 濃度の高い層も しくは低い層が形成される。 このキャ リ ア濃度の高い部 分をアキュムレー ト (accumulate) 層と呼ぶ。 上記構成の電界効果トラ ンジスタは、 上記アキュムレー ト層を利用しており、 常磁性 (磁化がな い状態) から強磁性 (磁化の大きい状態) へとスィ ッチできるので、 例 えば、 p — n型のダイオードと比べて、 直接磁性検出に有利となる。 本発明の電界効果トランジスタの製造方法において、 強磁性層 2を製 造するには、 具体的には、 例えば、 レ一ザアブレーシヨ ン法により製膜 することができる。 また、 上記以外にも、 例えば、 MB E (Molecular Beam Epitaxy) 法、 レーザ MB E法、 スパッタ法、 C VD法等で製膜す ることができる。 また、 誘電体層 1 または強誘電体層 1 を製造する場合 にも、 上記例示の方法により製膜することができる。 例えば、 レーザァ ブレーショ ン法を用いる場合の成膜条件と してはは、 基板温度範囲 6 5 0〜 7 3 5 0 °C、 1 . 1 0 X 1 0―1〜 5 . 0 X 1 0 1 P a の範囲内の OOn the other hand, in the present embodiment, as the ferromagnetic layer 2, (L 3 lx B a x ) M n O 3 (where x is a relation of 0.05 <x <0.3) with B a system Mn O 3 of satisfying), and a dielectric layer 1, a ferroelectric (e.g., P b (Z r, T i) in the case of using the T i O a) is applied a voltage Since the modulation is maintained even in a state where it is not performed, it has a memory effect. In addition, when an electric field is applied to the field effect transistor having the above configuration, the carrier (hole) concentration near the junction interface between the dielectric layer 1 and the ferromagnetic layer 2 is higher than when no electric field is applied. Layers or lower layers are formed. This part with a high carrier concentration is called the accumulate layer. The field effect transistor having the above configuration utilizes the above accumulate layer, and has a paramagnetism (having no magnetization). This makes it possible to switch from a high state to a ferromagnetic state (a state with large magnetization), which is advantageous for direct magnetic detection compared to, for example, a p-n type diode. In the method of manufacturing a field-effect transistor according to the present invention, to manufacture the ferromagnetic layer 2, specifically, for example, a film can be formed by a laser abrasion method. In addition to the above, for example, a film can be formed by MBE (Molecular Beam Epitaxy), laser MBE, sputtering, CVD, or the like. Also, when the dielectric layer 1 or the ferroelectric layer 1 is manufactured, the film can be formed by the method exemplified above. For example, Rezaa Buresho is a film-forming conditions in the case of down method using a substrate temperature range 6 5 0~ 7 3 5 0 ° C, 1. 1 0 X 1 0- 1 ~ 5. 0 X 1 0 1 O in the range of P a
2ガス圧雰囲気が好ましい。 また、 上記強磁性層 2の場合、 5 0 n m以 下の膜厚を形成するためには、 例えば、 1 0 n m ( 1 0 0 A) / 2 0 m i n程度の製膜速度で製膜することがより好ましい。 Two gas pressure atmospheres are preferred. In the case of the ferromagnetic layer 2, in order to form a film thickness of 50 nm or less, for example, it is necessary to form a film at a film forming speed of about 10 nm (100 A) / 20 min. Is more preferred.
特に、 上記 (L a , B a ) M n O 3からなる強磁性層 2の薄膜を基板 に作製する際には、 髙酸素圧で薄膜化を行うほど強磁性を示しやすく、 低酸素圧で薄膜化を行うほど強磁性を示しにく くなる。 これは、 強磁性 層 2が酸素量を增やすことによって、 キャ リ ア (正孔) 濃度が高く なり 、 キャ リア濃度が高く なるにつれてキユ リ一温度も上昇するからである 〔実施の形態 2〕 In particular, the (L a, B a) in making a thin film of ferromagnetic layer 2 made of M n O 3 in the substrate is likely to show ferromagnetism as performing thinning with髙酸Moto圧, at low oxygen pressure The thinner the film, the harder it becomes to exhibit ferromagnetism. This is because the carrier (hole) concentration is increased by increasing the amount of oxygen in the ferromagnetic layer 2, and the temperature of the carrier is increased as the carrier concentration is increased. ]
本発明の他の実施の形態について図 2を参照して説明すれば、 以下の 通りである。 なお、 説明の便宜上、 前記実施の形態 1にて示した各部材 と同一の機能を有する部材には、 同一の符号を付記し、 その説明を省略 する。 本実施の形態にかかる電界効果トランジスタは、 ボ トムゲート構造を 有する (ボトムゲート型の) ものである。 上記ボトムゲート型の電界効 果 トランジスタ とは、 チャネル層である (L a B a ) Mn 03が基板 と接しておらず、 一方の面が剥き出しになっている。 つまり、 本実施の 形態にかかる電界効果トランジスタにおいて、 チャネル層である (L a , B a ) Μη〇 3は、 光を受光することができるよ うになつている。 従 つて、 本実施の形態にかかる電界効果トランジスタは、 電界で磁性を制 御する結果、 入射した光の偏光面を電界で制御する光変調器とすること ができる。 そして、 上記電界効果トランジスタは、 チャネル層である ( L a B a ) Mn〇 3の一方の面が剥き出しになっているために、 光の 出し入れを有利に行うことができる。 Another embodiment of the present invention is described below with reference to FIG. For convenience of explanation, members having the same functions as the members described in the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted. The field effect transistor according to the present embodiment has a bottom gate structure (bottom gate type). It said a bottom gate type field effect transistor is the channel layer (L a B a) Mn 0 3 is not in contact with the substrate, one surface is exposed. That is, in the field-effect transistor according to the present embodiment, (L a, B a) Μη〇 3 which is the channel layer can receive light. Therefore, the field effect transistor according to the present embodiment can be used as an optical modulator that controls the polarization plane of incident light by the electric field as a result of controlling the magnetism by the electric field. Further, in the field effect transistor, since one surface of (L a B a) Mn 〇 3 which is a channel layer is exposed, light can be advantageously transmitted and received.
