JPH0535696B2 - - Google Patents

Info

Publication number
JPH0535696B2
JPH0535696B2 JP61291632A JP29163286A JPH0535696B2 JP H0535696 B2 JPH0535696 B2 JP H0535696B2 JP 61291632 A JP61291632 A JP 61291632A JP 29163286 A JP29163286 A JP 29163286A JP H0535696 B2 JPH0535696 B2 JP H0535696B2
Authority
JP
Japan
Prior art keywords
weight
sintered body
cutting
sialon
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61291632A
Other languages
Japanese (ja)
Other versions
JPS63156076A (en
Inventor
Akyasu Okuno
Shoichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JPS63156076A publication Critical patent/JPS63156076A/en
Publication of JPH0535696B2 publication Critical patent/JPH0535696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐摩耗性に優れたセラミツク工具材料
特に、鋼、鋳鉄、高ニツケル、アルミニウム、チ
タン等を高速切削し得る工具材料に関する。 (従来の技術) 窒化珪素(Si3N4)を主成分とする窒化珪素系
セラミツクスは、強度、耐酸化性、耐摩耗性、耐
熱衝撃性、耐食性等の特性に優れているので、切
削工具材料等として好ましいものとし、注目され
ている。 しかしながらSi3N4単独では金属に比べて品質
安定性や約質性が乏しく、信頼性の向上や高特性
と言う視点から一層高靭性化が望まれている。 そのため、特開昭59−30770号、特開昭59−
54680号、特開昭60−246268号のようにSiCウイ
スカーを強化材として使用し、複合化する試みが
あるが、切削工具材料としては耐欠損性、耐摩耗
性共に不充分であるので、特に耐熱鋼等の高速切
削用の工具材料としては実用化されていないのが
実情である。 (発明が解決しようとする問題点) 本発明は上記の如き実情に鑑み、高温特性と靭
性とに優れた特性を有するβ−サイアロン基セラ
ミツク材料の表面層を改質することによつて、耐
欠損性と耐摩耗性とを兼ね備えた切削工具材料を
目的とするものである。 (問題点を解決するための手段) 本発明は上記の目的を達成するために種々検討
の結果なされたもので、その概要は以下に記すと
おりである。 SiCウイスカー5〜45重量%、Zr化合物をZr換
算で3〜20重量%、残部β−サイアロン基セラミ
ツクを主成分とする複合焼結体の表面に、平均膜
厚0.1〜5μmの緻密なAl2O3コーテイング層を設け
たセラミツク工具材料を第1の発明とし、Al2O3
コーテイング層を施す前に厚さ3μm以下のAlN及
び又はAlONからなる中間層を介して、中間層を
含む平均膜厚0.1〜5μmの緻密なAl2O3コーテイン
グ層を設けたセラミツク工具材料を第2の発明と
するものである。 先ずβ−サイアロン基セラミツクについて述べ
れば、第1の発明、第2の発明共通で、組成式
Si6-zAlzOzN8-z(但し0<z≦1)で表わされる
β−サイアロンとこのような組成式を持つβ−サ
イアロンに対し、1〜25重量%のZr,Si,Al,
O,Nと不可避不純物又はそれにY,Mg,Ca及
び希土類の1種以上を含むガラス相で構成されて
いるものが望ましい。 このガラス相が1重量%より少ない場合はβ−
サイアロンの焼結が十分達成できない為所望の密
度を得ることができず、又25重量%よりも多い場
合には靭性や高温強度の劣化を来たすため、切削
時に刃先先端部が高温になる切削工具材料として
は好ましくないからである。又、特にこのような
ガラス生成物の添加は常圧焼結やガス圧焼結法を
採用する際に有効である。 ここでz値を特定する理由はz>1の場合に機
械的強度及び靭性が低下し、切削工具材料として
必要な機械的特性を満足することができなくなる
ためである。 次にSiCウイスカーの量を5〜45重量%とする
理由は、5重量%より少ない場合はセラミツク材
料に靭性の向上が見られず、逆に45重量%を越え
る場合は焼結性が低下し、共に切削時に於いて欠
け易く、耐欠損性に劣る為、上記の範囲が好まし
い。しかし更に好ましい範囲は10〜30重量%、最
も好ましい範囲は15〜25重量%の範囲である。 なおウイスカーの一般定義は断面積が8×
10-5in2以下で長さが断面の平均直径に比して10
倍以上の単結晶であるが、本発明で使用するウイ
スカーとしては平均直径0.2〜1μm、平均長さ5
〜100μm、アスペクト比5〜500のものでAl,
Ca,Mg,Ni,Fe,Mn,Co,Cr等のカチオン
不純物やSiO2の含有量が1.0%以下のくびれや枝
分れや面欠陥の少ないひげ状結晶を用いることが
高靭性な緻密体を得る上で好ましい。 又、Zr化合物をZr換算で3〜20重量%とする
理由は3重量%未満では靭性の改善効果が十分で
なく、又20重量%を越えると焼結体の硬度や熱伝
導率や靭性が低下し、耐摩耗性や耐欠損性に劣る
為好ましくないからである。ここでZr化合物は
特に限定されないが、例えばZrO2(単斜晶、正方
晶、立方晶又はそれらの共存体)やASTMカー
ドNo.20−684のZrOにX線回折の結果がかなり良
く一致するような化合物を言う。 Zr化合物の作用は、焼結時に一旦ガラス相に
固溶したZrがガラス相とSiCウイスカーの界面に
於いて両者の濡れ性を改善し、両者のより強固な
結合を可能にすることによつて、SiCウイスカー
の持つ本来の特性が十分に発揮出来る様に作用し
て、靭性を向上することにある。 またガラス相に固溶したZrは焼結後に一部が
ガラス相中に残るものの、大半はその時の配合組
成によつてとり得る結晶相でガラス相より再析出
し、焼結体中に存在する。 従つて例えば焼結体中にZrO2として存在する
場合でも、配合組成によつて単斜晶、正方晶、立
方晶又はそれらの共存体として存在することが可
能であり、又その結晶系に違いがあつてもすべて
焼結時における本願のZrの作用効果が同じであ
る為、同様に高強度、高靭性な焼結体となり得
る。 又このβ−サイアロン基セラミツク複合焼結体
は緻密な焼結体に焼結することにより破壊靭性、
抗折強度を好ましい値のものとすることができ
る。 本発明はこのようなβ−サイアロン基セラミツ
ク複合焼結体の表面にAl2O3コーテイング層を設
けた切削工具材料に関するものであるが、この
Al2O3コーテイング層は焼結体表面に直接設ける
第1の発明と、AlN及び又はAlONから成る中間
層を介して設ける第2の発明からなる。 しかし、いずれの場合もAl2O3を化学気相蒸着
法(CVD)により析出させることができる。こ
のCVD法は例えば1000℃〜1100℃にβ−サイア
ロン基セラミツク複合焼結体を加熱し、これを装
填してある反応容器中にAlCl3,CO2,H2場合に
より更にCOを含めた混合ガスを流入して容易に
行なうことができる。この処理温度は900℃〜
1300℃の範囲で条件に応じて選択するが、余り高
温になるとAl2O3の粒径が粗大化し、緻密さが失
なわれる傾向があり、比較的低温域で長時間処理
することが望ましい。 第1の発明に於いてはAl2O3コーテイング層の
厚みは0.1〜5μmがAl2O3の耐摩耗性を発揮し、か
つ切削時に於いて表面層に過度の急激な温度勾配
が生じても熱クラツクを生じないので好ましい。
Al2O3コーテイング層の厚みが0.1μmより薄い場
合はその効果が不十分であり、5μmより厚くなる
と熱衝撃で剥離し易くなる為好ましくない。 なおβ−サイアロンとAl2O3の熱膨張係数は前
者が3.0×10-6/℃、後者が7.8×10-6/℃と大き
く異なる為、切削条件によつてはこの被覆層に剥
離を生じることがある。 第2の発明に於いてはこの現象を予防する為に
β−サイアロン基セラミツク複合焼結体から成る
母材の上に、AlNやAlONの薄い層を中間層とし
て設けることにより前記の如き母材とAl2O3コー
テイング層の熱膨張係数の差による熱応力を緩和
してより強固なAl2O3コーテイング層を施すこと
ができる。この場合、前記した中間層の厚みとし
ては熱応力の緩和の点から3μm以下で十分であり
中間層を含むAl2O3コーテイング層の厚みとして
は0.1〜5μmに設定することが切削時の耐摩耗性
や耐剥離性の点から好ましい。中間層及び中間層
を含むAl2O3層の厚みがこれらより過大であると
熱衝撃により母材である焼結体と被覆層との間に
亀裂が入り易く、切削時に刃先欠損の原因とな
る。 コーテイング層をCVD法により構成する場合、
下記の如き析出反応によつて設けられる。 1 2AlCl3+3CO2+3H2→Al2O3+6HC1+3CO 2 2AlCl3+N2+3H2→2AlN+6HCl 3 2AlCl3+2CO2+3H2+N2→2AlON+6HCl
+2CO コーテイング層はAl2O3のみからなる一重被覆
でよいが、上述の反応式2)、3)に示される析
出反応によつてAlN又はAlONの一種以上の層を
設け、ついで反応式1)に示される析出反応によ
つてAl2O3の層を設けることによつて多重被覆層
とすることができる。なお本発明のコーテイング
層の生成は上記CVD法の他PVD法(物理蒸着
法)やスパツタリング等の手法によつても可能で
