JPH0513111B2 - - Google Patents

Info

Publication number
JPH0513111B2
JPH0513111B2 JP18413786A JP18413786A JPH0513111B2 JP H0513111 B2 JPH0513111 B2 JP H0513111B2 JP 18413786 A JP18413786 A JP 18413786A JP 18413786 A JP18413786 A JP 18413786A JP H0513111 B2 JPH0513111 B2 JP H0513111B2
Authority
JP
Japan
Prior art keywords
weight
cutting
coating layer
intermediate layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18413786A
Other languages
Japanese (ja)
Other versions
JPS6340787A (en
Inventor
Akyasu Okuno
Shoichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP18413786A priority Critical patent/JPS6340787A/en
Publication of JPS6340787A publication Critical patent/JPS6340787A/en
Publication of JPH0513111B2 publication Critical patent/JPH0513111B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は摩耗性に優れたセラミツク工具材料特
に銅、鋳鉄、高ニツケル、アルミニウム、チタン
等を高速切削し得る工具材料に関する。 <従来の技術> 窒化珪素(Si3N4)を主成分とする窒化珪素系
セラミツクスは、強度、耐酸化性、耐摩耗性、耐
熱衝撃性、耐食性等の特性に優れているので、切
削工具材料等として好ましいものとし注目されて
いる。 しかしながらSi3N4単独では金属に比べて品質
安定性や均質性に乏しく、信頼性の向上や、高特
性と言う視点から一層高靭性化が望まれている。 そのため、特開昭59−30770号、特開昭59−
54680号、特開昭60−246268号のようにSiCウイ
スカーを強化材として併用し、複合化する試みが
あるが、切削工具材料としては耐欠損性は改善す
ることができても耐摩耗性が不充分であるので、
特に耐熱鋼等の高速切削用の工具材料としては実
用化されていないのが実情である。 <発明が解決しようとする問題点> 本発明は上記の如き実情に鑑み、高温特性と靭
性とに優れた特性を有するSi3N4基セラミツク材
料の表面層を改質することによつて耐欠損性と耐
摩耗性とを兼ね備えた切削工具材料を目的とする
ものである。 <問題点を解決するための手段> 本発明は上記の目的を達成するために種々検討
の結果なされたもので、その概要は以下に記すと
おりである。 SiCウイスカーを5〜40重量%、焼結助剤を1
〜30重量%、残部Si3N4から成るSi3N4基セラミ
ツク焼結体の表面に、平均膜厚0.1〜5μmの緻密
なAl2O3コーテイング層を設けたセラミツク工具
材料を第1の発明とし、Al2O3コーテイング層を
施す前に、厚さ3μm以下のAlN又はAlONからな
る中間層を設け中間層を含む平均膜厚0.1〜5μm
の緻密なAl2O3コーテイング層を設けたセラミツ
ク工具材料を第2の発明とするものである。 先づSi3N4セラミツク焼結体について述べれ
ば、Si3N4はマトリツクス材料であり、焼結助剤
が1〜30重量%添加されるがこの範囲は複合する
SiCウイスカーの量によつても異なるが、充分な
緻密化をさせるために必要な範囲で、1重量%よ
り少ない場合は所望の密度を得ることができず、
又、30重量%より多い場合にはガラス相が原因し
た高温特性の劣化を来たす為、切削時に刃先端部
が高温になる切削工具材料としては好ましくない
からである。又特にこのような焼結助剤の添加は
常圧焼結法を採用する際に有効である。 ここに添加される焼結助剤の代表例はMg、
Al、Y、Zr及びランタノイドの群から選択され
た金属の酸化物の1種以上である。 又SiCウイスカーは5〜40重量%添加される
が、5重量%より少ない場合はセラミツク材料に
靭性の向上が見られず、逆に40重量%を越える場
合は焼結性が低下し、共に切削時に於て欠け易
く、耐欠損性に劣るため上記の範囲が好ましく更
に好ましくは10〜30重量%、最も好ましくは15〜
25重量%の範囲である。 なおウイスカーの一般定義は断面積が8×
10-5in2長さが断面の平均直径に比して10倍以上
の単結晶であるが、本発明で使用するウイスカー
としては、平均直径0.2〜1μm、平均長さ5〜
50μmのものが高靭性の緻密体を得る上で好まし
い。 又、このセラミツク材料は緻密な焼結体とする
ことにより破壊靭性、抗折強度を好ましい値のも
のとすることができる。 本発明はこのようなSi3N4基セラミツク材料の
表面にAl2O3のコーテイング層を設けた切削用工
具材料に関するものであるが、このAl2O3コーテ
イング層はSi3N4層セラミツク材料の表面に直接
設ける第1の発明と、AlN又はAlONからなる中
間層を介して設ける第2の発明からなる。 しかし、いづれの場合もAl2O3を化学気相蒸着
法(CVD)により析出させることができる。こ
のCVD法は例えば1000℃〜1100℃にSi3N4基セラ
ミツク材料を加熱し、これを装填してある反応容
器中にAlCl3、CO2、H2場合により更にCOの混
合ガスを流入して容易に行なうことができる。こ
の処理温度は900℃〜1300℃の間で条件に応じて
選択するが、余り高温になるとAl2O3の粒径が粗
大化し、緻密さが失なわれる傾向があり、比較的
低温域で長時間処理することが望ましい。 Al2O3コーテイング層の厚みは0.1〜5μmが
Al2O3の耐摩耗性を発揮し、かつ切削時に於て表
面層に過度の急激な温度勾配が生じても熱クラツ
クを生じないので好ましい。Al2O3コーテイング
層の厚みが0.1μmより薄い場合はその効果が不充
分であり、5μmより厚くなると熱衝撃で剥離し易
くなる。 又、次にSi3N4とAl2O3の熱膨張係数は前者が
3.2×10-6/℃、後者が7.8×10-6/℃と大きく異
なる為、切削条件によつてはこの被覆層に剥離を
生じることがある。 第2の発明に於てはこの現象を予防するため
に、Si3N4基セラミツク材料からなる母材の上に
AlNやAlONの薄い層を中間層として設けること
により、前記の如き母材とAl2O3コーテイング層
の熱膨張係数の差による熱応力を緩和してより強
固なAl2O3コーテイング層を施すことができる。 この場合、前記した中間層の厚みとしては熱応
力の緩和の点から3μm以下が好ましく、中間層を
含むAl2O3コーテイング層の厚みとしては0.1〜
5μmに設定することが切削時の耐摩耗性や耐剥離
性の点から好ましい。中間層及び中間層を含む
Al2O3層の厚みがこれらより過大であると熱衝撃
により基体である焼結体と被覆層との間に亀裂が
入り易く、切削時に刃先欠損の原因となる。 コーテイング層をCVD法により構成する場合、
下記の如き析出反応によつて設けられる。 (1) 2AlCl3+3CO2+3H2→Al2O3+6HCl+3CO (2) 2AlCl3+N2+3H2→2AlN+6HCl (3) 2AlCl3+2CO2+3H2+N2→2AlON+6HCl
+2CO コーテイング層はAl2O3のみから成る一重被覆
でよいが、上述の反応式(2)、(3)に示される析出反
応によつてAlN又はAlONの1種以上の層を設
け、次いで反応式(1)に示される析出反応によつて
