JPH05177411A - Cover cutting tool and its manufacture - Google Patents

Cover cutting tool and its manufacture

Info

Publication number
JPH05177411A
JPH05177411A JP35757091A JP35757091A JPH05177411A JP H05177411 A JPH05177411 A JP H05177411A JP 35757091 A JP35757091 A JP 35757091A JP 35757091 A JP35757091 A JP 35757091A JP H05177411 A JPH05177411 A JP H05177411A
Authority
JP
Japan
Prior art keywords
coating layer
layer thickness
layer
cutting tool
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35757091A
Other languages
Japanese (ja)
Inventor
Katsuya Uchino
克哉 内野
Masuo Nakado
益男 中堂
Akinori Kobayashi
晄徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35757091A priority Critical patent/JPH05177411A/en
Publication of JPH05177411A publication Critical patent/JPH05177411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cover cutting tool excellent both in corrosion resistance and in chipping resistance and its manufacturing method. CONSTITUTION:This cover cutting tool is equipped with the first cover layer on the surface of a parent material, which consists of hard ceramics and in which minute cracks the average interval between which is 10-100mum and the average length in the layer thickness direction of which is from -2mum to +5mum of the layer thickness are made and in which tensile stress is remaining, and the second cover layer, which consists of hard ceramics provided on the first cover layer and in which compression stress is remaining. Furthermore, the first cover layer is made by chemical deposition method, and the cracks in the first cover layer are made by the blast treatment with GC grinding particles, etc., or barrel treatment, or quenching, and the second cover layer is made by a physical deposition method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超硬合金、サーメット
又は硬質セラミックスの母材上に、硬質セラミックスの
被覆層を備えた被覆切削工具、及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cutting tool having a hard ceramic coating layer on a base material of cemented carbide, cermet or hard ceramic, and a method for producing the same.

【0002】[0002]

【従来の技術】一般の鋼や鋳物等の切削加工には、超硬
合金やサーメット等の硬質合金、或は窒化ケイ素系、ア
ルミナ系若しくはチタン化合物系等の硬質セラミックス
からなる切削工具が使用されているが、切削中における
切削工具の刃先温度は800℃以上になり、刃先温度が高
くなれば切削工具が熱により変形して逃げ面摩耗が激し
くなることが知られている。
2. Description of the Related Art A cutting tool made of hard alloy such as cemented carbide or cermet or hard ceramics such as silicon nitride, alumina or titanium compound is used for cutting general steel and castings. However, it is known that the cutting edge temperature of the cutting tool during cutting becomes 800 ° C. or higher, and if the cutting edge temperature rises, the cutting tool is deformed by heat and the flank wear becomes severe.

【0003】この様な状況下で切削工具の切削特性を改
善するために、超硬合金やサーメット又は硬質セラミッ
クスからなる工具母材の表面に、硬質セラミックスの単
一層又は複合層からなる被覆層を形成した被覆切削工具
が使用されている。被覆層を構成する硬質セラミックス
としては、TiC、TiN、TiCN等の周期律表の4
A族金属の炭化物、窒化物、炭窒化物、或はAl23
が一般に使用されている。又、これら被覆層の形成に
は、CVD法等の化学的蒸着法若しくはイオンスパッタ
リング法等の物理的蒸着法が用いられる。
In order to improve the cutting characteristics of the cutting tool under such circumstances, a coating layer composed of a single layer or a composite layer of hard ceramics is formed on the surface of the tool base material made of cemented carbide, cermet or hard ceramics. The formed coated cutting tool is used. The hard ceramics constituting the coating layer are TiC, TiN, TiCN, etc.
Carbides, nitrides, carbonitrides, Al 2 O 3 and the like of Group A metals are generally used. Further, in forming these coating layers, a chemical vapor deposition method such as a CVD method or a physical vapor deposition method such as an ion sputtering method is used.

【0004】一般的に化学的蒸着法により形成した被覆
層は、母材との間に拡散を伴うため母材との密着強度が
非常に強く、従ってかかる被覆層を有する被覆切削工具
は他のものより耐摩耗性が非常に優れている。しかしそ
の一方で、この種の被覆切削工具は、超硬合金やサーメ
ット或は硬質セラミックスのみの切削工具に比較して刃
先強度が低下し、耐欠損性が低下する欠点があった。そ
の理由は、切削時に被覆層の表面を起点として亀裂が発
生すると、母材と被覆層との熱膨張係数の差によって被
覆層に生ずる引張応力により亀裂の伝播が助長され、伸
展して欠損に至るためと考えられる。
Generally, the coating layer formed by the chemical vapor deposition method has a very high adhesion strength with the base material because it is diffused between the coating material and the base material. The abrasion resistance is much better than the ones. On the other hand, however, this type of coated cutting tool has a drawback that the cutting edge strength is lower and the fracture resistance is lower than that of a cutting tool only made of cemented carbide, cermet or hard ceramics. The reason is that if a crack starts from the surface of the coating layer during cutting, the propagation of the crack is promoted by the tensile stress generated in the coating layer due to the difference in the coefficient of thermal expansion between the base material and the coating layer, and it spreads and becomes defective. It is thought that it will be reached.