ある。 (実施例) 以下本発明の実施例について説明する。 実施例 1 α率90%で平均粒径0.6μmのSi3N4粉末に、平
均粒径1μmのα−Al2O3粉末とSiCウイスカー
(ARCOケミカル社製SC−9)及び平均粒径
0.3μmの単斜晶ZrO2を第1表に示すような割合に
配合し、エタノール中で4時間均一に分散混合し
た後、乾燥し、造粒して素地を得た。 この素地を黒鉛型中で表中に示すような焼成温
度で各60分間200Kg/cm2の圧力でホツトプレスし、
緻密に焼結した焼結体を得た。次にこの焼結体を
SNGN432のチツプ形状に研摩加工した後、ステ
ンレス製反応容器中に装填し、加熱炉内で1100℃
に加熱した後、H2及びCO2ガスを供給し、AlCl3
発生装置を経てAlCl312容量%、CO223容量%及
びH265容量%の混合ガスを反応容器内に流入し
た。又反応容器は真空ポンプにより20〜30Torr
に保ち、Al2O3コーテイング層の膜厚は反応時間
を変えることによつて行なつた。 このようにして得られた試料とコーテイング前
の試料とを用いて極めて難削材として知られてい
る高ニツケル合金(インコネル718)の切削試験
を下記条件により行ない、初削後の欠損及び摩耗
量を測定した。 切削条件は以下のとおりである。 切削速度 200m/min 切り込み 1.0mm 送り速度 0.2mm/rev 切削時間 10min この結果を第1表に示す。 これによれば本発明(第1の発明)の範囲内で
β−サイアロン基セラミツク複合焼結体の表面に
0.1μm〜5μmのAl2O3コーテイング層を設けたセ
ラミツク工具材料は難切削材である高ニツケル合
金の切削でも欠損を生じず、耐摩耗性に優れたも
のであることが認められ、比較例のものは殆んど
欠損、チツピングを生じるか、摩耗量が大で実用
に耐えないことが立証された。
(Industrial Application Field) The present invention relates to a ceramic tool material with excellent wear resistance, particularly to a tool material that can cut steel, cast iron, high nickel, aluminum, titanium, etc. at high speed. (Prior art) Silicon nitride ceramics, which are mainly composed of silicon nitride (Si 3 N 4 ), have excellent properties such as strength, oxidation resistance, abrasion resistance, thermal shock resistance, and corrosion resistance, so they are used as cutting tools. It is considered to be a desirable material and is attracting attention. However, Si 3 N 4 alone has poor quality stability and consistency compared to metals, and higher toughness is desired from the viewpoint of improved reliability and high properties. Therefore, JP-A-59-30770, JP-A-59-
There are attempts to use SiC whiskers as a reinforcing material to create composites, such as No. 54680 and JP-A No. 60-246268, but they are insufficient in both fracture resistance and wear resistance as cutting tool materials. The reality is that it has not been put to practical use as a tool material for high-speed cutting of heat-resistant steel and other materials. (Problems to be Solved by the Invention) In view of the above-mentioned circumstances, the present invention has been developed by modifying the surface layer of a β-sialon-based ceramic material having excellent high-temperature properties and toughness. The object is to create a cutting tool material that has both chipping resistance and wear resistance. (Means for Solving the Problems) The present invention has been made as a result of various studies to achieve the above object, and the outline thereof is as follows. A dense Al 2 film with an average thickness of 0.1 to 5 μm is deposited on the surface of a composite sintered body mainly composed of 5 to 45% by weight of SiC whiskers, 3 to 20% by weight of Zr compound in terms of Zr, and the remainder β-sialon group ceramic. The first invention is a ceramic tool material provided with an O 3 coating layer, and the Al 2 O 3
Before applying the coating layer, a ceramic tool material is coated with a dense Al 2 O 3 coating layer with an average thickness of 0.1 to 5 μm including the intermediate layer through an intermediate layer of AlN and/or AlON with a thickness of 3 μm or less. This is invention No. 2. First of all, if we talk about β-sialon group ceramic, the first invention and the second invention have the same compositional formula.
1 to 25% by weight of Zr, Si , Al,
It is desirable to have a glass phase containing O, N and unavoidable impurities, or one or more of Y, Mg, Ca, and rare earth elements. If this glass phase is less than 1% by weight, β-
The desired density cannot be obtained because Sialon cannot be sintered sufficiently, and if the amount is more than 25% by weight, the toughness and high-temperature strength will deteriorate, so the cutting tool will have a high temperature at the tip of the cutting edge during cutting. This is because it is not preferable as a material. Moreover, the addition of such a glass product is particularly effective when employing atmospheric pressure sintering or gas pressure sintering. The reason for specifying the z value here is that when z>1, the mechanical strength and toughness decrease, making it impossible to satisfy the mechanical properties required as a cutting tool material. Next, the reason why the amount of SiC whiskers is set to 5 to 45% by weight is that if it is less than 5% by weight, the toughness of the ceramic material will not improve, and if it exceeds 45% by weight, the sinterability will decrease. The above range is preferable since both of them are easily chipped during cutting and have poor chipping resistance. However, a more preferred range is 10 to 30% by weight, and the most preferred range is 15 to 25% by weight. The general definition of a whisker is that the cross-sectional area is 8×