Al2O3の層を設けることによつて多重被覆層とす
ることができる。 尚本発明のコーテイング層の生成は上記CVD
の他、PVD(物理蒸着)やスパツタリング等の手
法によつても可能である。 <実施例> 試作試験1 平均粒径0.6μmのSi3N4粉末に、SiCウイスカー
(東海カーボン社製トーカウイスカー)と焼結助
剤とを別表(第1表)の割合に均一に分散混合し
た後、黒鉛型中で温度1700℃〜1800℃、圧力200
Kg/cm2の条件下で、各60分間加圧焼結し、緻密な
焼結体を得た。 次にこの焼結体をSNGN433チヤンフアー0.05
mm×25℃に加工し、ステンレス製反応容器中に装
填し、加熱炉内で約1100℃に加熱した後H2及び
CO2ガスを供給し、AlCl3蒸発装置を経て、
AlCl312容量%、CO223容量%及びH265容量%の
混合ガスを反応容器内に流入した。 又、反応容器は真空ポンプにより、20〜
30Torrに保ち、Al2O3コーテイングの膜厚は反応
時間を変えることによつて行なつた。 このようにして得られた試料とコーテイング前
の試料とを用いて、極めて難削材として知られて
いる高ニツケル合金(インコネル718)の切削試
験を下記条件により行ない、切削後の欠損及び摩
耗量を測定した。 切削条件は以下のとおりである。 切削速度 200m/min 切り込み 1.5mm 送り速度 0.15mm/rev. 切削時間 10min この結果を第1表に表示してある。 これによれば、本発明(第1の発明)による組
成のSi3N4基セラミツク材料の表面に0.1〜5μmの
Al2O3コーテイング層を設けたセラミツク工具材
料は難削材である高ニツケル合金の切削でも欠損
を生じず、耐摩耗性にも優れたものであることが
認められ、比較例のものはほとんど欠損、チツピ
ングを生じるか、摩耗量が大で実用に耐えないこ
とが立証された。
<Industrial Application Field> The present invention relates to a ceramic tool material with excellent wear resistance, particularly a tool material capable of cutting copper, cast iron, high nickel, aluminum, titanium, etc. at high speed. <Conventional technology> Silicon nitride ceramics, whose main component is silicon nitride (Si 3 N 4 ), have excellent properties such as strength, oxidation resistance, abrasion resistance, thermal shock resistance, and corrosion resistance, so they are used as cutting tools. It is attracting attention as a desirable material. However, Si 3 N 4 alone lacks quality stability and homogeneity compared to metals, and higher toughness is desired from the viewpoint of improved reliability and high properties. Therefore, JP-A-59-30770, JP-A-59-
No. 54680 and JP-A No. 60-246268, there are attempts to use SiC whiskers as a reinforcing material to create a composite material, but as a cutting tool material, although the chipping resistance can be improved, the wear resistance is poor. Because it is insufficient,
The reality is that it has not been put to practical use, especially as a tool material for high-speed cutting of heat-resistant steel and the like. <Problems to be Solved by the Invention> In view of the above-mentioned circumstances, the present invention aims to solve the problem by modifying the surface layer of a Si 3 N 4 -base ceramic material that has excellent high-temperature properties and toughness. The object is to create a cutting tool material that has both chipping resistance and wear resistance. <Means for Solving the Problems> The present invention was made as a result of various studies to achieve the above object, and an outline thereof is as follows. 5-40% by weight of SiC whiskers, 1% of sintering aid
The first ceramic tool material was prepared by providing a dense Al 2 O 3 coating layer with an average thickness of 0.1 to 5 μm on the surface of a Si 3 N 4 - based ceramic sintered body consisting of ~30% by weight and the balance being Si 3 N 4. According to the invention, before applying the Al 2 O 3 coating layer, an intermediate layer made of AlN or AlON with a thickness of 3 μm or less is provided, and the average film thickness including the intermediate layer is 0.1 to 5 μm.
The second invention provides a ceramic tool material provided with a dense Al 2 O 3 coating layer. First, let's talk about the Si 3 N 4 ceramic sintered body. Si 3 N 4 is a matrix material, and 1 to 30% by weight of a sintering aid is added, but this range is complex.
Although it varies depending on the amount of SiC whiskers, within the range necessary for sufficient densification, if it is less than 1% by weight, the desired density cannot be obtained.