また、 本実施の形態にかかる電界効果トランジスタは、 図 2に示すよ う に、 基板とゲー ト層である P b (Z r , T i ) T i 03との間に (L a B a ) Mn 03または S r R u 03からなる酸化物ゲート電極が形成 されている。 つまり、 ボトムゲート型の電界効果トランジスタは、 基板 の上に、 酸化物ゲート電極、 ゲート層 (誘電体層) およびチャネル層 ( 強磁性層) が、 この順に積層されている (基板と酸化物ゲート電極とが 接している) 。 そして、 電界効果トランジスタには、 チャネル層である ( L a B a ) Mn〇 3の表面に、 ドレイ ン電極と ソース電極とが設け られ、 酸化物ゲー ト電極上には、 ゲート電極が設けられている。 The field effect transistor according to this embodiment, Remind as in FIG. 2, (L a B a between P b (Z r, T i ) T i 0 3 is a substrate and the gate layer ) Mn 0 3 or S r R u 0 3 made of an oxide gate electrode is formed. In other words, a bottom-gate field-effect transistor has an oxide gate electrode, a gate layer (dielectric layer), and a channel layer (ferromagnetic layer) stacked in this order on a substrate (substrate and oxide gate). Contact with the electrode). Then, the field effect transistor, which is the channel layer (L a B a) Mn_〇 third surface, is provided with drain and source electrodes, the oxide gate electrode, a gate electrode provided ing.
本実施の形態にかかる電界効果トランジスタは、 ボ トムゲー ト型であ る。 つま り、 上記実施の形態 1 の トップゲート型、 すなわち、 (L a , B a ) Mn〇 3が基板とゲー ト層 (P b ( Z r , T i ) T i 03) との 両方と接している構成と比べて、 (L a B a ) Mn 03が基板とは接 しておらず、 ゲート層のみと接している。 一般に、 基板界面では、 dead 層と呼ばれる制御が困難な層が存在している。 本実施の形態にかかる電 界効果トランジスタは、 上記基板と接していないので、 よ り大きな磁性 転移温度変化が期待できる。 The field effect transistor according to the present embodiment is a bottom gate type. That is, the top gate type in the first embodiment, i.e., with both the (L a, B a) Mn_〇 3 substrate and the gate layer (P b (Z r, T i) T i 0 3) compared with the configuration in contact, (L a B a) Mn 0 3 is tangent to the substrate Not in contact with the gate layer only. Generally, at the substrate interface, there is a layer called a dead layer, which is difficult to control. Since the field-effect transistor according to the present embodiment is not in contact with the substrate, a larger change in magnetic transition temperature can be expected.
なお、 上記ボトムゲー ト型の電界効果トランジスタは、 実施の形態 1 の トップゲート型 (ゲー ト電極が上部にある) の電界効果トランジスタ の製造方法と同様であり、 詳細な説明は省略する。  The bottom-gate type field-effect transistor is the same as the method of manufacturing the top-gate type (gate electrode at the top) in the first embodiment, and a detailed description is omitted.
また、 酸化物ゲー ト電極が、 ( L a , B a ) M n〇 3から構成されて レヽる場合には、 L a と B a との糸且成比と しては、 上記チャネル層の組成 比と同じであることがよ り好ましい。 Further, the oxide gate electrode, (L a, B a) if consists M N_〇 3 Rereru is, in the yarn且成ratio of L a and B a, of the channel layer More preferably, it is the same as the composition ratio.
本発明は上述した各実施形態に限定されるものではなく、 請求項に示 した範囲で種々の変更が可能であり、 異なる実施形態にそれぞれ開示さ れた技術的手段を適宜組み合わせて得られる実施形態についても本発明 の技術的範囲に含まれる。  The present invention is not limited to the embodiments described above, and various modifications are possible within the scope set forth in the claims. Implementations obtained by appropriately combining the technical means disclosed in the different embodiments are appropriate. The form is also included in the technical scope of the present invention.
以上のよ うに、 本発明にかかる電界効果トランジスタは、 5 0 n m以 下の膜厚を有し、 0 °C以上で強磁性を示す B a系 M n酸化物からなる強 磁性層と、 誘電体または強誘電体からなる誘電体層とが接合されてなる ことを特徴と している。  As described above, the field effect transistor according to the present invention has a thickness of 50 nm or less, a ferromagnetic layer of Ba-based Mn oxide exhibiting ferromagnetic properties at 0 ° C. or more, and a dielectric layer. It is characterized by being bonded to a dielectric layer made of a body or a ferroelectric.
上記の構成によれば、 本発明にかかる電界効果トランジスタは、 強磁 性層と して、 0 °C以上で強磁性を示す B a系 M n酸化物、 例えば、 特定 の組成を有する B a系 M n酸化物を用いている。 そして、 上記強磁性層 と、 誘電体または強誘電体層とを接合することで 0 °C以上の磁性転移温 度を有する電界効果トランジスタを得ることができる。 これにより、 本 発明の トランジスタを、 従来と比べて、 .非常に高い温度、 すなわち、 0 °C以上で動作させることができる。 具体的には、 0°C以上で、 磁性、 電 気輸送特性および/または磁気抵抗効果を制御することができる。 According to the above configuration, the field-effect transistor according to the present invention includes a Ba-based Mn oxide exhibiting ferromagnetism at 0 ° C. or higher as a ferromagnetic layer, for example, a Ba having a specific composition. System Mn oxide is used. Then, by joining the ferromagnetic layer and the dielectric or ferroelectric layer, a field effect transistor having a magnetic transition temperature of 0 ° C. or more can be obtained. As a result, the transistor of the present invention has a very high temperature, that is, 0 It can be operated above ° C. Specifically, at 0 ° C. or higher, the magnetism, electric transport characteristics, and / or magnetoresistance effect can be controlled.