10 -5 in 2 or less and the length is 10 compared to the average diameter of the cross section
The whiskers used in the present invention have an average diameter of 0.2 to 1 μm and an average length of 5 μm.
~100μm, aspect ratio 5~500, Al,
The use of whisker-like crystals with a content of cationic impurities such as Ca, Mg, Ni, Fe, Mn, Co, Cr, etc. and SiO 2 of 1.0% or less, with few constrictions, branches, and surface defects, is a highly tough dense material. It is preferable to obtain Also, the reason why the Zr compound is set at 3 to 20% by weight in terms of Zr is that if it is less than 3% by weight, the toughness improvement effect is insufficient, and if it exceeds 20% by weight, the hardness, thermal conductivity, and toughness of the sintered body will deteriorate. This is because the wear resistance and chipping resistance are unfavorable. Here, the Zr compound is not particularly limited, but for example, the X-ray diffraction results match fairly well with ZrO 2 (monoclinic, tetragonal, cubic, or a coexistence thereof) and ZrO of ASTM Card No. 20-684. A compound like this. The effect of the Zr compound is that Zr, which is once dissolved in the glass phase during sintering, improves the wettability of the glass phase and SiC whiskers at the interface of the two, enabling a stronger bond between the two. The purpose is to improve toughness by acting so that the original characteristics of SiC whiskers can be fully demonstrated. In addition, although some of the Zr dissolved in the glass phase remains in the glass phase after sintering, most of it is reprecipitated from the glass phase in a crystalline phase that can be taken depending on the composition at that time and is present in the sintered body. . Therefore, for example, even when ZrO2 exists in a sintered body, it can exist as monoclinic, tetragonal, cubic, or a coexistence of these depending on the composition, and there are differences in the crystal system. Even if there is, the effect of the Zr of the present application during sintering is the same, and therefore a sintered body with high strength and high toughness can be obtained. In addition, this β-sialon-based ceramic composite sintered body is sintered into a dense sintered body, which improves fracture toughness and
The bending strength can be set to a preferable value. The present invention relates to a cutting tool material in which an Al 2 O 3 coating layer is provided on the surface of such a β-sialon-based ceramic composite sintered body.
The Al 2 O 3 coating layer consists of the first invention in which it is provided directly on the surface of the sintered body, and the second invention in which it is provided through an intermediate layer made of AlN and/or AlON. However, in both cases Al 2 O 3 can be deposited by chemical vapor deposition (CVD). This CVD method heats a β-sialon ceramic composite sintered body to, for example, 1000°C to 1100°C, and then mixes AlCl 3 , CO 2 , H 2 and optionally CO in a reaction vessel loaded with the β-sialon ceramic composite sintered body. This can be easily done by introducing gas. This processing temperature is 900℃ ~
The temperature is selected depending on the conditions within the range of 1300℃, but if the temperature is too high, the grain size of Al 2 O 3 tends to become coarse and the density tends to be lost, so it is preferable to process at a relatively low temperature for a long time. . In the first invention, when the thickness of the Al 2 O 3 coating layer is 0.1 to 5 μm, the wear resistance of Al 2 O 3 is exhibited, and an excessively rapid temperature gradient is generated in the surface layer during cutting. It is also preferable because it does not cause thermal cracks.
If the thickness of the Al 2 O 3 coating layer is thinner than 0.1 μm, the effect will be insufficient, and if it is thicker than 5 μm, it will easily peel off due to thermal shock, which is not preferable. Note that the thermal expansion coefficients of β-Sialon and Al 2 O 3 are significantly different, 3.0×10 -6 /℃ for the former and 7.8×10 -6 /℃ for the latter, so depending on the cutting conditions, peeling may occur in this coating layer. This may occur. In the second invention, in order to prevent this phenomenon, a thin layer of AlN or AlON is provided as an intermediate layer on a base material made of a β-sialon-based ceramic composite sintered body. It is possible to provide a stronger Al 2 O 3 coating layer by alleviating thermal stress due to the difference in thermal expansion coefficient between the Al 2 O 3 coating layer and the Al 2 O 3 coating layer. In this case, it is sufficient for the thickness of the intermediate layer to be 3 μm or less from the point of view of thermal stress relaxation, and the thickness of the Al 2 O 3 coating layer including the intermediate layer should be set to 0.1 to 5 μm to improve the durability during cutting. Preferable from the viewpoint of abrasion resistance and peeling resistance. If the thickness of the intermediate layer and the Al 2 O 3 layer including the intermediate layer is larger than these, cracks will easily form between the base material sintered body and the coating layer due to thermal shock, which may cause the cutting edge to break during cutting. Become. When the coating layer is constructed by CVD method,
It is provided by a precipitation reaction as described below. 1 2AlCl 3 +3CO 2 +3H 2 →Al 2 O 3 +6HC1+3CO 2 2AlCl 3 +N 2 +3H 2 →2AlN+6HCl 3 2AlCl 3 +2CO 2 +3H 2 +N 2 →2AlON+6HCl
The +2CO coating layer may be a single coating consisting only of Al 2 O 3 , but it is possible to provide one or more layers of AlN or AlON by the precipitation reaction shown in reaction formulas 2) and 3) above, and then apply a layer of AlN or AlON as shown in reaction formula 1). Multiple coating layers can be obtained by applying a layer of Al 2 O 3 by the precipitation reaction shown in FIG. In addition to the CVD method described above, the coating layer of the present invention can also be produced by a method such as a PVD method (physical vapor deposition method) or sputtering. (Example) Examples of the present invention will be described below. Example 1 Si 3 N 4 powder with an α rate of 90% and an average particle size of 0.6 μm, α-Al 2 O 3 powder with an average particle size of 1 μm, SiC whisker (SC-9 manufactured by ARCO Chemical Co., Ltd.) and an average particle size
Monoclinic ZrO 2 with a diameter of 0.3 μm was blended in the proportions shown in Table 1, uniformly dispersed and mixed in ethanol for 4 hours, dried, and granulated to obtain a base material. This base material was hot pressed in a graphite mold at the firing temperature shown in the table for 60 minutes each at a pressure of 200 kg/ cm2 .
A densely sintered body was obtained. Next, this sintered body
After polishing into a SNGN432 chip shape, it is loaded into a stainless steel reaction vessel and heated to 1100℃ in a heating furnace.
After heating to AlCl3 , supply H2 and CO2 gas
A mixed gas containing 12% by volume of AlCl 3 , 23% by volume of CO 2 and 65% by volume of H 2 was flowed into the reaction vessel through the generator. In addition, the reaction vessel is heated to 20 to 30 Torr by a vacuum pump.
The thickness of the Al 2 O 3 coating layer was controlled by changing the reaction time. Cutting tests on high nickel alloy (Inconel 718), which is known as an extremely difficult-to-cut material, were conducted under the following conditions using the samples obtained in this way and the samples before coating. was measured. The cutting conditions are as follows. Cutting speed 200m/min Depth of cut 1.0mm Feed rate 0.2mm/rev Cutting time 10min The results are shown in Table 1. According to this, within the scope of the present invention (first invention), the surface of the β-sialon-based ceramic composite sintered body
Ceramic tool materials with an Al 2 O 3 coating layer of 0.1 μm to 5 μm have been found to have excellent wear resistance and do not cause defects even when cutting high-nickel alloys, which are difficult-to-cut materials. It has been proven that most of them either break or chip, or suffer a large amount of wear and cannot be put to practical use.

【表】 実施例 2 平均粒径2μm以下のY2O3,MgO,CaO,
Dy2O3をZr,Si,Al,O,N以外のガラス生成化
合物として添加する以外は実施例1と同様にして
第2表に示すような割合に配合して得た素地粉末
を黒鉛型中で1750℃×200Kg/cm2の温度、圧力の
条件下で各60分間ホツトプレスし、緻密に焼結し
た焼結体を得た。次にこの焼結体をSNGN432の
チツプ形状に研摩加工した後、ステンレス製反応
容器中に装填し、1050℃に加熱した後、温度を
320℃に保つたAlチツプ中にHClを通過させて発
生したAlCl3及びH2,N2,CO2の混合ガスを連続
的に変化させて反応容器内に供給した。 AlN−AlONの混合中間層を形成する場合は
AlCl3ガス18容量%、N2ガス12容量%、H2ガス
70容量%を最初に流し、30分毎にN2ガス2容量
%減じてCO2ガスを2容量%ずつ増すようにし、
最終的にN2ガスを停止させ、外層にAl2O3を形成
した。AlN中間層を形成する場合はAlCl3ガス18
容量%、N2ガス12容量%、H2ガス70容量%の混
合ガスを流した。AlON中間層を形成する場合
は、AlCl3ガス12容量%、N2ガス7容量%、CO2
ガス16容量%、H2ガス65容量%の混合ガスを流
した。 そしてこれらの混合ガスの焼結体表面への接触
時間を変化させ、中間生成層及び外層の厚みを異
ならしめたチツプを得た。 次にこのチツプを下記の切削条件にてフライス
切削のテストを実施した。 切削条件 被削材 クロムモリブデン鋼SCM440 (HB280) 切削速度 200m/min 切り込み 1.5mm 送り速度 0.2mm/tooth 切削テストは刃先が欠損するまで実施し、刃先
が欠損するまでの衝撃回数を測定し、10点の平均
値を結果として第2表に示した。 この結果からAlNやAlONの中間生成層を設け
た第2の発明は、これを有しないものに比べて衝
撃回数が増加し、切削寿命が延びることが判つ
た。
[Table] Example 2 Y 2 O 3 , MgO, CaO, with an average particle size of 2 μm or less,
A base powder obtained by mixing the proportions shown in Table 2 in the same manner as in Example 1 except that Dy 2 O 3 was added as a glass-forming compound other than Zr, Si, Al, O, and N was made into a graphite mold. Inside, hot pressing was carried out under conditions of temperature and pressure of 1750° C. x 200 Kg/cm 2 for 60 minutes each to obtain a densely sintered body. Next, this sintered body was polished into a SNGN432 chip shape, then loaded into a stainless steel reaction vessel, heated to 1050℃, and then lowered to
A mixed gas of AlCl 3 and H 2 , N 2 , and CO 2 generated by passing HCl through an Al chip kept at 320°C was continuously changed and supplied into the reaction vessel. When forming a mixed interlayer of AlN−AlON
AlCl3 gas 18% by volume, N2 gas 12% by volume, H2 gas
Initially flow 70% by volume, reduce N2 gas by 2% by volume and increase CO2 gas by 2% by volume every 30 minutes,
Finally, the N2 gas was stopped and Al2O3 was formed in the outer layer. AlCl 3 gas 18 to form AlN interlayer
A mixed gas of 12% by volume of N2 gas and 70% by volume of H2 gas was flowed. When forming the AlON intermediate layer, use AlCl3 gas 12% by volume, N2 gas 7% by volume, CO2
A mixed gas of 16% by volume of gas and 65% by volume of H2 gas was flowed. By varying the contact time of these mixed gases on the surface of the sintered body, chips with different thicknesses of the intermediate layer and the outer layer were obtained. Next, this chip was subjected to a milling test under the following cutting conditions. Cutting conditions Work material Chrome molybdenum steel SCM440 (HB280) Cutting speed 200m/min Depth of cut 1.5mm Feed rate 0.2mm/tooth The cutting test was performed until the cutting edge broke off, and the number of impacts until the cutting edge broke off was measured. The average values of the points are shown in Table 2 as the results. From these results, it was found that the second invention in which an intermediate layer of AlN or AlON was provided had an increased number of impacts and a longer cutting life compared to the one without this.