Moreover, if the amount is more than 30% by weight, the high temperature properties deteriorate due to the glass phase, which is not preferable as a cutting tool material whose blade tip becomes hot during cutting. Moreover, the addition of such a sintering aid is particularly effective when employing the pressureless sintering method. Typical examples of sintering aids added here are Mg,
One or more metal oxides selected from the group of Al, Y, Zr and lanthanoids. Furthermore, SiC whiskers are added in an amount of 5 to 40% by weight, but if it is less than 5% by weight, no improvement in the toughness of the ceramic material is observed, while if it exceeds 40% by weight, the sinterability decreases and it is difficult to cut. The above range is preferable, more preferably 10 to 30% by weight, and most preferably 15 to 30% by weight, since it sometimes tends to chip and has poor chipping resistance.
It is in the range of 25% by weight. The general definition of a whisker is that the cross-sectional area is 8×
10 -5 in 2 is a single crystal whose length is 10 times or more compared to the average diameter of the cross section, but the whiskers used in the present invention have an average diameter of 0.2 to 1 μm and an average length of 5 to 1 μm.
A thickness of 50 μm is preferable in order to obtain a dense body with high toughness. Further, by forming this ceramic material into a dense sintered body, it is possible to obtain preferable fracture toughness and bending strength. The present invention relates to a cutting tool material in which a coating layer of Al 2 O 3 is provided on the surface of such a Si 3 N 4 -based ceramic material. The first invention is provided directly on the surface of the material, and the second invention is provided via an intermediate layer made of AlN or AlON. However, in either case, Al 2 O 3 can be deposited by chemical vapor deposition (CVD). This CVD method involves heating a Si 3 N 4- based ceramic material to, for example, 1000°C to 1100°C, and then flowing a mixed gas of AlCl 3 , CO 2 , H 2 , and optionally CO into a reaction vessel loaded with the Si 3 N ceramic material. It can be easily done. The processing temperature is selected between 900℃ and 1300℃ depending on the conditions, but if the temperature is too high, the grain size of Al 2 O 3 tends to become coarse and the density is lost, so it is difficult to It is desirable to process for a long time. The thickness of Al2O3 coating layer is 0.1 ~ 5μm
It is preferable because it exhibits the wear resistance of Al 2 O 3 and does not cause thermal cracks even if an excessively rapid temperature gradient occurs in the surface layer during cutting. If the thickness of the Al 2 O 3 coating layer is less than 0.1 μm, the effect is insufficient, and if it is thicker than 5 μm, it will easily peel off due to thermal shock. Next, the coefficient of thermal expansion of Si 3 N 4 and Al 2 O 3 is
Since the latter is significantly different from 3.2×10 -6 /°C and 7.8×10 -6 /°C, peeling may occur in this coating layer depending on the cutting conditions. In the second invention, in order to prevent this phenomenon, a base material made of Si 3 N 4 -based ceramic material is