また、 :6 &系^111酸化物は、 例えば、 希薄磁性半導体と比べて、 電子 間の相互作用が非常に強い 「強相関電子系」 である。 従って、 わずかな キャリア濃度の変化で物性が変化するため、 例えば、 希薄磁性半導体と 比べて、 低電圧での制御を行う ことができる。  In addition, the: 6 & system ^ 111 oxide is a "strongly correlated electron system" in which the interaction between electrons is much stronger than that of a dilute magnetic semiconductor, for example. Therefore, since the physical properties change with a slight change in the carrier concentration, control can be performed at a lower voltage as compared with, for example, a diluted magnetic semiconductor.
以上のように、 本発明の電界効果トランジスタは、 従来よ り も、 よ り 低電圧、 かつ、 高温 ( 0°C以上) で動作させることができる。  As described above, the field-effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0 ° C. or higher) than before.
本発明の電界効果トランジスタは、 上記強磁性層が ( L a i _ x B a x ) M n O 3 (ただし、 xは、 0. 0 5く xく 0. 3の関係を満たす) で示す構造からなる B a系 Mn酸化物であることがよ り好ましい。 Structure represented by the field effect transistor of the present invention, the ferromagnetic layer (L ai _ x B a x ) M n O 3 ( here, x satisfies the relation of 0.0 5 rather x rather 0.3) More preferably, it is a Ba-based Mn oxide consisting of
上記の構成によれば、 (L a ix B a x) Mn〇 3のうち、 xを 0. 0 5 < x < 0. 3の範囲内とすることにより、 0°C以上で強磁性を示す ことができる。 従って、 上記特定の組成を有する B a系 Mn酸化物を用 いることで、 0 °C以上で動作させることができる電界効果トランジスタ を提供することができる。 According to the above configuration, of (L aix B a x ) Mn〇 3 , by setting x to be in the range of 0.05 <x <0.3, the ferromagnetic property becomes 0 ° C or more. Can be shown. Therefore, by using a Ba-based Mn oxide having the above specific composition, a field-effect transistor that can be operated at 0 ° C. or higher can be provided.
本発明の電界効果トランジスタは、 上記強磁性層が ( L a _ x B a x ) M n O 3 (ただし、 xは、 0. 1 0 < x < 0. 3の関係を満たす) で示す B a系 Mn酸化物であることがより好ましい。 Field effect transistor of the present invention, the ferromagnetic layer (L a _ x B a x ) M n O 3 ( here, x is 0.1 0 <satisfy the relationship x <0. 3) B indicated by More preferably, it is an a-type Mn oxide.
すなわち、 (L a , — x B a x) Mn〇 3の う ち、 Xを 0. 1 0く XくThat is, of (L a, — x B a x ) Mn〇 3 , X is 0.10
0. 3範囲内とすることによ り、 0 °C以上で強磁性を示すとともに、 よ り一層広い磁性転移温度変化を得ることができる。 By setting it in the range of 0.3, ferromagnetic properties can be exhibited at 0 ° C. or higher, and a wider change in magnetic transition temperature can be obtained.
本発明の電界効果トランジスタは、 上記誘電体または強誘電体が、 B a T i 〇 3、 S r T i 〇 3、 (B a 一 y S r y) T i Oゥ (ただし、 y は、 0 く y く 1 の関係を満たす) 、 P b T i 03、 P b ( Z r ! _ z T i z ) T i O 3 (ただし、 Zは、 0 く Z く 1 の関係を満たす) 、 またはField effect transistor of the present invention, the dielectric or ferroelectric material, B a T i 〇 3, S r T i 〇 3, (B a one y S r y) T i O © (however, y A is 0 rather than meet the y rather than one relationship), P b T i 0 3 , P b (Z r! _ Z T i z) T i O 3 ( where, Z is 0 rather than Z rather than one relationship Meet) or
、 A 1 2〇 3である構成がより好ましい。 The configuration is A 1 2_Rei 3 is more preferable.
また、 本発明の電界効果トランジスタは、 上記誘電体または強誘電体 は、 B a T i 〇 3、 S r T i 03、 (B a iy S r y) T i 〇 3 (ただし 、 yは、 0 < y < 1 の関係を満たす) 、 P b T i O 3、 または、 A 1 23であることがよ り好ましい。 The field effect transistor of the present invention, the dielectric or ferroelectric material, B a T i 〇 3, S r T i 0 3 , (B ai - y S r y) T i 〇 3 (however, y 0 <satisfy y <1 relationship), P b T i O 3 , or, a 1 2 〇 is preferably Ri good 3.
誘電体または強誘電体を上記例示の化合物のいずれかとすることによ り、 よ り磁性転移温度変化の効率のよい電界効果トランジスタを提供す ることができる。  By using a dielectric or a ferroelectric as any of the compounds exemplified above, it is possible to provide a field effect transistor having a more efficient magnetic transition temperature change.
本発明の電界効果トランジスタは、 ボ トムゲー ト構造を有することが より好ましい。  More preferably, the field effect transistor of the present invention has a bottom gate structure.
上記ボ トムゲー ト構造とは、 チャネル層 (強磁性層) である (L a , B a ) Mn 03層が、 基板と接しておらず、 かつ、 一方の面が剥き出し になっている構造である。 より具体的には、 (L a , B a ) Mn 03層 が、 露出している構造である。 ' 上記の構成によれば、 ボトムゲー ト構造を有しているので、 (L a, B a ) Mn〇 3層が基板と接していない。 これによ り、 基板と ( L a, B a ) Mn O 3層との相互作用を無くすことができる。 従って、 0 °C以 上で強磁性を示すと ともに、 より一層広い磁性転移温度変化を得ること ができる。 The above-mentioned borate Tomuge preparative structure, a channel layer (ferromagnetic layer) (L a, B a) Mn 0 3 layers, not in contact with the substrate, and a structure in which one surface is bared is there. More specifically, (L a, B a) Mn 0 3 layers, a structure that is exposed. 'According to the above structure, since they have Botomuge bets structure, (L a, B a) Mn_〇 3 layer is not in contact with the substrate. This ensures that it is possible to eliminate the interaction of the substrate and the (L a, B a) Mn O 3 layer. Therefore, it is possible to exhibit ferromagnetism at 0 ° C. or higher and obtain a wider change in magnetic transition temperature.
〔実施例〕  〔Example〕
〔実施例 1〕  (Example 1)
本発明にかかる電界効果トランジスタをレーザアブレーシヨ ン法によ つて製造する例を以下に示す。 The field effect transistor according to the present invention is formed by a laser abrasion method. An example of the production will be described below.
まず、 ( L a 0.87B a 0.13 ) M n O 3を作製するに当たり、 L a 203 、 Mn 23、 B a Oパゥダーを適量な混合比にと り、 混ぜあわせ、 9 0 0°C、 4 0時間の仮焼結を行った後、 1 3 0 0 °C、 2 4時間の本焼結 を行った。 First, when (L a 0. 87 B a 0. 13) to produce the M n O 3, Ri bets on L a 2 0 3, Mn 23, B a O qs mixing ratio Pauda, combined mix, After sintering at 900 ° C. for 40 hours, main sintering was performed at 130 ° C. for 24 hours.
そして、 レーザアブレーシヨ ン法を用いて、 A r Fエキシマレーザ ( λ = 1 9 3 n m) を ( L a 0.87B a 0.13) Mn 03に照射し、 基板の温 度を 7 0 0 °C、 酸素ガス圧 1. 0 X 1 0— の条件で、 S r T i 〇 3 の ( 0 0 1 ) 面の単結晶基板上に ( L a 0.87B a 0.13 ) M n O 3の薄膜 (厚さ 3. 6 n m) を作製した。 これにより、 強磁性層を形成した。 そして、 上記強磁性層の上に、 レーザァプレーシヨ ン法により、 P b (Z r , T i ) O 3からなる薄膜 (厚さ 3 0 n m) を作製した。 これに よ り誘電体層を形成した。 つま り、 基板、 強磁性層、 誘電体層が順に積 層されている。 また、 誘電体層は基板に接していない。 Then, using the laser ablation over to down method, A r F excimer laser (λ = 1 9 3 nm) a (L a 0. 87 B a 0. 13) irradiating the Mn 0 3, the temperature of the substrate 7 0 0 ° C, an oxygen gas pressure 1. 0 X 1 0- conditions, S r T i 〇 3 (0 0 1) surface on a single crystal substrate (L a 0. 87 B a 0. 13 ) thin films have been prepared of M n O 3 (thickness 3. 6 nm). Thus, a ferromagnetic layer was formed. Then, on the ferromagnetic layer, the laser § play to down method to produce a P b (Z r, T i ) thin film made of O 3 (thickness 3 0 nm). Thus, a dielectric layer was formed. That is, a substrate, a ferromagnetic layer, and a dielectric layer are sequentially stacked. Also, the dielectric layer is not in contact with the substrate.
次に、 誘電体層の上に、 ゲート電極を設け、 ソース電極おょぴドレイ ン電極を強磁性層の上に形成した。 具体的には、 ソース電極およびドレ ィン電極を、 強磁性層の上に形成された誘電体層を挟むように形成した 。 このとき、 ソース電極おょぴドレイ ン電極と誘電体層とを接触させて もよく、 また、 接触させなく ともよい。  Next, a gate electrode was provided on the dielectric layer, and a source electrode and a drain electrode were formed on the ferromagnetic layer. Specifically, the source electrode and the drain electrode were formed so as to sandwich the dielectric layer formed on the ferromagnetic layer. At this time, the source electrode and the drain electrode may be brought into contact with the dielectric layer, or may not be brought into contact.
以上のようにして本実施例にかかる電界効果ト ランジスタを製造した As described above, the field-effect transistor according to the present example was manufactured.
。 上記製造方法によ り得られた電界効果トランジスタのデパイス動作範 囲は、 2 0 0 μ ΐη Χ 2 0 0 χ πιであった。 . The depth operation range of the field-effect transistor obtained by the above manufacturing method was 200 μ μηΧ200 0ππι.
次に得られた電界効果トランジスタを用いて、 2 9 0 Κにて、 ゲート バイアス掃引を行う ことによ り、 ソース一 ドレイン抵抗が誘電体層によ つて分極し、 強磁性層のキヤリァ濃度が有効に変化しているか否かを確 認した、 その結果を図 3に示す。 図 3に示すように、 強磁性層のキヤリ ァ濃度が有効に変化できていることが確認された。 Next, by using the obtained field-effect transistor and performing a gate bias sweep at 290 °, the source-drain resistance is reduced by the dielectric layer. Then, it was confirmed whether the carrier concentration of the ferromagnetic layer was effectively changed or not. Figure 3 shows the results. As shown in Fig. 3, it was confirmed that the carrier concentration of the ferromagnetic layer could be changed effectively.
次に、 ゲートバイ アスと して、 5 Vの電界を印加した状態で電界効果 トランジスタを温度変化させたときの、 ソース ドレイ ン抵抗を測定し た。 その結果を図 4に示す。 図 4から分かるよ うに、 強磁性転移温度 ( 金属一絶縁体転移温度) が 2 8 0 Kに達することがわかる。  Next, the source-drain resistance was measured when the temperature of the field-effect transistor was changed with a 5 V electric field applied as the gate bias. Fig. 4 shows the results. As can be seen from Fig. 4, the ferromagnetic transition temperature (metal-insulator transition temperature) reaches 280 K.
また、 図 4から分かるように、 ゲートバイアスと して 5 Vの電界を印 加した状態で 2 8 O K (バルタ 2 7 0 K ) において、 1 . 5 Kの磁性転 移温度変化を確認した。 これは、 強磁性—常磁性スィッチが行われてい ることを意味する。 従って、 本発明の電界効果トランジスタは、 従来よ り も、 より低電圧、 かつ、 高温 ( 0 °C以上) で動作させることができる 〔実施例 2〕  In addition, as can be seen from FIG. 4, a magnetic transition temperature change of 1.5 K was confirmed at 28 OK (Balta 270 K) with an electric field of 5 V applied as a gate bias. This means that a ferromagnetic-paramagnetic switch is being performed. Therefore, the field effect transistor of the present invention can be operated at a lower voltage and at a higher temperature (0 ° C. or higher) than before [Example 2]
( L a o. 87 B a o. 1 3 ) M n 〇 3の組成を ( L a 0. 85 B a 0. 15) M n 0 3に 変えた以外は、 実施例 1 と同様にして、 電界効果トランジスタを作製し た。 (L a o. 87 B a o. 1 3) M n 〇 composition of 3 (L a 0. 85 B a 0. 15) was replaced with M n 0 3, the same procedure as in Example 1, Field effect transistors were fabricated.
次に得られた電界効果トランジスタを用いて、 2 9 0 Kにて、 ゲート バイアス掃引を行う ことによ り、 ソース一 ドレイ ン抵抗が誘電体層によ つて分極し、 強磁性層のキャ リ ア濃度が有効に変化しているか否かを確 認すると、 実施例 1 と同様に、 強磁性層のキャ リ ア濃度が有効に変化で きていることが確認された。  Next, by performing a gate bias sweep at 290 K using the obtained field-effect transistor, the source-drain resistance is polarized by the dielectric layer and the ferromagnetic layer is carried. It was confirmed whether the carrier concentration of the ferromagnetic layer was effectively changed, as in Example 1, when it was confirmed whether or not the carrier concentration was effectively changed.
そして、 ゲー トバイアスとして、 5 Vの電界を印加した状態で電界効 果トランジスタを温度変化させたときの、 ソース一 ドレイ ン抵抗を測定 した。 その結果、 ゲートバイアスと して 5 Vの電界を印加した状態で 2 8 2 Kにおいて、 3. 0 Kの磁性転移温度変化を確認した。 Then, the source-to-drain resistance was measured when the temperature of the field effect transistor was changed with a 5 V electric field applied as the gate bias. did. As a result, a magnetic transition temperature change of 3.0 K was confirmed at 282 K with an electric field of 5 V applied as a gate bias.
〔実施例 3〕  (Example 3)
実施例 2 と同じ組成の材料を用いて、 レーザァプレーシヨ ン法にて、 ボトムゲー ト型の電界効果トランジスタを作製した。 このとき、 チヤネ ル層である ( L a 0 85 B a 0.15) Mn O 3の層厚 (膜厚) は、 1 5 n mで あった。 なお、 S r T i O 3の ( 0 0 1 ) 面の単結晶基板上と、 誘電体 層 (ゲート層) である P b (Z r, T i ) 03との間には、 (L a , B a ) Mn O 3からなる酸化物ゲート電極を形成している。 Using a material having the same composition as in Example 2, a bottom gate type field effect transistor was manufactured by a laser application method. At this time, a Chiyane Le layer (L a 0 85 B a 0 . 15) Mn O 3 layer thickness (film thickness), was 1 5 nm. Incidentally, S r T and i O 3 (0 0 1) plane of the single crystal substrate, between the P b (Z r, T i ) 0 3 is a dielectric layer (gate layer), (L a, to form an oxide gate electrode made of B a) Mn O 3.
そして、 ゲー トバイアスとして、 5 Vの電界を印加した状態で電界効 果トランジスタを温度変化させたときの、 ソース一 ドレイ ン抵抗を測定 した。 その結果、 ゲートバイアスと して 5 Vの電界を印加した状態で 2 8 2 Kにおいて、 3. 0 Kの磁性転移温度変化を確認した。  Then, the source-to-drain resistance was measured when the temperature of the field-effect transistor was changed with a 5 V electric field applied as a gate bias. As a result, a magnetic transition temperature change of 3.0 K was confirmed at 282 K with an electric field of 5 V applied as a gate bias.
次に得られた電界効果トランジスタを用いて、 ゲ一 トバイアスと して 、 5 Vの電界を印加した状態で電界効果トランジスタを温度変化させた ときの、 ソース一 ドレイ ン抵抗を測定した。 その結果を図 5に示す。 図 5から分かるよ う に、 強磁性転移温度 (金属一絶縁体転移温度) が 3 1 3 Kに達することがわかる。  Next, using the obtained field-effect transistor, the source-to-drain resistance was measured when the temperature of the field-effect transistor was changed in a state where a 5 V electric field was applied as a gate bias. Figure 5 shows the results. As can be seen from Fig. 5, the ferromagnetic transition temperature (metal-insulator transition temperature) reaches 313 K.
また、 図 5から分かるように、 ゲー トバイアスと して 5 Vの電界を印 加した状態で 3 1 3 Kにおいて、 1 6 0 Kの磁性転移温度変化を確認し た。 これは、 強磁性一常磁性スィッチが行われていることを意味する。 従って、 本発明の電界効果トランジスタは、 従来より も、 より低電圧、 かつ、 高温 ( 0。C'以上) で動作させることができる。  In addition, as can be seen from FIG. 5, a magnetic transition temperature change of 160 K was confirmed at 313 K with an electric field of 5 V applied as a gate bias. This means that a ferromagnetic-paramagnetic switch is being performed. Therefore, the field effect transistor of the present invention can be operated at a lower voltage and a higher temperature (0.1 C 'or more) than ever before.
尚、 発明を実施するための最良の形態の項においてなした具体的な実 施態様または実施例は、 あくまでも、 本発明の技術内容を明らかにする ものであって、 そのよ うな具体例にのみ限定して狭義に解釈されるべき ものではなく、 本発明の精神と次に記載する特許請求の範囲内で、 いろ いろと変更して実施することができるものである。 産業上の利用の可能性 It should be noted that specific examples made in the section of the best mode for carrying out the invention have been made. The embodiments or examples are merely for clarifying the technical contents of the present invention, and should not be construed as being limited to only such specific examples. The present invention can be embodied with various modifications within the scope of the appended claims. Industrial potential
本発明にかかる電界効果トランジスタは、 例えば、 電界で書込みが可 能である磁気記録素子、 新機能半導体一磁気集積回路、 電界制御磁気ァ クチユエ一タ等に利用可能である。  The field-effect transistor according to the present invention can be used, for example, for a magnetic recording element that can be written by an electric field, a new-function semiconductor-magnetic integrated circuit, an electric-field control magnetic actuator, and the like.