【0005】即ち、母材の熱膨張係数は超硬合金で約
5.5×10-6-1、硬質セラミックスでは例えばSi3
4系で約3.0×10-6-1程度であるが、被覆層では
例えばTiCが約7.6×10-6-1及びAl23が約
7.9×10-6-1である。化学的蒸着法では被覆温度
が約1000℃と高温となるため、被覆層形成後に室温
まで冷却すると、上記の熱膨張係数の差により被覆層に
引張応力が働き、これが亀裂の伝播を助長するのであ
る。現在一般に使用されている被覆切削工具の被覆層の
層厚が約数μmから約10数μmの範囲であるのは、被覆
層の層厚を厚くするほど耐摩耗性が向上するものの、同
時にまた上記の理由から厚い被覆層ほど耐欠損性が低下
するからである。
That is, the coefficient of thermal expansion of the base material is about 5.5 × 10 -6 K -1 for cemented carbide, and Si 3 for hard ceramics.
It is about 3.0 × 10 −6 K −1 in N 4 system, but in the coating layer, for example, TiC is about 7.6 × 10 −6 K −1 and Al 2 O 3 is about 7.9 × 10 −. It is 6 K -1 . In the chemical vapor deposition method, the coating temperature is as high as about 1000 ° C. Therefore, if the coating layer is cooled to room temperature after formation, tensile stress acts on the coating layer due to the difference in the thermal expansion coefficient, which promotes the propagation of cracks. is there. The coating layer thickness of the coated cutting tool currently generally used is in the range of about several μm to about ten and several μm, although the wear resistance is improved as the coating layer thickness is increased, but at the same time, For the above reason, the thicker the coating layer is, the lower the fracture resistance is.

【0006】従って、化学的蒸着法により形成した被覆
層の耐欠損性を向上させることが出来れば、本来の優れ
た耐摩耗性と相俟って、従来よりも一層優れた切削特性
を備えた被覆切削工具が得られ、従来は刃先の欠損が極
めて多かったフライス加工や溝付き材の旋削加工等の断
続的荷重の負荷される切削加工においても、工具寿命を
改善向上されることが可能となる。
Therefore, if it is possible to improve the fracture resistance of the coating layer formed by the chemical vapor deposition method, it is possible to provide the cutting characteristics which are more excellent than the conventional ones in combination with the original excellent wear resistance. It is possible to obtain a coated cutting tool, and it is possible to improve and improve the tool life even in cutting operations that are subject to intermittent loads such as milling and turning of grooved materials, which conventionally had very many cutting edges. Become.

【0007】しかし、現在まで被覆切削工具の刃先強度
の低下を防ぎ耐欠損性を向上させる方法として、刃先部
の被覆層の層厚を平坦部より薄くする方法や、被覆層に
残留する引張応力をショットピーニング又はショットブ
ラスト等の処理により解放する方法(特開平3−922
04号及び特開平3−92205号公報参照)等が試み
られて来たが、未だ十分な効果を得られるに至っていな
い現状である。
However, up to now, as a method for preventing the deterioration of the cutting edge strength of the coated cutting tool and improving the fracture resistance, a method of making the coating layer of the cutting edge portion thinner than a flat portion, and a tensile stress remaining in the coating layer Method by releasing shot peening or shot blasting (Japanese Patent Laid-Open No. 3-922)
No. 04 and Japanese Patent Application Laid-Open No. 3-92205) have been tried, but the present situation is that the sufficient effect has not yet been obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、化学的蒸着法による被覆層の母材との優れ
た密着強度に由来する良好な耐摩耗性を維持しながら、
従来好ましくなかった耐欠損性を改善向上させることに
より、耐摩耗性と耐欠損性の両方に優れた被覆切削工具
を提供すること、及びその製造方法を提供することを目
的とする。
In view of such conventional circumstances, the present invention maintains good wear resistance derived from excellent adhesion strength of a coating layer by a chemical vapor deposition method to a base material,
It is an object of the present invention to provide a coated cutting tool excellent in both wear resistance and fracture resistance by improving and improving the fracture resistance, which has been conventionally unfavorable, and to provide a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明における超硬合金、サーメット、又は窒化ケ
イ素系、アルミナ系若しくはチタン化合物系の硬質セラ
ミックスからなる母材表面上に、硬質セラミックスの被
覆層を設けた被覆切削工具では、前記被覆層が、母材の
表面に設けられ、亀裂間隔の平均が10〜100μmで
層厚方向の亀裂長さの平均が層厚−2μmから層厚+5
μmの微細な亀裂を有し、周期律表の4A族金属の炭化
物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、ホウ窒
化物、ホウ炭窒化物、及びアルミナから選ばれた少なく
とも1種の単層又は複層からなり、引張応力が残留する
第1被覆層と、その上に設けられた周期律表の4A族金
属の炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化
物、及びアルミナ、窒化チタンアルミニウム、酸窒化チ
タンアルミニウムから選ばれた少なくとも1種の単層又
は複層からなり、圧縮応力の残留する第2被覆層とから
なることを特徴とする。
In order to achieve the above object, a hard ceramics, a cermet, or a base metal surface of a silicon nitride-based, alumina-based or titanium compound-based hard ceramics of the present invention is formed on the surface of the hard ceramics. In the coated cutting tool provided with the coating layer, the coating layer is provided on the surface of the base material, and the average crack interval is 10 to 100 μm, and the average crack length in the layer thickness direction is from layer thickness −2 μm to layer thickness +5.
At least one selected from carbides, nitrides, carbonitrides, carbonates, carbonitrides, boronitrides, borocarbonitrides, and aluminas of Group 4A metals of the periodic table having microscopic cracks of μm. A first coating layer consisting of a single layer or multiple layers of seeds, in which tensile stress remains, and a carbide, nitride, carbonitride, carbonitride of Group 4A metal of the periodic table provided thereon , And at least one kind of single layer or multiple layers selected from alumina, titanium aluminum nitride, and titanium aluminum oxynitride, and a second coating layer in which compressive stress remains.

【0010】又、本発明の被覆切削工具の製造方法は、
化学的蒸着法により超硬合金、サーメット、又は窒化ケ
イ素系、アルミナ系若しくはチタン化合物系の硬質セラ
ミックスからなる母材表面に、周期律表の4A族金属の
炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、ホ
ウ窒化物、ホウ炭窒化物、及びアルミナから選ばれた少
なくとも1種を単層又は複層に被覆した後、鉄粉あるい
はアルミナ粉又はGC砥粒等のセラミック粒を用いたブ
ラスト処理か又はバレル処理によるか、又は焼込れによ
る熱衝撃を加えることにより、亀裂間隔の平均が10〜
100μm及び層厚方向の亀裂長さの平均が層厚−2μ
mから層厚+5μmである微細な亀裂を発生させ、得ら
れた第1被覆層の上に物理的蒸着法により周期律表の4
A族金属の炭化物、窒化物、炭窒化物、炭酸化物、炭酸
窒化物、及びアルミナ、窒化チタンアルミニウム、酸窒
化チタンアルミニウムから選ばれた少なくとも1種の単
層又は複層からなる第2被覆層を形成することを特徴と
する。
Further, the method of manufacturing the coated cutting tool of the present invention comprises:
Carbide, nitride, carbonitride, carbonic acid of Group 4A metal of the periodic table is formed on the surface of the base material made of cemented carbide, cermet, or silicon nitride-based, alumina-based or titanium compound-based hard ceramics by the chemical vapor deposition method. Oxide, carbonitride, boronitride, borocarbonitride, and alumina are coated in a single layer or multiple layers, and then iron powder or alumina powder or ceramic grains such as GC abrasive grains are used. The average crack distance is 10 to 10 by blasting or barreling, or by applying thermal shock by burning.
The average of 100 μm and the crack length in the layer thickness direction is the layer thickness −2 μ.
A microcrack having a layer thickness of +5 μm from m is generated, and 4 of the periodic table is formed on the obtained first coating layer by physical vapor deposition.
A second coating layer composed of a single layer or multiple layers selected from the group consisting of carbides, nitrides, carbonitrides, carbonates, carbonitrides of Group A metals, alumina, titanium aluminum nitride and titanium aluminum oxynitride. Is formed.

【0011】[0011]

【作用】CVD法等の公知の化学的蒸着法により超硬合
金、サーメット又は硬質セラミックスからなる母材の表
面に硬質セラミックスの被覆層を形成すると、前記のご
とく被覆層に引張応力が生じることが知られている。そ
の際、被覆層の層厚が数μmから10数μmの場合に
は、発生した引張応力が被覆層の破断強度を越えるため
被覆層に微細な亀裂が平均100〜400μmの間隔で
自然に発生し、引張応力の一部が解放される。しかし、
それでも被覆層には0.5〜1.0GPa程度の弾性歪み
が残ることがX線回折による測定で確認でき、これが切
削時の亀裂の伝播を助長している。
When a coating layer of hard ceramics is formed on the surface of a base material made of cemented carbide, cermet or hard ceramics by a known chemical vapor deposition method such as the CVD method, tensile stress may occur in the coating layer as described above. Are known. At that time, when the layer thickness of the coating layer is from several μm to several tens of μm, the generated tensile stress exceeds the breaking strength of the coating layer, and thus fine cracks naturally occur at an average interval of 100 to 400 μm. Then, a part of the tensile stress is released. But,
Nevertheless, it can be confirmed by X-ray diffraction measurement that elastic strain of about 0.5 to 1.0 GPa remains in the coating layer, which promotes the propagation of cracks during cutting.

【0012】そこで本発明では、上記被覆層に鉄粉、ア
ルミナ粉又はGC砥粒(高純度で緑色を呈するSiC砥
粒)を噴射するブラスト処理や、前記砥粒等と一緒に容
器中で回転又は振動を与えるバレル処理により、或は焼
込れによる熱衝撃を加えることにより、微細な亀裂を強
制的に発生させて引張応力を更に解放した後、この低減
された引張応力の残る被覆層を第1被覆層として、その
上に物理的蒸着法により圧縮応力の残留する第2被覆層
を設けることによって、母材との良好な密着性と優れた
耐摩耗性を保持したまま、同時に優れた耐欠損性をも兼
ね備えた被覆切削工具を得ることが出来た。
Therefore, in the present invention, iron powder, alumina powder or GC abrasive grains (SiC abrasive grains exhibiting a green color of high purity) are blasted on the coating layer, or the coating layer is rotated in a container together with the abrasive grains. Alternatively, by a barrel treatment that gives vibration or by applying a thermal shock due to quenching, forcibly generating fine cracks and further releasing the tensile stress, the coating layer with the reduced tensile stress remains. By providing a second coating layer on which a compressive stress remains by a physical vapor deposition method as the first coating layer, excellent adhesiveness with the base material and excellent wear resistance are maintained, and at the same time excellent It was possible to obtain a coated cutting tool that also had fracture resistance.

【0013】第1被覆層の亀裂の間隔を平均で100μ
m以下に且つ層厚方向の亀裂長さを平均で層厚−2μm
を越える程度にすれば、約0.4〜0.5GPaの引張応
力を更に解放できることが分かったが、亀裂の平均間隔
が10μm未満になると耐摩耗性が低下し、又亀裂の平
均長さが層厚+5μm(亀裂が母材中に及ぶ)を越える
と耐欠損性が低下するので、第1被覆層の亀裂は間隔を
平均で10〜100μm及び層厚方向の長さを平均で層
厚−2μmから層厚+5μmの範囲とする必要がある。
尚、亀裂の長さ及び間隔は、工具を切断して被覆層の断
面を鏡面仕上げした後、光学顕微鏡で観察することによ
り測定し、複数の断面の観察から平均値を求める。又、
残留応力の値は前記のごとくX線回折により測定でき
る。
The average gap between the cracks of the first coating layer is 100 μm.
m or less and the average crack length in the layer thickness direction is -2 μm
It has been found that the tensile stress of about 0.4 to 0.5 GPa can be further released when the average crack length is exceeded, but when the average spacing between the cracks is less than 10 μm, the wear resistance decreases and the average crack length increases. When the layer thickness exceeds +5 μm (cracks extend into the base material), the fracture resistance decreases, so the cracks in the first coating layer have an average interval of 10 to 100 μm and an average length in the layer thickness direction- It is necessary to make the range from 2 μm to the layer thickness + 5 μm.
The lengths and intervals of the cracks are measured by observing with an optical microscope after cutting the tool to mirror-finish the cross section of the coating layer, and obtaining an average value from the observation of a plurality of cross sections. or,
The value of the residual stress can be measured by X-ray diffraction as described above.

【0014】上記のごとく亀裂を強制的に導入した第1
被覆層においても、亀裂の分布や長さに制限があるの
で、なお引張応力が残留している。従って、第1被覆層
のみでは刃先強度が向上したと言っても、まだ十分な耐
欠損性を得るには至らない。そこで、イオンスパッタリ
ング法等の公知の物理的蒸着法で形成した被覆層には圧
縮応力が残留することを利用して、上記引張応力の残留
する第1被覆層の上に物理的蒸着法により第2被覆層を
形成した結果0.9〜2.0GPa程度の圧縮応力が残留
することが確認でき、これにより切削における耐欠損性
を大幅に向上させることが出来たものである。
First forcibly introducing cracks as described above
Even in the coating layer, tensile stress still remains because the distribution and length of cracks are limited. Therefore, even if the strength of the cutting edge is improved only with the first coating layer, sufficient fracture resistance cannot be obtained yet. Therefore, by utilizing the fact that the compressive stress remains in the coating layer formed by a known physical vapor deposition method such as the ion sputtering method, a physical vapor deposition method is performed on the first coating layer in which the tensile stress remains. As a result of forming the two coating layers, it was confirmed that a compressive stress of about 0.9 to 2.0 GPa remained, whereby the fracture resistance in cutting could be greatly improved.

【0015】第1被覆層及び第2被覆層の層厚に関して
は、第1被覆層の層厚を2〜15μmの範囲に、及び第
2被覆層の層厚を1〜5μmの範囲に定めることが好ま
しい。この範囲以外ではそれぞれの被覆層に残留する引
張応力と圧縮応力の間に適度なバランスを保持すること
が難しくなり、又第1及び第2被覆層とも層厚が厚すぎ
ると耐欠損性の向上が得られないので、結果的にいずれ
の場合も被覆切削工具の耐摩耗性又は耐欠損性が低下す
る。
Regarding the layer thicknesses of the first coating layer and the second coating layer, the layer thickness of the first coating layer is set in the range of 2 to 15 μm, and the layer thickness of the second coating layer is set in the range of 1 to 5 μm. Is preferred. Outside this range, it becomes difficult to maintain an appropriate balance between the tensile stress and the compressive stress remaining in each coating layer, and if the first and second coating layers are too thick, the fracture resistance is improved. As a result, the wear resistance or fracture resistance of the coated cutting tool is reduced in any case.

【0016】[0016]

【実施例1】型番SDKN42MTの切削工具形状を有
するISO P30の超硬合金からなる母材を用意し、
その表面上に公知のCVD法で層厚2μmのTiCNと
層厚2μmのAl23をこの順序に被覆し、室温に戻す
ことにより自然に又はGC砥粒を用いたブラスト処理に
より強制的に下記表1に示す平均間隔と平均長さの亀裂
を発生させて、引張応力を一部解放した第1被覆層を形
成した。その後、本発明例の試料については第1被覆層
の上に表1に示す第2被覆層を公知のイオンプレーティ
ング法により形成した。尚、亀裂の間隔と長さは、後に
被覆層の断面を鏡面仕上げして光学顕微鏡で観察するこ
とにより測定し、複数の断面の測定から求めた平均値で
ある。
Example 1 A base material made of a cemented carbide of ISO P30 having a cutting tool shape of model number SDKN42MT was prepared,
The surface thereof was coated with TiCN having a layer thickness of 2 μm and Al 2 O 3 having a layer thickness of 2 μm in this order by a known CVD method, and was naturally returned by returning to room temperature or forcedly by a blast treatment using GC abrasive grains. Cracks having an average interval and an average length shown in Table 1 below were generated to form a first coating layer in which tensile stress was partly released. Then, for the samples of the examples of the present invention, the second coating layer shown in Table 1 was formed on the first coating layer by a known ion plating method. The intervals and lengths of the cracks are average values obtained by measuring a plurality of cross sections by measuring the cross section of the coating layer after mirror finishing and observing with an optical microscope.

【0017】得られた各被覆切削工具について、下記の
切削条件にて切削性能をそれぞれ評価し、結果を表1に
併せて示した。耐摩耗性 被 削 材: SCM435 切削速度: 270m/min. 送 り: 0.37mm/刃 切 込 み: 2.0mm 切削時間: 30min.耐欠損性 被 削 材: SCM435溝付き材(外周上等間隔に長
手方向の溝4本) 切削速度: 300m/min. 送 り: 0.41mm/刃 切 込 み: 2.0mm 切削時間: 8パス
The cutting performance of each of the obtained coated cutting tools was evaluated under the following cutting conditions, and the results are also shown in Table 1. Wear resistance Work material: SCM435 Cutting speed: 270 m / min. Feed: 0.37 mm / blade Cutting: 2.0 mm Cutting time: 30 min. Fracture resistance Work material: SCM435 grooved material (4 grooves in the longitudinal direction at equal intervals on the outer circumference) Cutting speed: 300 m / min. Feed: 0.41 mm / blade Cutting depth: 2.0 mm Cutting time: 8 passes

【0018】[0018]

【表1】 試料 亀 裂 の 亀裂平均 亀裂平均 第2被覆層 逃げ面摩 欠損率No 形 成 法 間隔(μm) 長さ(μm) (層厚μm) 耗量(mm) (%) 1 なし 400 層厚±0 なし 0.20 100 2 GCフ゛ラスト 100 層厚±0 なし 0.21 90 3* GCフ゛ラスト 100 層厚±0 TiN(2) 0.195 40 (注)試料1及び2は比較例であり、試料3は本発明例
である。
[Table 1] Sample crack average crack average crack average second coating layer flank wear defect rate No formation method interval (μm) length (μm) (layer thickness μm) wear amount (mm) (%) 1 none 400 Layer thickness ± 0 None 0.20 100 2 GC blast 100 Layer thickness ± 0 None 0.21 90 3 * GC blast 100 Layer thickness ± 0 TiN (2) 0.195 40 (Note) Samples 1 and 2 are comparative examples, sample 3 is this It is an example of the invention.

【0019】第1被覆層をCVD法により形成したまま
の試料1、及びその第1被覆層に強制的に亀裂を形成
(平均間隔と平均長さは本発明の範囲内)したが第2被
覆層を有しない試料2に比べ、本発明例の試料3は優れ
た耐逃げ面摩耗性を維持すると同時に、耐欠損性が大幅
に改善向上していることが分かる。
Sample 1 in which the first coating layer was still formed by the CVD method and cracks were forcibly formed in the first coating layer (the average interval and the average length are within the scope of the present invention), but the second coating was used. It can be seen that, in comparison with the sample 2 having no layer, the sample 3 of the present invention maintains excellent flank wear resistance, and at the same time, the fracture resistance is greatly improved.

【0020】[0020]

【実施例2】型番CNMG432の切削工具形状を有す
るISO P10の超硬合金からなる母材を用意し、そ
の表面上に公知のCVD法により硬質セラミックを被覆
した後、室温に戻すことにより自然に又はブラスト処
理、バレル処理、若しくは焼込れにより強制的に亀裂を
発生させて、下記表2に示す引張応力を一部解放した第
1被覆層を形成した。その後、試料4及び5を除いて第
1被覆層の上に表2に示す第2被覆層を公知のイオンプ
レーティング法により形成した。尚、亀裂の間隔と長さ
は、後に被覆層の断面を鏡面仕上げして光学顕微鏡で観
察することにより測定し、複数の断面の測定から求めた
平均値である。
Example 2 A base material made of a cemented carbide of ISO P10 having a cutting tool shape of model number CNMG432 was prepared, a surface of the base material was coated with a hard ceramic by a known CVD method, and then naturally returned to room temperature. Alternatively, a blasting treatment, a barreling treatment, or a burning treatment was used to forcibly generate cracks to form the first coating layer in which the tensile stress shown in Table 2 below was partially released. Then, the second coating layer shown in Table 2 was formed on the first coating layer except for the samples 4 and 5 by a known ion plating method. The intervals and lengths of the cracks are average values obtained by measuring a plurality of cross sections by measuring the cross section of the coating layer after mirror finishing and observing with an optical microscope.

【0021】[0021]

【表2】 試料 第 1 被 覆 層 亀 裂 の 亀裂間隔 亀裂平均 第2被覆層No (層厚μm) 形 成 法 平均(μm) 長さ(μm) (層厚μm) 4 TiCN(10)/Al2O3(5) なし 400 層厚±0 なし 5 TiCN(10)/Al2O3(5) GCフ゛ラスト 100 層厚±0 なし 6 TiCN(10)/Al2O3(5) Al2O3フ゛ラスト 8 層厚+5 TiCN(2)/TiC(3) 7 TiCN(10)/Al2O3(5) GCフ゛ラスト 110 層厚−2 TiN(2)/TiCN(3) 8 TiCN(10)/Al2O3(5) 焼込れ 80 層厚+6 TiCN(2)/TiC(3) 9 TiCN(10)/Al2O3(5) Al2O3フ゛ラスト 50 層厚−3 TiCN(2)/TiC(3) 10 TiCN(1.0) GCフ゛ラスト 50 層厚±0 TiCN(2)/TiC(3) 11 TiC(14)/Al2O3(2) GCフ゛ラスト 50 層厚±0 TiCN(2)/TiC(3) 12* TiC(10)/Al2O3(5) GCフ゛ラスト 100 層厚±0 TiCN(2)/TiC(3) 13* TiCN(10)/Al2O3(5) GCハ゛レル 100 層厚−2 TiCN(2)/TiC(3) 14* TiCN(1)/Al2O3(1) Feフ゛ラスト 10 層厚+5 TiCN(2)/TiC(3) 15* TiCN(1)/Al2O3(1) 焼込れ 100 層厚+5 TiCN(2)/TiC(3) 16 TiCN(10)/Al2O3(5) Al2O3フ゛ラスト 100 層厚±0 TiAlN(0.5) 17* TiCN(10)/Al2O3(5) Al2O3フ゛ラスト 100 層厚±0 TiAlN(1) 18 TiCN(10)/Al2O3(5) Al2O3フ゛ラスト 100 層厚±0 TiAlN(6) (注)試料中の4〜11、16、18は比較例であり、
12〜15、17が本発明例である。
[Table 2] Sample 1st coating layer Crack spacing of cracks Crack average 2nd coating layer No (layer thickness μm) Forming method average (μm) Length (μm) (layer thickness μm) 4 TiCN (10) / Al 2 O 3 (5) None 400 Layer thickness ± 0 None 5 TiCN (10) / Al 2 O 3 (5) GC Blast 100 Layer thickness ± 0 None 6 TiCN (10) / Al 2 O 3 (5) Al 2 O 3 blast 8 layer thickness +5 TiCN (2) / TiC (3) 7 TiCN (10) / Al 2 O 3 (5) GC blast 110 layer thickness −2 TiN (2) / TiCN (3) 8 TiCN (10) / Al 2 O 3 (5) Tempered 80 layer thickness +6 TiCN (2) / TiC (3) 9 TiCN (10) / Al 2 O 3 (5) Al 2 O 3 blast 50 Layer thickness -3 TiCN (2 ) / TiC (3) 10 TiCN (1.0) GC blast 50 Layer thickness ± 0 TiCN (2) / TiC (3) 11 TiC (14) / Al 2 O 3 (2) GC blast 50 Layer thickness ± 0 TiCN (2 ) / TiC (3) 12 * TiC (10) / Al 2 O 3 (5) GC Blast 100 Layer thickness ± 0 TiCN (2) / TiC (3) 13 * TiCN (10) / Al 2 O 3 (5) GC barrel 100 Layer thickness −2 TiCN (2) / TiC (3) 14 * TiCN (1) / Al 2 O 3 (1) Fe Blast 10 layer thickness +5 TiCN (2) / TiC (3) 15 * TiCN (1 ) / Al 2 O 3 (1) Baked 100 layer thickness + 5 TiCN (2) / TiC (3) 16 TiCN (10) / Al 2 O 3 (5) Al 2 O 3 blast 100 Layer thickness ± 0 TiAlN (0.5) 17 * TiCN (10) / Al 2 O 3 (5 ) Al 2 O 3 blast 100 layer thickness ± 0 TiAlN (1) 18 TiCN (10) / Al 2 O 3 (5) Al 2 O 3 blast 100 layer thickness ± 0 TiAlN (6) (Note) 11, 16 and 18 are comparative examples,
12 to 15 and 17 are examples of the present invention.

【0022】得られた各被覆切削工具を用いて、下記の
切削条件にて切削性能をそれぞれ評価し、結果を表3に
示した。耐摩耗性 被 削 材: SCM415 切削速度: 250m/min. 送 り: 0.3mm/rev. 切 込 み: 1.5mm 切削時間: 20min.耐欠損性 被 削 材: SCM435溝付き材(外周上等間隔に長
手方向の溝4本) 切削速度: 100m/min. 送 り: 0.15〜0.25mm/rev. 切 込 み: 2.0mm 切削時間: 0.5min.
Using each of the obtained coated cutting tools, the cutting performance was evaluated under the following cutting conditions, and the results are shown in Table 3. Wear resistance Work material: SCM415 Cutting speed: 250 m / min. Sending: 0.3 mm / rev. Depth of cut: 1.5 mm Cutting time: 20 min. Fracture resistance Work material: SCM435 grooved material (4 grooves in the longitudinal direction at equal intervals on the outer circumference) Cutting speed: 100 m / min. Sending: 0.15-0.25 mm / rev. Depth of cut: 2.0 mm Cutting time: 0.5 min.

【0023】[0023]

【表3】 (注)試料中の4〜11、16、18は比較例であり、
12〜15、17が本発明例である。
[Table 3] (Note) 4 to 11, 16 and 18 in the sample are comparative examples,
12 to 15 and 17 are examples of the present invention.

【0024】試料4及び5は引張応力を一部解放した第
1被覆層のみで、その上に第2被覆層を有しない従来と
同様の構成であるから、欠損率が極めて高いのに対し
て、本発明の試料12〜15、17は優れた耐逃げ面摩
耗性を保持しながら、同時に耐欠損性が大幅に向上して
いることが分かる。又、比較例の試料6〜9は引張応力
を一部解放した第1被覆層の上に第2被覆層を有する
が、第1被覆層の亀裂の平均間隔又は平均長さが本発明
の範囲外であるため、耐欠損性において本発明の試料1
2〜15、17よりも劣っている。試料10及び11と
試料12を比較すると、試料10と11は第1被覆層の
層厚が本発明の範囲外であるため試料10では耐摩耗性
が並びに試料11では耐欠損性が、試料12より劣って
いる。試料16及び18と試料17を比較すると、試料
16と18は第2被覆層の層厚が本発明の範囲外である
ためいずれも耐欠損性が試料17よりも劣っている。こ
れらの結果から、第1被覆層の層厚は2〜15μm及び
第2被覆層の層厚は1〜5μmの範囲が好ましいことが
分かる。
Samples 4 and 5 have the same structure as the conventional one in which only the first coating layer in which the tensile stress is partly released and the second coating layer is not formed thereon are used. It can be seen that Samples 12 to 15 and 17 of the present invention have excellent flank wear resistance, and at the same time, have significantly improved fracture resistance. Further, the samples 6 to 9 of the comparative example have the second coating layer on the first coating layer in which the tensile stress is partially released, but the average spacing or the average length of the cracks of the first coating layer is within the range of the present invention. Sample 1 of the present invention in the fracture resistance because it is outside
It is inferior to 2-15 and 17. Comparing Samples 10 and 11 with Sample 12, since Sample 10 and 11 have a layer thickness of the first coating layer outside the scope of the present invention, Sample 10 has wear resistance and Sample 11 has fracture resistance, and Sample 12 has Inferior. Comparing Samples 16 and 18 with Sample 17, both Samples 16 and 18 are inferior in fracture resistance to Sample 17 because the thickness of the second coating layer is outside the range of the present invention. From these results, it is understood that the thickness of the first coating layer is preferably in the range of 2 to 15 μm and the thickness of the second coating layer is in the range of 1 to 5 μm.

【0025】[0025]

【発明の効果】本発明によれば、切削工具母材の被覆層
として、化学的蒸着法により形成され、亀裂の導入によ
り引張応力を適度に解放した第1被覆層と、第1被覆層
の上に物理的蒸着法により形成された圧縮応力を残留し
た第2被覆層とを積層してあるので、母材への優れた密
着強度と被覆層全体での良好な残留応力のバランスとが
得られ、優れた耐摩耗性を有すると同時に耐欠損性を大
幅に向上させた被覆切削工具を提供することが出来る。
According to the present invention, as the coating layer of the cutting tool base material, a first coating layer formed by a chemical vapor deposition method and having a moderate release of tensile stress by the introduction of cracks, and a first coating layer Since the second coating layer formed by the physical vapor deposition method and having residual compressive stress is laminated thereon, excellent adhesion strength to the base material and good balance of residual stress in the entire coating layer can be obtained. Therefore, it is possible to provide a coated cutting tool having excellent wear resistance and greatly improved fracture resistance.

【0026】従って、本発明の被覆切削工具によれば、
従来は極めて刃先の欠損が多かったフライス加工や溝付
き材の旋削加工等の断続的荷重の負荷される切削加工に
おいても、耐欠損性の向上により遥かに長い工具寿命を
得ることが出来る。
Therefore, according to the coated cutting tool of the present invention,
Conventionally, even in a cutting process in which an intermittent load is applied, such as a milling process in which the cutting edge has many defects, a turning process of a grooved material, etc., a much longer tool life can be obtained by improving the fracture resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金、サーメット、又は窒化ケイ素
系、アルミナ系若しくはチタン化合物系の硬質セラミッ
クスからなる母材表面上に、硬質セラミックスの被覆層
を設けた被覆切削工具において、前記被覆層が、母材の
表面に設けられ、亀裂間隔の平均が10〜100μmで
層厚方向の亀裂長さの平均が層厚−2μmから層厚+5
μmの微細な亀裂を有し、周期律表の4A族金属の炭化
物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、ホウ窒
化物、ホウ炭窒化物、及びアルミナから選ばれた少なく
とも1種の単層又は複層からなり、引張応力が残留する
第1被覆層と、その上に設けられた周期律表の4A族金
属の炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化
物、及びアルミナ、窒化チタンアルミニウム、酸窒化チ
タンアルミニウムから選ばれた少なくとも1種の単層又
は複層からなり、圧縮応力の残留する第2被覆層とから
なることを特徴とする被覆切削工具。
1. A coated cutting tool in which a hard ceramic coating layer is provided on the surface of a base material made of cemented carbide, cermet, or silicon nitride-based, alumina-based, or titanium compound-based hard ceramics. Provided on the surface of the base material, the average of the crack intervals is 10 to 100 μm, and the average of the crack lengths in the layer thickness direction is from the layer thickness −2 μm to the layer thickness +5.
At least one selected from carbides, nitrides, carbonitrides, carbonates, carbonitrides, boronitrides, borocarbonitrides, and aluminas of Group 4A metals of the periodic table having microscopic cracks of μm. A first coating layer consisting of a single layer or multiple layers of seeds, in which tensile stress remains, and a carbide, nitride, carbonitride, carbonitride of Group 4A metal of the periodic table provided thereon And a second coating layer comprising at least one single layer or multiple layers selected from alumina, titanium aluminum nitride, and titanium aluminum oxynitride, and a second coating layer in which compressive stress remains.
【請求項2】 第1被覆層の層厚が2〜15μmであ
り、第2被覆層の層厚が1〜5μmであることを特徴と
する、請求項1記載の被覆切削工具。
2. The coated cutting tool according to claim 1, wherein the first coating layer has a layer thickness of 2 to 15 μm, and the second coating layer has a layer thickness of 1 to 5 μm.
【請求項3】 化学的蒸着法により超硬合金、サーメッ
ト、又は窒化ケイ素系、アルミナ系若しくはチタン化合
物系の硬質セラミックスからなる母材表面に、周期律表
の4A族金属の炭化物、窒化物、炭窒化物、炭酸化物、
炭酸窒化物、ホウ窒化物、ホウ炭窒化物、及びアルミナ
から選ばれた少なくとも1種を単層又は複層に被覆した
後、鉄粉あるいはアルミナ粉又はGC砥粒等のセラミッ
ク粒を用いたブラスト処理か又はバレル処理によるか、
又は焼込れによる熱衝撃を加えることにより、亀裂間隔
の平均が10〜100μm及び層厚方向の亀裂長さの平
均が層厚−2μmから層厚+5μmである微細な亀裂を
発生させ、得られた第1被覆層の上に物理的蒸着法によ
り周期律表の4A族金属の炭化物、窒化物、炭窒化物、
炭酸化物、炭酸窒化物、及びアルミナ、窒化チタンアル
ミニウム、酸窒化チタンアルミニウムから選ばれた少な
くとも1種の単層又は複層からなる第2被覆層を形成す
ることを特徴とする被覆切削工具の製造方法。
3. A carbide, a nitride of a Group 4A metal of the periodic table on a surface of a base material made of a cemented carbide, a cermet, or a silicon nitride-based, alumina-based or titanium compound-based hard ceramics by a chemical vapor deposition method. Carbonitride, carbonate,
A single layer or multiple layers of at least one selected from carbonitride, boronitride, borocarbonitride, and alumina, and then blasting using iron powder, alumina powder, or ceramic particles such as GC abrasive particles. By treatment or barrel treatment,
Alternatively, by applying a thermal shock due to quenching, fine cracks having an average crack interval of 10 to 100 μm and an average crack length in the layer thickness direction from the layer thickness −2 μm to the layer thickness +5 μm are generated and obtained. On the first coating layer, a carbide, a nitride, a carbonitride of a Group 4A metal of the periodic table is formed by a physical vapor deposition method,
Manufacture of a coated cutting tool characterized by forming a second coating layer composed of a single layer or multiple layers of at least one selected from carbonates, carbonitrides, alumina, titanium aluminum nitride and titanium aluminum oxynitride. Method.
【請求項4】 第1被覆層の層厚を2〜15μmとし、
及び第2被覆層の層厚を1〜5μmとすることを特徴と
する、請求項3記載の被覆切削工具の製造方法。
4. The layer thickness of the first coating layer is 2 to 15 μm,
The method for producing a coated cutting tool according to claim 3, wherein the layer thickness of the second coating layer is 1 to 5 µm.
JP35757091A 1991-12-26 1991-12-26 Cover cutting tool and its manufacture Pending JPH05177411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35757091A JPH05177411A (en) 1991-12-26 1991-12-26 Cover cutting tool and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35757091A JPH05177411A (en) 1991-12-26 1991-12-26 Cover cutting tool and its manufacture

Publications (1)

Publication Number Publication Date
JPH05177411A true JPH05177411A (en) 1993-07-20

Family

ID=18454802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35757091A Pending JPH05177411A (en) 1991-12-26 1991-12-26 Cover cutting tool and its manufacture

Country Status (1)

Country Link
JP (1) JPH05177411A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114641A (en) * 1992-09-29 1994-04-26 Toshiba Tungaloy Co Ltd Covered sintered alloy with excellent resistance against chipping
WO1999024198A1 (en) * 1997-11-06 1999-05-20 Sumitomo Electric Industries, Ltd. Coated tool of cemented carbide
WO2006046498A1 (en) * 2004-10-29 2006-05-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2006064724A1 (en) 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. Surface-covered cutting tool
JP2006192544A (en) * 2005-01-14 2006-07-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool and its manufacturing method
US7803464B2 (en) 2004-12-27 2010-09-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2011011235A (en) * 2009-07-02 2011-01-20 Sumitomo Electric Ind Ltd Covered rotary tool
JP2015188995A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abnormal damage resistance
JP5962862B2 (en) * 2013-08-21 2016-08-03 株式会社タンガロイ Coated cutting tool
WO2018123980A1 (en) * 2016-12-26 2018-07-05 京セラ株式会社 Cutting insert

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114641A (en) * 1992-09-29 1994-04-26 Toshiba Tungaloy Co Ltd Covered sintered alloy with excellent resistance against chipping
WO1999024198A1 (en) * 1997-11-06 1999-05-20 Sumitomo Electric Industries, Ltd. Coated tool of cemented carbide
US6187421B1 (en) 1997-11-06 2001-02-13 Sumitomo Electric Industries, Ltd. Coated tool of cemented carbide
WO2006046498A1 (en) * 2004-10-29 2006-05-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US8012611B2 (en) 2004-10-29 2011-09-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JPWO2006046498A1 (en) * 2004-10-29 2008-05-22 住友電工ハードメタル株式会社 Surface coated cutting tool
US7972714B2 (en) 2004-12-14 2011-07-05 Sumitomo Electric Hardmetal Corp. Coated cutting tool
WO2006064724A1 (en) 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. Surface-covered cutting tool
JPWO2006064724A1 (en) * 2004-12-14 2008-06-12 住友電工ハードメタル株式会社 Surface coated cutting tool
JP4739235B2 (en) * 2004-12-14 2011-08-03 住友電工ハードメタル株式会社 Surface coated cutting tool
US7803464B2 (en) 2004-12-27 2010-09-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP4739236B2 (en) * 2004-12-27 2011-08-03 住友電工ハードメタル株式会社 Surface coated cutting tool
JP2006192544A (en) * 2005-01-14 2006-07-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool and its manufacturing method
JP2011011235A (en) * 2009-07-02 2011-01-20 Sumitomo Electric Ind Ltd Covered rotary tool
JP5962862B2 (en) * 2013-08-21 2016-08-03 株式会社タンガロイ Coated cutting tool
JP2015188995A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abnormal damage resistance
WO2018123980A1 (en) * 2016-12-26 2018-07-05 京セラ株式会社 Cutting insert
CN110177642A (en) * 2016-12-26 2019-08-27 京瓷株式会社 Cutting tool
JPWO2018123980A1 (en) * 2016-12-26 2019-10-31 京セラ株式会社 Cutting insert

Similar Documents

Publication Publication Date Title
US7736733B2 (en) Coated cutting tool
US7794860B2 (en) Surface-coated high hardness material for tool
EP3067133B1 (en) Coated cutting tool
JP6521127B2 (en) Coated cutting tool
EP2074241B1 (en) Coated cutting tool
JPH08119774A (en) Combined material having high hardness for tool
CA2922827A1 (en) Coated cutting tool
CN108723400B (en) Coated cutting tool
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
JPH05177411A (en) Cover cutting tool and its manufacture
KR20100126357A (en) Oxide coated cutting insert
KR20100126356A (en) Oxide coated cutting insert
WO2015005364A1 (en) Coated cutting tool
JP2002096205A (en) Hard film covering tool
JP2020146820A (en) Cutting tool with hard coating layer exhibiting excellent chipping resistance
JPH04300104A (en) Surface-coated cutting tool
JP3424263B2 (en) Coated hard alloy members
JP3087503B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3360339B2 (en) Coated cutting tool
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JPS5928628B2 (en) Surface coated cemented carbide tools
JP3232778B2 (en) Coated cemented carbide member and method of manufacturing the same
JP7473069B1 (en) Coated Cutting Tools
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2006297584A (en) Surface coated tool and cutting tool