By providing a thin layer of AlN or AlON as an intermediate layer, thermal stress due to the difference in thermal expansion coefficient between the base material and the Al 2 O 3 coating layer as described above can be alleviated, and a stronger Al 2 O 3 coating layer can be applied. be able to. In this case, the thickness of the intermediate layer described above is preferably 3 μm or less from the viewpoint of relaxing thermal stress, and the thickness of the Al 2 O 3 coating layer including the intermediate layer is 0.1 to 3 μm.
It is preferable to set the thickness to 5 μm from the viewpoint of wear resistance and peeling resistance during cutting. Including middle class and middle class
If the thickness of the Al 2 O 3 layer is larger than these, cracks are likely to occur between the sintered body as a base and the coating layer due to thermal shock, resulting in chipping of the cutting edge during cutting. When the coating layer is constructed by CVD method,
It is provided by a precipitation reaction as described below. (1) 2AlCl 3 +3CO 2 +3H 2 →Al 2 O 3 +6HCl+3CO (2) 2AlCl 3 +N 2 +3H 2 →2AlN+6HCl (3) 2AlCl 3 +2CO 2 +3H 2 +N 2 →2AlON+6HCl
The +2CO coating layer may be a single coating consisting only of Al 2 O 3 , but it is also possible to provide one or more layers of AlN or AlON by the precipitation reaction shown in reaction equations (2) and (3) above, and then react. By the precipitation reaction shown in equation (1)
Multiple coating layers can be obtained by providing a layer of Al 2 O 3 . The coating layer of the present invention is formed by the above-mentioned CVD method.
In addition, methods such as PVD (physical vapor deposition) and sputtering can also be used. <Example> Prototype test 1 SiC whiskers (Toka whiskers manufactured by Tokai Carbon Co., Ltd.) and sintering aids were uniformly dispersed and mixed into Si 3 N 4 powder with an average particle size of 0.6 μm at the ratio shown in the attached table (Table 1). After that, the temperature is 1700℃~1800℃ and the pressure is 200℃ in a graphite mold.
Pressure sintering was performed for 60 minutes each under Kg/cm 2 conditions to obtain a dense sintered body. Next, this sintered body is SNGN433 with a chamfer of 0.05.
mm x 25℃, loaded into a stainless steel reaction vessel, heated to approximately 1100℃ in a heating furnace, and then heated with H 2 and
Supply CO2 gas and pass through AlCl3 evaporator,
A mixed gas of 12% by volume AlCl 3 , 23% by volume CO 2 and 65% by volume H 2 was flowed into the reaction vessel. In addition, the reaction vessel is heated by a vacuum pump for 20~
The temperature was maintained at 30 Torr, and the thickness of the Al 2 O 3 coating was varied by varying the reaction time. Using the samples obtained in this way and the samples before coating, cutting tests were conducted on a high nickel alloy (Inconel 718), which is known to be an extremely difficult-to-cut material, under the following conditions. was measured. The cutting conditions are as follows. Cutting speed 200m/min Depth of cut 1.5mm Feed rate 0.15mm/rev. Cutting time 10min The results are shown in Table 1. According to this, the surface of the Si 3 N 4- based ceramic material having the composition according to the present invention (first invention) has a thickness of 0.1 to 5 μm.
Ceramic tool materials with an Al 2 O 3 coating layer do not cause defects when cutting high nickel alloys, which are difficult-to-cut materials, and have been found to have excellent wear resistance. It was proven that it could not be put to practical use because it caused breakage, chipping, or a large amount of wear.