【表】【table】

【表】 実施例 3 Zr化合物としてZrO2,ZrNを用いることとし
た以外は実施例2と同様にして第3表に示す割合
に配合して調整した素地粉末を焼結し、得られた
焼結体母材の組成をX線回折により同定した。又
機械的特性として強度と靭性を測定し、その結果
を第3表に示す。 この結果から添加するZr化合物の種類に拘ら
ず焼結後は配合組成によつてZrO2やZrOやZrの
酸窒化物と思われるZr化合物として焼結体中に
存在することが判つた。 又Zro2として存在する場合でも配合組成によつ
て単斜晶、正方晶、立方晶又はそれらの共存体と
して存在するが、すべて同様に高強度・高靭性を
有する焼結体となることが判つた。
[Table] Example 3 The base powder was prepared in the same manner as in Example 2 except that ZrO 2 and ZrN were used as the Zr compound in the proportions shown in Table 3, and the resulting sintered powder was sintered. The composition of the solid matrix was identified by X-ray diffraction. In addition, strength and toughness were measured as mechanical properties, and the results are shown in Table 3. From this result, it was found that regardless of the type of Zr compound added, after sintering, it existed in the sintered body as ZrO 2 , ZrO, or a Zr compound thought to be an oxynitride of Zr, depending on the composition. In addition, even when it exists as Zro 2 , it exists as monoclinic, tetragonal, cubic, or a coexistence of these depending on the composition, but it has been found that all of them result in sintered bodies that have the same high strength and high toughness. Ivy.

【表】【table】

【表】 実施例 4 出発原料としてSi3N4以外に予めz=0.3に合成
されたβ−サイアロン粉末を用いる以外には実施
例2と同様にして、第4表に示すような割合に配
合して得た素地粉末を20□ ×7mmの寸法に成形圧
1.5ton/cm2でプレス成形した後、1750℃の1気圧
の窒素ガス雰囲気中で2時間焼結し1次焼結体を
得た。次にこの焼結体を1750℃、70気圧の加圧窒
素ガス雰囲気中で2時間再焼結し、緻密な2次焼
結体を得た。このようにして得られた焼結体を実
施例2と同様にして加工した後、表面にAl2O3
ーテイング層を設け、下記の切削条件にて切削テ
ストを実施し、切削後の欠損及び摩耗量を測定し
た。 切削条件 被削材 SCr420 切削速度 500m/min 切り込み 1.0mm 送り速度 0.3mm/rev 切削時間 10分 この結果から本発明の範囲内に於いて、焼結体
表面にAl2O3コーテイング層を施した切削材料は
耐欠損性及び耐摩耗性に優れた切削性能を有して
いることが立証された。
[Table] Example 4 In the same manner as in Example 2, except that β-sialon powder synthesized in advance at z = 0.3 was used in addition to Si 3 N 4 as the starting material, the ingredients were blended in the proportions shown in Table 4. The base powder obtained was molded to a size of 20□
After press-forming at 1.5 ton/cm 2 , the material was sintered in a nitrogen gas atmosphere of 1 atm at 1750° C. for 2 hours to obtain a primary sintered body. Next, this sintered body was re-sintered at 1750° C. in a pressurized nitrogen gas atmosphere of 70 atmospheres for 2 hours to obtain a dense secondary sintered body. After processing the sintered body thus obtained in the same manner as in Example 2, an Al 2 O 3 coating layer was provided on the surface, and a cutting test was conducted under the following cutting conditions to determine the defects and damage after cutting. The amount of wear was measured. Cutting conditions Work material SCr420 Cutting speed 500m/min Depth of cut 1.0mm Feed rate 0.3mm/rev Cutting time 10 minutes Based on these results, within the scope of the present invention, an Al 2 O 3 coating layer was applied to the surface of the sintered body. It was demonstrated that the cutting material has excellent cutting performance with excellent fracture resistance and wear resistance.

【表】 (発明の効果) 第1の発明によればSiCウイスカーとZr化合物
を複合したβ−サイアロン基セラミツク焼結体の
優れた特性である高靭性を利用し、Al2O3コーテ
イング被膜を付けることによつて切削工具として
必要な耐欠損性と耐摩耗性を向上した工具材料を
提供するものであり、第2の発明によればAl2O3
コーテイング被膜を設けるに際し、AlN及び又
はAlON層を中間層として設けることにより、第
1の発明に係るものより一層耐熱衝撃性を改良
し、著るしく切削寿命の延びた切削工具を提供す
ることができる。
[Table] (Effects of the invention) According to the first invention, an Al 2 O 3 coating film can be formed by utilizing the high toughness, which is an excellent characteristic of a β-sialon-based ceramic sintered body that is a composite of SiC whiskers and a Zr compound. According to the second invention, a tool material with improved chipping resistance and wear resistance necessary for a cutting tool is provided by adding Al 2 O 3
When providing a coating film, by providing an AlN and/or AlON layer as an intermediate layer, it is possible to provide a cutting tool that has further improved thermal shock resistance than the one according to the first invention and has a significantly extended cutting life. can.