Claims

請 求 の 範 囲 The scope of the claims
1. 5 0 n m以下の膜厚を有し、 0 °C以上で強磁性を示す B a系 M n 酸化物からなる強磁性層と、 A ferromagnetic layer made of Ba-based Mn oxide having a thickness of 1.5 nm or less and exhibiting ferromagnetism at 0 ° C or more,
誘電体または強誘電体からなる誘電体層とが接合されてなることを特 徴とする電界効果トランジスタ。  A field effect transistor characterized by being joined to a dielectric layer made of a dielectric or ferroelectric.
2. 上記強磁性層が  2. The above ferromagnetic layer
( L a ! _ x B a x ) M n O 3 (L a! _ X B a x ) M n O 3
(ただし、 xは、 0. 0 5 < x < 0. 3の関係を満たす)  (However, x satisfies the relationship 0.05 <x <0.3)
で示す B a系 Mn酸化物からなることを特徴とする請求項 1記載の電界 効果トランジスタ。 2. The field-effect transistor according to claim 1, wherein the field-effect transistor is made of a Ba-based Mn oxide.
3. 上記強磁性層が  3. The above ferromagnetic layer
( L a ! _ x B a x ) M n O 3 (L a! _ X B a x ) M n O 3
(ただし、 xは、 0. 1 0 < x < 0. 3の関係を満たす)  (However, x satisfies the relationship 0.10 <x <0.3)
で示す B a系 Mn酸化物からなることを特徴とする請求項 1記載の電界 効果トランジスタ。 2. The field-effect transistor according to claim 1, wherein the field-effect transistor is made of a Ba-based Mn oxide.
4. 上記誘電体または強誘電体は、 B a T i O 3、 S r T i O 3、 (B a ! _y S r y) T i O 3 (ただし、 yは、 0く yく 1の関係を満た す) 、 P b T i 03、 P b ( Z r ! _ z T i z ) T i O 3 (ただし、 z は、 0 < z < 1の関係を満たす) 、 または、 A 1 2 O 3であることを特徴と する請求項 1、 2または 3記載の電界効果トランジスタ。 4. The dielectric or ferroelectric material, B a T i O 3, S r T i O 3, (B a! _ Y S r y) T i O 3 ( where, y is, rather than 0 rather than y 1 of relationship to meet), P b T i 0 3 , P b (Z r! _ z T i z) T i O 3 ( where, z satisfies the 0 <z <1 relationship), or, a 4. The field effect transistor according to claim 1, wherein the field effect transistor is 1 2 O 3 .
5. 上記誘電体または強誘電体は、 B a T i O 3、 S r T i O 3、 (B a !_y S r y ) T i O a (ただし、 yは、 0く yく 1 の関係を満た す) 、 P b T i 03、 または、 A 1 2 O 3であることを特徴とする請求項 1、 2または 3記載の電界効果トランジスタ。 5. The above dielectrics or ferroelectrics are represented by B a T i O 3 , S r T i O 3 , (B a! _ Y S r y ) T i O a (where y is 0 and y claims relationship satisfying the), P b T i 0 3 , or, characterized in that it is a a 1 2 O 3 The field-effect transistor according to 1, 2, or 3.
6 . ボ トムゲート構造を有することを特徴とする請求項 1〜 5 のいず れか 1項に記載の電界効果トランジスタ。  6. The field effect transistor according to any one of claims 1 to 5, wherein the field effect transistor has a bottom gate structure.
PCT/JP2003/011300 2002-09-05 2003-09-04 Field-effect transistor WO2004023563A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004534157A JPWO2004023563A1 (en) 2002-09-05 2003-09-04 Field effect transistor
US10/526,470 US20060017080A1 (en) 2002-09-05 2003-09-04 Field-effect transistor
EP03794228A EP1548843A4 (en) 2002-09-05 2003-09-04 Field-effect transistor
US11/520,628 US20070007568A1 (en) 2002-09-05 2006-09-14 Field-effect transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002260536 2002-09-05
JP2002-260536 2002-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/520,628 Continuation US20070007568A1 (en) 2002-09-05 2006-09-14 Field-effect transistor

Publications (1)

Publication Number Publication Date
WO2004023563A1 true WO2004023563A1 (en) 2004-03-18

Family

ID=31973103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011300 WO2004023563A1 (en) 2002-09-05 2003-09-04 Field-effect transistor

Country Status (5)

Country Link
US (2) US20060017080A1 (en)
EP (1) EP1548843A4 (en)
JP (1) JPWO2004023563A1 (en)
KR (2) KR100731959B1 (en)
WO (1) WO2004023563A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004995A (en) * 2004-06-15 2006-01-05 Mitsubishi Chemicals Corp Field effect transistor
JP2006210525A (en) * 2005-01-26 2006-08-10 Sony Corp Memory device and circuit element
WO2007135817A1 (en) * 2006-05-24 2007-11-29 Japan Science And Technology Agency Multiferroic element
WO2009048025A1 (en) * 2007-10-11 2009-04-16 Japan Science And Technology Agency Nonvolatile solid state magnetic memory recording method and nonvolatile solid state magnetic memory
WO2012172898A1 (en) * 2011-06-16 2012-12-20 富士電機株式会社 Strongly correlated oxide field effect element
WO2013058044A1 (en) * 2011-10-19 2013-04-25 富士電機株式会社 Strongly correlated non-volatile memory device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408235B2 (en) * 2003-07-08 2008-08-05 Los Alamos National Security, Llc Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
JP2007157982A (en) * 2005-12-05 2007-06-21 Seiko Epson Corp Transistor-type ferroelectric memory and method of manufacturing same
US7625767B2 (en) 2006-03-17 2009-12-01 Mears Technologies, Inc. Methods of making spintronic devices with constrained spintronic dopant
US20080012004A1 (en) * 2006-03-17 2008-01-17 Mears Technologies, Inc. Spintronic devices with constrained spintronic dopant
US7936028B2 (en) * 2007-11-09 2011-05-03 Samsung Electronics Co., Ltd. Spin field effect transistor using half metal and method of manufacturing the same
KR101598542B1 (en) 2009-01-13 2016-02-29 삼성전자주식회사 Logic circuit device using spin field effect transistor
KR101016437B1 (en) * 2009-08-21 2011-02-21 한국과학기술연구원 Reconfigurable logic device using spin accumulation and diffusion
WO2013089861A1 (en) * 2011-12-12 2013-06-20 Texas State University-San Marcos Varistor-transistor hybrid devices
US10547241B1 (en) 2018-08-29 2020-01-28 Linear Technology Holding Llc Hybrid inverting PWM power converters
CN113257913A (en) * 2020-02-12 2021-08-13 中国科学院物理研究所 Synaptic three-terminal device based on ferroelectric domain inversion
CN113054013B (en) * 2021-03-17 2022-11-04 福建师范大学 Lanthanide manganese oxide and monocrystalline silicon based field effect tube structure thin film and preparation method thereof
US11690306B2 (en) * 2021-08-19 2023-06-27 Globalfoundries Singapore Pte. Ltd. Correlated electron resistive memory device and integration schemes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136426A (en) * 1991-11-09 1993-06-01 Rohm Co Ltd Semiconductor element with ferroelectric layer and manufacture thereof
JP2000349285A (en) * 1999-06-04 2000-12-15 Hitachi Ltd Manufacture of semiconductor integrated circuit device and the semiconductor integrated circuit device
JP2001352113A (en) * 2000-06-08 2001-12-21 Japan Science & Technology Corp (La, Ba)MnO3 BASED ROOM TEMPERATURE EXTRAORDINARY MAGNETO-RESISTANCE MATERIAL
JP2003078147A (en) * 2001-08-31 2003-03-14 Canon Inc Charge injection spin transistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151872A (en) * 1992-11-09 1994-05-31 Mitsubishi Kasei Corp Fet device
JP3460095B2 (en) * 1994-06-01 2003-10-27 富士通株式会社 Ferroelectric memory
KR0167671B1 (en) * 1995-06-15 1999-01-15 김주용 Method of making thin film transistor
US5757042A (en) * 1996-06-14 1998-05-26 Radiant Technologies, Inc. High density ferroelectric memory with increased channel modulation and double word ferroelectric memory cell for constructing the same
US6611405B1 (en) * 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136426A (en) * 1991-11-09 1993-06-01 Rohm Co Ltd Semiconductor element with ferroelectric layer and manufacture thereof
JP2000349285A (en) * 1999-06-04 2000-12-15 Hitachi Ltd Manufacture of semiconductor integrated circuit device and the semiconductor integrated circuit device
JP2001352113A (en) * 2000-06-08 2001-12-21 Japan Science & Technology Corp (La, Ba)MnO3 BASED ROOM TEMPERATURE EXTRAORDINARY MAGNETO-RESISTANCE MATERIAL
JP2003078147A (en) * 2001-08-31 2003-03-14 Canon Inc Charge injection spin transistor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANKI TERUO ET AL.: "Nanoscale observation of room-temperature ferromagnetism on ultrathin (La,Va)MnO3 films", APPLIED PHYSICS LETTERS, vol. 83, no. 6, 11 August 2003 (2003-08-11), pages 1184 - 1186, XP002975658 *
See also references of EP1548843A4 *
TERUO KANKI ET AL.: "Kyosokan denshikei Mn sankabutsu no FET sakusei to hyoka", THE PHYSICAL SOCIETY OF JAPAN KOEN GAIYOSHU, vol. 57, no. 2, 13 August 2002 (2002-08-13), pages 499, XP002975657 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004995A (en) * 2004-06-15 2006-01-05 Mitsubishi Chemicals Corp Field effect transistor
JP2006210525A (en) * 2005-01-26 2006-08-10 Sony Corp Memory device and circuit element
WO2007135817A1 (en) * 2006-05-24 2007-11-29 Japan Science And Technology Agency Multiferroic element
WO2009048025A1 (en) * 2007-10-11 2009-04-16 Japan Science And Technology Agency Nonvolatile solid state magnetic memory recording method and nonvolatile solid state magnetic memory
WO2012172898A1 (en) * 2011-06-16 2012-12-20 富士電機株式会社 Strongly correlated oxide field effect element
JP5598605B2 (en) * 2011-06-16 2014-10-01 富士電機株式会社 Strongly correlated oxide field effect device
WO2013058044A1 (en) * 2011-10-19 2013-04-25 富士電機株式会社 Strongly correlated non-volatile memory device
JP5621940B2 (en) * 2011-10-19 2014-11-12 富士電機株式会社 Strongly correlated non-volatile memory device
US8963221B2 (en) 2011-10-19 2015-02-24 Fuji Electric Co., Ltd. Strongly correlated nonvolatile memory element

Also Published As

Publication number Publication date
JPWO2004023563A1 (en) 2006-01-05
KR20050083673A (en) 2005-08-26
US20060017080A1 (en) 2006-01-26
EP1548843A4 (en) 2005-11-23
EP1548843A1 (en) 2005-06-29
US20070007568A1 (en) 2007-01-11
KR100731960B1 (en) 2007-06-27
KR20070048811A (en) 2007-05-09
KR100731959B1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US20070007568A1 (en) Field-effect transistor
US7652315B2 (en) Spin transistor, programmable logic circuit, and magnetic memory
JP2006237304A (en) Ferromagnetic conductor material, its manufacturing method, magnetoresistive element and field effect transistor
US8916914B2 (en) Field effect transistor having double transition metal dichalcogenide channels
JP4231506B2 (en) Magnetic switch element and magnetic memory using the same
JPWO2002058167A1 (en) Spin switch and magnetic storage element using the same
US20070064351A1 (en) Spin filter junction and method of fabricating the same
Zheng et al. Shear-strain-mediated large nonvolatile tuning of ferromagnetic resonance by an electric field in multiferroic heterostructures
Yoon et al. Oxide semiconductor-based organic/inorganic hybrid dual-gate nonvolatile memory thin-film transistor
Li et al. Characterization of Pt∕ SrBi2Ta2O9∕ Hf–Al–O∕ Si field-effect transistors at elevated temperatures
JP2006210525A (en) Memory device and circuit element
EP1756868A1 (en) Tunnel junction barrier layer comprising a diluted semiconductor with spin sensitivity
JP2003092440A (en) Magnetizing switch element
Chen et al. Negative capacitance field effect transistors based on van der Waals 2D materials
Kim et al. Ferroelectric and magnetic properties of CdMnS films prepared by coevaporation
US7075755B2 (en) Magneto-resistance effect element with magnetism sensitive region controlled by voltage applied to gate electrode
US8233315B2 (en) Spin injection device having semiconductor-ferromagnetic-semiconductor structure and spin transistor
JP2004055867A (en) Method for recording non-volatile solid state magnetic memory
CN100414716C (en) Magnetic switching device and magnetic memory using the same
JP4102880B2 (en) Multilayer structure and element structure
JP2004172483A (en) Nonvolatile storage device and multi-value storing method using the device
Fukumura Electric‐Field Control of Magnetism in Ferromagnetic Semiconductors
Shao et al. High nonvolatile modulation of resistance on a ferroelectric PbZr0· 2Ti0· 8O3/Nd0. 3Sm0. 25Sr0· 45MnO3 liquid-gated electric-double-layer transistors
JP2004055866A (en) Non-volatile solid-state magnetic memory, method for controlling coercive force of the non-volatile solid-state magnetic memory and method of recording the same
JP2007073644A (en) Magnetoresistive element and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004534157

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006017080

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2003794228

Country of ref document: EP

Ref document number: 10526470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057003850

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003794228

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057003850

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10526470

Country of ref document: US