【表】【table】

【表】 試作例 2 試作例1と同様にしてSi3N4粉末に、20重量%
のSiCウイスカーと20重量%のAl2O3−ZrO2(1:
4)の焼結助剤とを添加して焼結した焼結体を
SNGN432に加工し、CVD反応容器に入れ1050℃
に加熱した後、AlCl3、H2、N2、CO2の混合ガス
を連続的に変化させて反応容器内に流した。 AlN−AlONの混合中間層を形成する場合は
AlCl318容量%、N2ガス12容量%、H2ガス70容
量%を最初に流し、30分毎にN2ガス2容量%減
じてCO2ガスを2容量%ずつ増すようにし、最終
的にN2ガスを停止させ、外層にAl2O3を形成し
た。 AlN中間層を形成する場合はAlCl318容量%、
N2ガス12容量%、H2ガス70容量%の混合ガスを
流した。 AlON中間層を形成する場合はAlCl312容量%、
N2ガス7容量%、CO2ガス16容量%、H2ガス65
容量%の混合ガスを流した。 そしてこれら混合ガスの焼結体表面への接触時
間を変化させ中間生成層及び外層の厚みを異なら
しめたチツプを得た。次にこのチツプを下記の切
削条件にてフライス切削のテストを実施した。 切削条件 被削材 FCD55 切削速度 200m/min 送 り 0.3mm/tooth 切り込み 1.5mm 衝撃回数 5000 その結果を第2表に示す。これによればAlN
やAlONの中間生成層を設けた第2の発明は、こ
れを有しないものに比べ耐衝撃回数が増加し、切
削寿命が延びることが判つた。
[Table] Prototype Example 2 Add 20% by weight to Si 3 N 4 powder in the same manner as Prototype Example 1.
of SiC whiskers and 20 wt% Al 2 O 3 −ZrO 2 (1:
4) The sintered body is sintered with the addition of the sintering aid.
Processed into SNGN432 and placed in CVD reaction vessel at 1050℃
After heating to , a mixed gas of AlCl 3 , H 2 , N 2 , and CO 2 was continuously changed and flowed into the reaction vessel. When forming a mixed interlayer of AlN−AlON
AlCl 3 18 vol%, N 2 gas 12 vol%, H 2 gas 70 vol% were initially flowed, and every 30 minutes N 2 gas was decreased by 2 vol% and CO 2 gas was increased by 2 vol%, and the final The N2 gas was stopped to form an outer layer of Al2O3 . AlCl 3 18% by volume when forming the AlN intermediate layer;
A mixed gas of 12% by volume of N 2 gas and 70% by volume of H 2 gas was flowed. 12% by volume of AlCl 3 to form the AlON interlayer;
N2 gas 7% by volume, CO2 gas 16% by volume, H2 gas 65% by volume
A mixed gas of % by volume was flowed. By varying the contact time of these mixed gases on the surface of the sintered body, chips with different thicknesses of the intermediate layer and the outer layer were obtained. Next, this chip was subjected to a milling test under the following cutting conditions. Cutting conditions Work material FCD55 Cutting speed 200m/min Feed 0.3mm/tooth Depth of cut 1.5mm Number of impacts 5000 The results are shown in Table 2. According to this, AlN
It was found that the second invention in which an intermediate layer of AlON or AlON was provided had an increased impact resistance and a longer cutting life than those without this.