Claims (1)

【特許請求の範囲】 1 SiCウイスカー5〜45重量%、Zr化合物をZr
換算で3〜20重量%、残部β−サイアロン基セラ
ミツクを主成分とし、そのβ−サイアロン基セラ
ミツクが組成式Si6-zAlzOzN8-z(但し0<z≦
1)で表わされるβ−サイアロンと1〜25重量%
のZr,Si,Al,O,Nと不可避不純物又はそれ
にY,Mg,Ca及び希土類元素の1種以上を含む
ガラス相で主として構成される複合焼結体の表面
に、平均膜厚0.1〜5μmの緻密なAl2O3コーテイン
グ層が設けられていることを特徴とする高靭性・
耐摩耗性セラミツク工具材料 2 SiCウイスカー5〜45重量%、Zr化合物をZr
換算で3〜20重量%、残部β−サイアロン基セラ
ミツクを主成分とし、そのβ−サイアロン基セラ
ミツクが組成式Si6-zAlzOzN8-z(但し0<z≦
1)で表わされるβ−サイアロンと1〜25重量%
のZr,Si,Al,O,Nと不可避不純物又はそれ
にY,Mg,Ca及び希土類元素の1種以上を含む
ガラス相で主として構成される複合焼結体の表面
に、厚さ3μm以下のAlN又はAlONのうちの1種
以上からなる中間層を介して、中間層を含む平均
膜厚0.1〜5μmの緻密なAl2O3コーテイング層が設
けられていることを特徴とする高靭性・耐摩耗性
セラミツク工具材料。
[Claims] 1 5 to 45% by weight of SiC whiskers, Zr compound
3 to 20% by weight in terms of weight, the remainder being mainly composed of β-sialon ceramic, which has the composition formula Si 6-z AlzOzN 8-z (however, 0<z≦
1) and 1 to 25% by weight of β-sialon
An average film thickness of 0.1 to 5 μm is applied to the surface of a composite sintered body mainly composed of a glass phase containing Zr, Si, Al, O, N and unavoidable impurities or one or more of Y, Mg, Ca, and rare earth elements. High toughness characterized by a dense Al 2 O 3 coating layer.
Wear-resistant ceramic tool material 2 SiC whiskers 5-45% by weight, Zr compound
3 to 20% by weight in terms of weight, the remainder being mainly composed of β-sialon ceramic, which has the composition formula Si 6-z AlzOzN 8-z (however, 0<z≦
1) and 1 to 25% by weight of β-sialon
AlN with a thickness of 3 μm or less is applied to the surface of a composite sintered body mainly composed of a glass phase containing Zr, Si, Al, O, N and inevitable impurities or one or more of Y, Mg, Ca, and rare earth elements. High toughness and wear resistance characterized by a dense Al 2 O 3 coating layer with an average film thickness of 0.1 to 5 μm including the intermediate layer being provided through an intermediate layer consisting of one or more types of AlON. ceramic tool material.
JP61291632A 1986-08-26 1986-12-09 High toughness antiabrasive ceramic tool material Granted JPS63156076A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19820486 1986-08-26
JP61-198204 1986-08-26

Publications (2)

Publication Number Publication Date
JPS63156076A JPS63156076A (en) 1988-06-29
JPH0535696B2 true JPH0535696B2 (en) 1993-05-27

Family

ID=16387211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291632A Granted JPS63156076A (en) 1986-08-26 1986-12-09 High toughness antiabrasive ceramic tool material

Country Status (1)

Country Link
JP (1) JPS63156076A (en)

Also Published As

Publication number Publication date
JPS63156076A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
US5952102A (en) Diamond coated WC and WC-based composites with high apparent toughness
JPS6348836B2 (en)
US5030597A (en) Process for producing ceramic composites
JPS60502244A (en) Coated silicon nitride cutting tools
EP0113660A2 (en) Nitride based cutting tool
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
US5914286A (en) Silicon nitride cutting tool material
US4745022A (en) Composite sintered silicon nitride material and cutting tool made therefrom
JPH0516031A (en) Manufacture of sheathed ceramic tool of high toughess and durability
JPS605079A (en) Manufacture of sialon base ceramics
JPH0816028B2 (en) Highly tough ceramic sintered body, ceramic tool and method for manufacturing sintered body
JP3476504B2 (en) Silicon nitride based sintered body and its coated sintered body
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPH05186272A (en) Sintered boron nitride having composite high-density phase
JPH0535696B2 (en)
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPH0260442B2 (en)
JP3009310B2 (en) Sialon-based sintered body and its coated sintered body
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JPH07172919A (en) Titanium-compound sintered material
JPS598670A (en) High tenacity silicon nitride base sintered body
JPH0569073B2 (en)
JPH0710751B2 (en) Surface-modified ceramic sintered body and method for producing the same
JPH07172923A (en) Production of hard sintered material having high tenacity for tool