【表】【table】

【表】 <発明の効果> 第1の発明によれば、SiCウイスカーを複合し
たSi3N4基セラミツク焼結体の優れた特性である
靭性を利用し、Al2O3コーテイング被膜を付ける
ことによつて切削工具として必要な耐欠損性と耐
摩耗性を向上した工具材料を提供するものであ
り、第2の発明によればAl2O3コーテイング被膜
を設けることに際し、AlN又はAlON層を中間層
として設けることにより、第1の発明に係るもの
より一層耐衝撃性を改良し、著るしく切削寿命の
延びた切削工具を提供することができる。
[Table] <Effects of the Invention> According to the first invention, an Al 2 O 3 coating film can be applied by utilizing the excellent toughness of the Si 3 N 4- based ceramic sintered body composited with SiC whiskers. According to the second invention, when providing the Al 2 O 3 coating film, an AlN or AlON layer is provided. By providing it as an intermediate layer, it is possible to provide a cutting tool with improved impact resistance and significantly longer cutting life than the one according to the first invention.

Claims (1)

【特許請求の範囲】 1 SiCウイスカーが全体の5〜40重量%、焼結
助剤が全体の1〜30重量%、残部がSi3N4より成
るSi3N4基セラミツク焼結体の表面に、平均膜厚
0.1〜5μmの緻密なAl2O3コーテイング層が設けら
れた耐摩耗性セラミツク工具材料。 2 SiCウイスカーが全体の5〜40重量%、焼結
助剤が全体の1〜30重量%、残部がSi3N4より成
るSi3N4基セラミツク焼結体の表面に厚さ3μm以
下のAlN又はAlONからなる中間層を介して、中
間層を含む平均膜厚0.1〜5μmの緻密なAl2O3コー
テイング層が設けられた耐摩耗性セラミツク工具
材料。
[Claims] 1. The surface of a Si 3 N 4-based ceramic sintered body consisting of 5 to 40% by weight of SiC whiskers, 1 to 30% by weight of a sintering aid, and the remainder of Si 3 N 4 . , the average film thickness
Wear - resistant ceramic tool material provided with a dense Al2O3 coating layer of 0.1-5μm. 2 SiC whiskers are 5 to 40% by weight of the whole, sintering aids are 1 to 30% by weight of the whole, and the balance is Si 3 N 4 . A wear-resistant ceramic tool material provided with a dense Al 2 O 3 coating layer with an average thickness of 0.1 to 5 μm including the intermediate layer via an intermediate layer made of AlN or AlON.
JP18413786A 1986-08-07 1986-08-07 Antiabrasive ceramic tool material Granted JPS6340787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18413786A JPS6340787A (en) 1986-08-07 1986-08-07 Antiabrasive ceramic tool material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18413786A JPS6340787A (en) 1986-08-07 1986-08-07 Antiabrasive ceramic tool material

Publications (2)

Publication Number Publication Date
JPS6340787A JPS6340787A (en) 1988-02-22
JPH0513111B2 true JPH0513111B2 (en) 1993-02-19

Family

ID=16148017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18413786A Granted JPS6340787A (en) 1986-08-07 1986-08-07 Antiabrasive ceramic tool material

Country Status (1)

Country Link
JP (1) JPS6340787A (en)

Also Published As

Publication number Publication date
JPS6340787A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
JP5078615B2 (en) Al2O3 ceramic tool with diffusion bonding enhancement layer
US5952102A (en) Diamond coated WC and WC-based composites with high apparent toughness
US5037704A (en) Hard sintered compact for a tool
JPH08119774A (en) Combined material having high hardness for tool
EP0247630B1 (en) Material for cutting tools, use of same and cutting tools
EP0796828B1 (en) Wear and thermal shock resistant sialon cutting tool material
US5326731A (en) Ceramic compositions for wear resistant applications
JPH05177411A (en) Cover cutting tool and its manufacture
JPS6245196B2 (en)
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPH0513111B2 (en)
JPH05156446A (en) Chemical vapor deposition of diamond coating on hard substrate
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
JP2646247B2 (en) AlN coated silicon nitride based cutting tool
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
EP0330679B2 (en) Sialon cutting tool composition
US4913936A (en) Method of surface alloying sialon articles
JPH06329470A (en) Sintered silicon nitride and its sintered and coated material
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JPH0535696B2 (en)
JPH07172923A (en) Production of hard sintered material having high tenacity for tool
JPS631278B2 (en)
JP2006297584A (en) Surface coated tool and cutting tool
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools