JP2002096205A - Hard film covering tool - Google Patents
Hard film covering toolInfo
- Publication number
- JP2002096205A JP2002096205A JP2000283574A JP2000283574A JP2002096205A JP 2002096205 A JP2002096205 A JP 2002096205A JP 2000283574 A JP2000283574 A JP 2000283574A JP 2000283574 A JP2000283574 A JP 2000283574A JP 2002096205 A JP2002096205 A JP 2002096205A
- Authority
- JP
- Japan
- Prior art keywords
- hard
- cutting
- film
- tool
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、金属材料等の切削
加工等に使用される被覆工具において、特に熱処理後の
高硬度鋼の高速切削、乾式切削に適用される硬質皮膜被
覆工具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated tool used for cutting metal materials and the like, and more particularly to a hard film coated tool applied to high speed cutting and dry cutting of high hardness steel after heat treatment. is there.
【0002】[0002]
【従来の技術】金属加工の高能率化を目的とした調質鋼
の直切削においては、特開昭62−56565号、特開
平2−194159号に代表されるTiAlN皮膜が開
発され切削工具に適用されている。TiAlN皮膜は、
TiN、TiCNに比べ耐酸化性が優れるため、刃先が
高温に達する調質鋼の切削においては、切削工具の性能
を著しく向上させるものである。2. Description of the Related Art In the direct cutting of tempered steel for the purpose of improving the efficiency of metal working, a TiAlN film typified by JP-A-62-56565 and JP-A-2-194159 has been developed and used as a cutting tool. Have been applied. TiAlN film is
Since the oxidation resistance is superior to TiN and TiCN, the performance of the cutting tool is remarkably improved in the cutting of tempered steel whose cutting edge reaches a high temperature.
【0003】しかしながら、近年では加工コストを低減
するために、従来熱処理前に荒加工を実施し、熱処理後
に仕上げ加工をするのが一般的であったものを、熱処理
後に全ての加工をする傾向が強くなってきている。そし
てさらにこれら熱処理後の高硬度材を切削加工の高能
率、高精度化のさせる為、切削速度の高速化及び、環境
問題及び加工コスト低減の観点から乾式での切削加工が
重要視される傾向にある。こうような切削環境下におい
ては、切粉は切削初期より赤熱化するため、皮膜の酸化
性のみならず、皮膜の高温硬度が非常に重要なものとな
る。つまり高温下での軟化が大きい皮膜では耐摩耗性が
著しく悪くなる結果となる。However, in recent years, in order to reduce the processing cost, it has been a general practice to perform rough processing before heat treatment and finish processing after heat treatment. It is getting stronger. Furthermore, in order to increase the efficiency and precision of cutting of these hardened materials after heat treatment, dry cutting is increasingly regarded as important from the viewpoint of high cutting speed, environmental issues and reduction of processing costs. It is in. In such a cutting environment, the chips become red-hot from the beginning of cutting, so that not only the oxidizing property of the film but also the high-temperature hardness of the film is very important. In other words, a film having a large degree of softening at a high temperature results in markedly deteriorated wear resistance.
【0004】このような問題を解決する為には未だ具体
的な提案はされていないのが現状であるが、比較的似た
事例としては特開平7−310171号公報にみられる
ようにTiAlN系皮膜に単純にSiを添加し、耐酸化
性を向上させる提案もなされているが、単純な添加では
皮膜の高温硬度の劣化が発生し耐摩耗性の点で十分に満
足される結果を得ていない。その他特開平10−176
259号公報に見られるようにTiAlN系に第3成分
を添加する提案もなされているが、高温硬度を改善する
には至っていないのが現状である。At present, no specific proposal has been made yet to solve such a problem. However, as a comparatively similar example, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-310171, a TiAlN-based Although it has been proposed to simply add Si to the film to improve oxidation resistance, simple addition results in deterioration of the high-temperature hardness of the film, resulting in satisfactory results in terms of wear resistance. Absent. Other JP-A-10-176
As disclosed in Japanese Patent No. 259, there is a proposal to add a third component to a TiAlN system, but at present it has not been improved in high-temperature hardness.
【0005】[0005]
【発明が解決しようとする課題】本発明はこうした事情
に鑑み、熱処理後の高硬度鋼切削加工の乾式化、高速化
に対応可能な、高温下においても皮膜硬度の劣化を抑制
させた物理蒸着硬質皮膜被覆工具を提供することを課題
とする。SUMMARY OF THE INVENTION In view of these circumstances, the present invention provides a physical vapor deposition capable of coping with the dry and high-speed cutting of high-hardness steel after heat treatment and suppressing the deterioration of film hardness even at high temperatures. It is an object to provide a hard film-coated tool.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、工具基
体にTi、Al、Siからなる金属元素と、B、C、
N、Oから選択される少なくとも1種以上の元素とから
構成される硬質層を1層以上被覆した硬質皮膜被覆工具
において、該硬質層にSiの窒化物相を介在させたこと
を特徴とする硬質皮膜被覆工具である。SUMMARY OF THE INVENTION The gist of the present invention is to provide a tool base comprising a metal element composed of Ti, Al, Si, B, C,
A hard-film-coated tool comprising at least one hard layer composed of at least one element selected from N and O, wherein a Si nitride phase is interposed in the hard layer. It is a hard film coated tool.
【0007】[0007]
【作用】本発明者らはTiAlN皮膜を例に、種々の添
加成分の効果を鋭意研究した結果Siの添加と被覆条件
の最適化により、高硬度材の乾式高速切削の寿命を大幅
に向上できる知見を得るに至った。Siの単純添加と異
なり、TiAlN皮膜内部にこれらSiの窒化物を極め
て微細に分散せしめ、TiAlN皮膜の室温硬度をビッ
カース硬度で2800から3500に著しく上昇させる
ことに成功した。すなわち、セラミック系の硬質皮膜を
分散強化せしめることが可能であるという驚くべき事実
とその方法を発見した。尚、高温下での硬度はほぼ室温
硬度に依存する傾向にある。The present inventors have conducted intensive studies on the effects of various additives using the example of a TiAlN film. As a result, by adding Si and optimizing the coating conditions, the life of dry high-speed cutting of a hard material can be greatly improved. I got the knowledge. Unlike the simple addition of Si, these Si nitrides were dispersed very finely inside the TiAlN film, and the room temperature hardness of the TiAlN film was significantly increased from 2800 to 3500 in Vickers hardness. That is, the present inventors have discovered the surprising fact that a ceramic hard coating can be dispersed and strengthened, and a method thereof. Incidentally, the hardness at high temperature tends to substantially depend on the room temperature hardness.
【0008】図1はTiAlSiターゲットを用い、基
体バイアス300V、反応圧0.5Pa300℃で被覆
された皮膜のESCA解析結果を示す。図1よりこの皮
膜からは、Si3N4の結合エネルギーから発生する回
折ピークが確認され、皮膜がTiAlN相とSi3N4
相より構成されていることが確認された。さらに透過電
子顕微鏡により詳細に観察すると、このSi窒化物層は
40nm程度のナノ結晶であり、fcc構造を有し柱状
に成長するTiAlN層内にナノ結晶が分散されたもの
であることを確認した。このナノ結晶が格子歪を発生し
分散強化機構により、TiAlNの硬度を大幅に上昇せ
しめたものと考えられる。この結果、Siの添加による
皮膜硬度の大幅向上を実現するに至った。さらに詳細を
鋭意調査した結果、切削中にSiが皮膜表面に内部拡散
しSiの酸化物を形成し、この酸化物が摩擦係数を低減
させ、切削温度の上昇を抑制させることも明らかになっ
た。FIG. 1 shows an ESCA analysis result of a film coated with a substrate bias of 300 V and a reaction pressure of 0.5 Pa at 300 ° C. using a TiAlSi target. From FIG. 1, a diffraction peak generated from the binding energy of Si 3 N 4 was confirmed from this film, and the film was composed of a TiAlN phase and Si 3 N 4
It was confirmed that it was composed of phases. Further observation by a transmission electron microscope showed that the Si nitride layer was a nanocrystal of about 40 nm, and that the nanocrystal was dispersed in a TiAlN layer having a fcc structure and growing in a columnar shape. . It is considered that the nanocrystals generated lattice strain and greatly increased the hardness of TiAlN by the dispersion strengthening mechanism. As a result, the hardness of the film was significantly improved by the addition of Si. Further detailed investigations have revealed that during cutting, Si diffuses internally into the film surface to form Si oxides, which reduce the coefficient of friction and suppress the rise in cutting temperature. .
【0009】しかしながら、この分散ナノ結晶は常に形
成されるものではない。その被覆条件が極めて重要な要
素となる。被覆時におけるイオンエネルギーが小さい場
合、例えば印可バイアス電圧が比較的低い50Vの場合
はSiはfcc構造におけるTiAlNの金属原子と置
換し固溶体であるTiAlSiNを形成し、硬度の上昇
は僅かしか確認されなかった。ナノ結晶で介在せしめる
ためには極めて高いイオンエネルギーで成膜する必要が
ある。被覆時の基体に印可するバイアスは250V以上
で被覆された場合にこのナノ結晶相が介在する結果とな
る。このように、被覆時のイオンエネルギーが結晶形態
を左右していることは明らかであるが、理由については
さらに研究が必要である。However, the dispersed nanocrystals are not always formed. The coating conditions are a very important factor. When the ion energy at the time of coating is small, for example, when the applied bias voltage is relatively low at 50 V, Si replaces the metal atoms of TiAlN in the fcc structure to form TiAlSiN which is a solid solution, and a slight increase in hardness is confirmed. Was. In order to intervene with nanocrystals, it is necessary to form a film with extremely high ion energy. The bias applied to the substrate during coating results in the inclusion of this nanocrystalline phase when coated at 250 V or higher. Thus, it is clear that the ion energy at the time of coating affects the crystal morphology, but further study is required for the reason.
【0010】また被覆温度に関しては450℃を越えた
温度で被覆するとSiは拡散エネルギーが高くなり、表
面で移動拡散しTiAlNに固溶し、TiAlSiNを
形成する。従って、バイアス電圧と被覆温度の最適化に
よりナノ結晶を介在せしめることが可能である。With respect to the coating temperature, if the coating is performed at a temperature exceeding 450 ° C., the diffusion energy of Si increases, and the Si migrates and diffuses on the surface to form a solid solution with TiAlN to form TiAlSiN. Therefore, it is possible to interpose nanocrystals by optimizing the bias voltage and the coating temperature.
【0011】硬度の上昇はSiの添加量にほぼ比例する
傾向にあった。硬度上昇に伴い、皮膜に残留する圧縮応
力が増大し、TiAlを主成分とする硬質層の密着性は
劣化する傾向にあるためSiの添加量はTiAlに対し
好ましくは50原子%以下に抑えたほうがより良いと考
えられる。The increase in hardness tended to be substantially proportional to the amount of Si added. As the hardness increases, the compressive stress remaining in the coating increases, and the adhesion of the hard layer mainly composed of TiAl tends to deteriorate. Therefore, the amount of Si added is preferably suppressed to 50 atomic% or less based on TiAl. It is considered better.
【0012】さらにTiAlを主成分とする硬質皮膜に
おいては、結晶成長の優先方位が切削性能に影響を及ぼ
す。X線回折における最強回折ピークが(200)であ
る場合は、皮膜硬度は軟らかいものの結晶が明瞭な柱状
結晶を呈し、耐クレーター摩耗性に優れる結果となる。
一方最強回折ピークが(111)の場合、皮膜は明瞭な
柱状結晶ではなくなり柱状結晶が分断されたブロック状
結晶を呈する。この場合個々のブロックが切削中に切粉
とともに脱落する傾向にあり、摩耗の進行が幾分速くな
るため、TiAl系皮膜は(200)に配向する方が、
より好ましい。配向は被覆条件に依存するが、被覆初期
に(200)配向となる核を最適条件において形成せし
めれば、それ以降の被覆条件は特に限定されるものでは
ない。それはこの核より皮膜がエピタキシャルに成長す
ることによる。Further, in a hard coating mainly composed of TiAl, the preferential orientation of crystal growth affects the cutting performance. When the strongest diffraction peak in X-ray diffraction is (200), although the film hardness is soft, the crystals exhibit clear columnar crystals, resulting in excellent crater wear resistance.
On the other hand, when the strongest diffraction peak is (111), the film does not become a clear columnar crystal but shows a block-like crystal in which the columnar crystal is divided. In this case, the individual blocks tend to fall off together with the chips during cutting, and the wear progresses somewhat faster. Therefore, it is better that the TiAl-based film is oriented to (200).
More preferred. Although the orientation depends on the coating conditions, the coating conditions after that are not particularly limited as long as nuclei having the (200) orientation are formed under optimum conditions in the initial stage of coating. This is because the film grows epitaxially from this nucleus.
【0013】Tiの一部を他成分で置換することにおい
て、TiAlを主成分とする硬質層の耐摩耗性もしくは
耐酸化性をさらに向上させることが可能である。4、
5、6族成分での置換はTiAl主成分硬質層の幾分の
硬度上昇させる傾向にあり、Yでの置換は本成分が粒界
に偏析し、粒界での酸素拡散を抑制し、結果耐酸化性を
改善せしめる傾向にある。置換量は30原子%を超える
と、結晶が柱状に成長しなくなり、皮膜の靭性が劣化す
るため、30原子%以下でなければならない。By substituting a part of Ti with another component, it is possible to further improve the wear resistance or oxidation resistance of the hard layer mainly composed of TiAl. 4,
Substitution with a group 5 or 6 component tends to increase the hardness of the TiAl main component hard layer to some extent. Substitution with Y causes this component to segregate at the grain boundaries and suppress oxygen diffusion at the grain boundaries. It tends to improve oxidation resistance. If the substitution amount exceeds 30 atomic%, the crystal does not grow in a columnar shape, and the toughness of the film deteriorates.
【0014】以上のごとく、高温下での皮膜硬度を大幅
に改善した結果、本発明による硬質皮膜被覆工具は、ミ
ーリング切削加工に使用される工具に対しても効果的で
あるが、さらに従来アルミナ皮膜を有するCVD被覆工
具が使用されていた旋盤加工分野へも適用が可能となっ
た。旋削加工は比較的連続切削であるため特に切削温度
が高くなる傾向にあり従来のPVD皮膜ではCVD皮膜
に対し満足される耐摩耗性を達成することができなかっ
た。本発明においても皮膜の膜厚が薄いとCVD皮膜に
対し耐クレーター摩耗性が劣る結果になるが、本発明皮
膜を6ミクロン以上被覆することにより、CVD皮膜と
同等以上の耐摩耗性を持たせることが可能であることを
確認した。さらに、工具の耐欠損性においては、本発明
はPVD法によるものであり、皮膜には圧縮の応力が残
留し、クラックの発生が少なく、皮膜に引っ張りの残留
応力が存在するCVD被覆工具に比べ10倍以上の圧倒
的に優れる耐欠損性を有する結果となった。As described above, as a result of significantly improving the film hardness at high temperatures, the hard film-coated tool according to the present invention is effective for tools used for milling cutting. It is also applicable to the lathe processing field where a CVD coated tool having a coating is used. Since the turning process is a relatively continuous cutting process, the cutting temperature tends to be particularly high, and the conventional PVD film cannot achieve satisfactory wear resistance with respect to the CVD film. Also in the present invention, when the film thickness is small, the crater abrasion resistance is inferior to the CVD film, but by coating the film of the present invention at least 6 microns, the abrasion resistance equal to or more than that of the CVD film is provided. Confirmed that it is possible. Further, with respect to the fracture resistance of the tool, the present invention is based on the PVD method, and the coating has a residual compressive stress in the coating, less cracks, and a CVD coated tool in which the coating has a tensile residual stress. The result was over 10 times the overwhelmingly excellent fracture resistance.
【0015】さらに本発明のPVD被覆工具を旋削に適
用する場合、基体である超硬インサートの表面が研磨さ
れていると、研磨によるミクロクラックがインサート表
面に内在している場合があり、PVD皮膜の場合時とし
てこのミクロクラックが起点となり皮膜剥離が発生して
しまうことがある。従って表面がダイヤモンド砥石によ
り研磨されていない、ISO分類におけるCNMG、D
NMG、VNMG、SNMG、TNMGタイプのインサ
ートを用いると、より皮膜密着性に優れ、長寿命を実現
することが可能である。When the PVD-coated tool of the present invention is applied to turning, if the surface of the cemented carbide insert as a substrate is polished, micro-cracks due to polishing may be present inside the insert surface, and the PVD coating may be formed. In some cases, the microcracks serve as starting points to cause film peeling. Therefore, the surface is not polished with a diamond grindstone.
The use of NMG, VNMG, SNMG, and TNMG type inserts enables more excellent film adhesion and longer life.
【0016】本発明の硬質皮膜被覆工具は、その被覆方
法については、特に限定されるものではないが、被覆母
材への熱影響、工具の疲労強度、皮膜の密着性等を考慮
した場合、アーク放電方式イオンプレーティング物理蒸
着法であることが望ましい。The method of coating the hard film-coated tool of the present invention is not particularly limited, but in consideration of the thermal effect on the coated base material, the fatigue strength of the tool, the adhesion of the film, etc. It is desirable to use an arc discharge type ion plating physical vapor deposition method.
【0017】[0017]
【実施例】以下本発明を実施例に基づいて説明する。 (実施例1)アークイオンプレーティング装置を用い、
金属成分の蒸発源である各種合金製ターゲット、ならび
に反応ガスである窒素ガス、酸素ガス、メタンガスから
目的の皮膜が得られるものを選択し、被覆基体温度35
0℃、反応ガス圧力1.0Pa、基体印可バイアス電圧
280Vの条件下にて、被覆基体である外径10mmの
超硬合金製6枚刃エンドミル、ミーリング用インサート
に各種の表1に示すA層を被覆した。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. (Example 1) Using an arc ion plating apparatus,
A target made of various alloys, which is a source of evaporation of metal components, and a target gas obtained from a reaction gas of nitrogen gas, oxygen gas, or methane gas are selected.
Under the conditions of 0 ° C., a reaction gas pressure of 1.0 Pa, and a substrate application bias voltage of 280 V, the A-layer shown in Table 1 on a 6-blade end mill made of cemented carbide having a diameter of 10 mm, which is a coated substrate, and a milling insert. Was coated.
【0018】[0018]
【表1】 [Table 1]
【0019】またB層は被覆温度450℃、基体印可バ
イアス70V、反応ガス圧1.0Paにおいて被覆し本
発明例を作成した。比較例においてはA層、B層欄に便
宜上記載したTiAl系及びそれ以外の皮膜も本発明例
におけるB層と同一条件で被覆した。皮膜の総厚さは4
μmとした。SiはTiAlターゲットに必要量添加す
ることにより皮膜に含有させた。尚、エンドミルに使用
した超硬合金はCo7wt%、WC平均粒径0.9ミク
ロンの微粒超硬合金である。インサートに使用した超硬
合金はJIS−P20グレード超硬合金である。硬質皮
膜の膜厚は総厚3.5μに統一した。The layer B was coated at a coating temperature of 450 ° C., a substrate application bias of 70 V, and a reaction gas pressure of 1.0 Pa to prepare an example of the present invention. In the comparative example, the TiAl-based and other films described for convenience in the A layer and B layer columns were also coated under the same conditions as the B layer in the present invention. The total thickness of the film is 4
μm. Si was added to the film by adding a necessary amount to the TiAl target. The cemented carbide used for the end mill is a fine-grained cemented carbide having 7 wt% Co and an average WC particle size of 0.9 μm. The cemented carbide used for the insert is JIS-P20 grade cemented carbide. The thickness of the hard coating was unified to a total thickness of 3.5 μm.
【0020】得られた硬質皮膜被覆エンドミルを用い切
削試験を行った。工具寿命は本切削条件下ではクレータ
ー摩耗もしくはアブレッシブ摩耗の進行が支配する。こ
れらにより工具が切削不能となった時の切削長とした。
切削諸元を次に示す。A cutting test was performed using the obtained hard film-coated end mill. The tool life is governed by the progress of crater wear or abrasive wear under these cutting conditions. The cutting length when the tool could not be cut was set as the cutting length.
The cutting specifications are shown below.
【0021】6枚刃超硬エンドミルの切削条件は、側面
切削ダウンカット、被削材SKD11(硬さHRC6
5)、切り込みAd10mm×Rd0.1mm、切削速
度200m/min、送り0.03mm/刃、エアーブ
ロー使用、とした。切削不能になった時を寿命と判定
し、その結果を表1に併記する。The cutting conditions of the 6-flute carbide end mill are side cutting down cut, work material SKD11 (hardness HRC6).
5), incision Ad10 mm × Rd0.1 mm, cutting speed 200 m / min, feed 0.03 mm / blade, and use of air blow. The time when cutting became impossible was determined as the life, and the results are also shown in Table 1.
【0022】インサート切削条件は、工具形状SEE4
2TN、巾100mm×長さ250mmの面取り加工、
被削材SKD61(硬さHRC45)、切り込み1.5
mm、切削速度350m/min、送り0.25mm/
刃、乾式切削とした。この場合も切削温度は高温となり
皮膜の摩耗が工具寿命を支配し摩耗の進行からチップは
欠損するかもしくは切削温度が上昇し熱クラックが発生
しこれにより欠損するかいずれかである。欠損に至る切
削長を表1に併記する。The insert cutting conditions are as follows: Tool shape SEE4
2TN, 100mm width x 250mm length chamfering,
Work material SKD61 (hardness HRC45), cut 1.5
mm, cutting speed 350m / min, feed 0.25mm /
Blade, dry cutting. In this case as well, the cutting temperature becomes high, and the wear of the coating governs the tool life and the chip is broken due to the progress of the wear, or the cutting temperature rises and a thermal crack is generated and thereby broken. Table 1 also shows the cutting length leading to chipping.
【0023】表1より明らかなように、本発明例は著し
い寿命改善が認められる。これらは比較例が全て、短寿
命であったことより、耐アブレッシブ摩耗性、耐クレー
ター摩耗性の改善によるところが大きいことが確認され
た。本発明例1〜5は各種組成においてナノ結晶を介在
させた単層皮膜の例、5はその中で結晶配向を(11
1)とした例である。若干(200)配向に比べ切削寿
命は低下する傾向にあった。本発明例6、7はナノ結晶
を介在させた層とTiAlN系皮膜の多層の例であり、
多層にすることにより若干の切削寿命の向上が認められ
た。本発明例9〜11は窒素をメインとしB、C、Oガ
ス等を用いて前記各成分を添加した事例でここでも若干
の切削寿命の向上が確認された。比較例12〜15は周
知な皮膜の例、比較例16〜19は周知な多層の例、2
0、21はSiを含有するものの、被覆条件が異なり、
ナノ結晶が介在していなく、固溶体のTiAlSiN皮
膜の例である。いずれにおいても、切削寿命は満足のい
くものではない。As is evident from Table 1, the example of the present invention shows a remarkable improvement in life. Since all of the comparative examples had short lifespans, it was confirmed that these were largely due to improvements in abrasive wear resistance and crater wear resistance. Examples 1 to 5 of the present invention are examples of a single layer film in which nanocrystals are interposed in various compositions.
This is an example of 1). The cutting life tended to be slightly shorter than the (200) orientation. Examples 6 and 7 of the present invention are examples of a multilayer of a layer having nanocrystals and a TiAlN-based film,
A slight improvement in the cutting life was observed with the multilayer structure. In Examples 9 to 11 of the present invention, nitrogen was used as a main component, and the respective components were added using B, C, O gas and the like. Comparative Examples 12 to 15 are examples of known coatings, Comparative Examples 16 to 19 are examples of known multilayers,
0 and 21 contain Si, but the coating conditions are different,
It is an example of a solid solution TiAlSiN coating with no intervening nanocrystals. In any case, the cutting life is not satisfactory.
【0024】(実施例2)TiAlSi金属ターゲット
のTiの一部を他成分で置換したターゲットを用い実施
例1と同一条件にて本発明例を作成した。実施例1と同
一切削評価を実施し、その結果を表2に併記する。(Example 2) An example of the present invention was prepared under the same conditions as in Example 1 by using a target in which part of Ti of a TiAlSi metal target was replaced with another component. The same cutting evaluation as in Example 1 was performed, and the results are also shown in Table 2.
【0025】[0025]
【表2】 [Table 2]
【0026】表2の結果から明らかなように、TiAl
Si系硬質皮膜に第4の成分を添加することにより、よ
り一層の寿命向上が可能である。本発明例はいづれもT
iAlSiN系に第4成分を添加したものでナノ結晶を
構成するSi量は5at%に統一したものの事例であ
る。Si量は5at%以外においても実施例1と同様な
傾向を示すものである。As is clear from the results in Table 2, TiAl
The life can be further improved by adding the fourth component to the Si-based hard coating. In each of the examples of the present invention, T
This is an example of the case where the amount of Si constituting the nanocrystal is made to be 5 at% by adding the fourth component to the iAlSiN system. Even when the Si content is other than 5 at%, the same tendency as in Example 1 is exhibited.
【0027】(実施例3)次に、超硬インサートにJI
S−M20グレード相当を用い、インサートは型押しC
NMG432タイプ(表3中、型押しと表示。)と、砥
石によりRブレーカーを施した同様の形状(表3中、R
加工と表示。)とを用いた。これらに、実施例1及び2
で示したものと同一の方法により被覆し、本発明例34
〜47、比較例48〜53を製作した。また、比較例と
して周知なCVD法(化学蒸着法)によりTiCl4、
AlCl3、CO2、H2、N2ガスを使用し、800
℃〜1000℃の反応温度により比較例54〜57を作
成した。各試料において旋盤加工により切削性能の評価
を実施した。切削条件を以下に示す。(Embodiment 3) Next, JI
Using S-M20 grade equivalent, insert is embossed C
NMG432 type (shown as embossing in Table 3) and similar shape (R in Table 3
Processing and display. ) And were used. Examples 1 and 2
Example 34 of the present invention
To 47 and Comparative Examples 48 to 53 were produced. As a comparative example, TiCl 4 ,
Using AlCl 3 , CO 2 , H 2 , N 2 gas, 800
Comparative Examples 54 to 57 were prepared at a reaction temperature of from 1000C to 1000C. The cutting performance of each sample was evaluated by lathing. The cutting conditions are shown below.
【0028】耐摩耗性評価は被削材としてS53C(H
B220)を用い、切削条件は切削速度200m/mi
n、切りこみ2mm、一刃あたりの送り0.3mm/r
ev、乾式とした。本切削条件下では、切削が長手連続
切削であり、切削温度が上昇し、クレーター摩耗で寿命
となり欠損が発生する。欠損までの切削時間を表3に併
記する。耐欠損性は4つ溝を有するS53Cを用い、切
削条件は100m/min、切りこみ2mm、一刃あた
りの送り0.4mm/revで、欠損するまでの衝撃回
数により評価した。欠損は皮膜に切削での繰り返し衝撃
が作用する結果、皮膜に微細クラックが多発し、このク
ラックの母材への伝播により発生した。結果を表3に併
記する。The wear resistance was evaluated using S53C (H
B220), and the cutting conditions were a cutting speed of 200 m / mi.
n, notch 2mm, feed 0.3mm / r per blade
ev, dry type. Under these cutting conditions, the cutting is continuous cutting in the longitudinal direction, the cutting temperature rises, and the crater wears out and the life ends, causing chipping. Table 3 also shows the cutting time until chipping. The fracture resistance was evaluated using S53C having four grooves, cutting conditions were 100 m / min, cutting depth 2 mm, feed per blade 0.4 mm / rev, and the number of impacts before fracture. As a result of the repeated impact of cutting on the coating, fine cracks frequently occurred in the coating, and the cracks were generated by the propagation of the cracks to the base material. The results are also shown in Table 3.
【0029】[0029]
【表3】 [Table 3]
【0030】PVD比較例に対し本発明例は、切削時の
クレーター摩耗が進行する速度が遅く、総合して工具寿
命が著しく向上する結果となった。本発明例はいずれに
おいても旋削の長手連続切削加工での寿命が、CVD被
覆と同等以上であるに加え、耐欠損性が圧倒的に優れる
ものである。従って、本発明は旋削加工における、高速
切削や乾式高速切削加工に特に顕著な効果を示すもので
ある。また、ナノ結晶が介在しなく軟らかい皮膜と多層
化することにより、耐欠損性が向上する傾向が確認され
た。比較例48〜50は周知のPVD被覆であり、膜厚
が薄く連続切削での寿命が極端に短い。比較例51、5
2は膜厚を10μに設定したものであるが、クレーター
摩耗進行がはやく短寿命である。比較例53はSiを添
加したものであるが、ナノ結晶が介在されるものではな
く、満足のいく寿命は達成されていない。また比較例5
4〜57の周知なCVD皮膜においては、耐クレーター
摩耗に優れるため比較的連続切削における寿命はあるも
のの、皮膜に引っ張り応力が残留するために、耐欠損性
が著しく劣る結果である。In contrast to the PVD comparative example, the example of the present invention has a lower rate of progress of crater wear during cutting, resulting in a remarkable overall improvement in tool life. In each of the examples of the present invention, the life in the longitudinal continuous cutting of the turning is not less than that of the CVD coating, and the fracture resistance is overwhelmingly excellent. Therefore, the present invention has a particularly remarkable effect on high-speed cutting and dry high-speed cutting in turning. In addition, it was confirmed that a multilayer having a soft coating without intervening nanocrystals had a tendency to improve fracture resistance. Comparative Examples 48 to 50 are well-known PVD coatings, and have a very small thickness and an extremely short life in continuous cutting. Comparative Examples 51 and 5
In No. 2, the film thickness was set to 10 μm, but the crater wear progressed quickly and the life was short. In Comparative Example 53, Si was added, but no nanocrystal was interposed, and a satisfactory life was not achieved. Comparative Example 5
The known CVD coatings Nos. 4 to 57 have a relatively long life in continuous cutting because of their excellent crater wear resistance, but the result is that the tensile stress remains in the coating, so that the fracture resistance is extremely poor.
【0031】(実施例4)表4に示す各種皮膜を実施例
1と同一条件で試作した。皮膜の厚さは硬度測定に際し
下地の影響をさけるため、10μとした。700℃Ar
雰囲気下でスクラッチテストを実施し、スクラッチ荷重
50N時の圧痕キズの深さを測定した。結果を表4に併
記する。Example 4 Various coatings shown in Table 4 were prototyped under the same conditions as in Example 1. The thickness of the film was set to 10 μm in order to avoid the influence of the substrate when measuring the hardness. 700 ° C Ar
A scratch test was performed in an atmosphere, and the depth of the indentation scratch when the scratch load was 50 N was measured. The results are also shown in Table 4.
【0032】[0032]
【表4】 [Table 4]
【0033】直接高温硬度を測定をすることは現状では
装置上の問題があり、技術的に不可能であるが、表4よ
り、スクラッチテストにおける高温下でのキズの深さは
皮膜の高温高度と相関を有するものと考えられる。本発
明例58〜63のキズの深さは、100〜130ミクロ
ンで有るのに対し、比較例68、69のナノ結晶の介在
しないTiAlSiN皮膜はキズの深さが850、79
0ミクロンと深く入り、本発明皮膜は極めて高温硬度に
優れることが示唆される結果である。また、周知な皮膜
である比較例64〜67ではより深くキズついている。At present, it is technically impossible to directly measure the high-temperature hardness because of a problem in the apparatus, but from Table 4, the scratch depth at high temperature in the scratch test indicates the high-temperature altitude of the film. It is considered to have a correlation with The depths of the scratches of the inventive examples 58 to 63 are 100 to 130 μm, whereas the TiAlSiN coatings without the nanocrystals of the comparative examples 68 and 69 have the depths of 850 and 79.
As a result, the coating of the present invention is extremely excellent in high-temperature hardness. Further, in Comparative Examples 64 to 67, which are well-known films, the film is more deeply scratched.
【0034】[0034]
【発明の効果】以上の如く、本発明の硬質皮膜被覆工具
は、従来のPVD被覆工具に比べ皮膜硬度が大幅に高
く、皮膜の耐クレータ、アブレッシブ摩耗性に優れ、高
硬度鋼の乾式高速切削加工において格段に長い工具寿命
が得られ、切削加工における生産性の向上、コスト低
減、環境改善に極めて有効である。As described above, the hard-coated tool of the present invention has a significantly higher coating hardness than conventional PVD-coated tools, has excellent crater resistance and abrasive wear resistance, and is capable of dry high-speed cutting of high-hardness steel. A remarkably long tool life is obtained in machining, and it is extremely effective in improving productivity, reducing costs, and improving the environment in cutting.
【図1】図1は本発明例の硬質層のESCA解析結果の
一例を示す図である。FIG. 1 is a view showing an example of an ESCA analysis result of a hard layer according to an embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF02 FF10 FF11 FF13 FF17 FF19 FF25 4K029 BA43 BA44 BA46 BA48 BA53 BA55 BA56 BA58 BA59 BA60 BA64 BB07 BD05 CA04 DD06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3C046 FF02 FF10 FF11 FF13 FF17 FF19 FF25 4K029 BA43 BA44 BA46 BA48 BA53 BA55 BA56 BA58 BA59 BA60 BA64 BB07 BD05 CA04 DD06
Claims (4)
元素と、B、C、N、Oから選択される少なくとも1種
以上の元素とから構成される硬質層を1層以上被覆した
硬質皮膜被覆工具において、該硬質層にSiの窒化物相
を介在させたことを特徴とする硬質皮膜被覆工具。1. A hard material in which a tool base is coated with at least one hard layer composed of a metal element composed of Ti, Al, and Si and at least one element selected from B, C, N, and O. A hard-coated tool, characterized in that a Si nitride phase is interposed in the hard layer.
て、該硬質皮膜層のX腺回折における最強ピーク面指数
が(200)であることを特徴とする硬質皮膜被覆工
具。2. The hard-coated tool according to claim 1, wherein the hard coating layer has a strongest peak plane index in X-ray diffraction of (200).
おいて、該硬質皮膜層のTiの一部を30原子%以下の
範囲でTiを除く周期律表の4、5、6族元素、Yのう
ちの一種以上の元素で置換したことを特徴とする硬質皮
膜被覆工具。3. The hard-coated tool according to claim 1 or 2, wherein a part of Ti in the hard-coated layer is an element belonging to Group 4, 5, or 6 of the periodic table, excluding Ti within a range of 30 atomic% or less. A hard film-coated tool, wherein the tool is substituted with one or more elements of Y.
膜被覆工具において、該工具基体が旋削用インサートで
あり、皮膜の総厚さがすくい面において6μm以上であ
ることを特徴とする硬質皮膜被覆工具4. A hard-coated tool according to claim 1, wherein the tool base is a turning insert, and the total thickness of the coating is at least 6 μm on the rake face. Coating tool
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000283574A JP3404012B2 (en) | 2000-09-19 | 2000-09-19 | Hard coating tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000283574A JP3404012B2 (en) | 2000-09-19 | 2000-09-19 | Hard coating tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002096205A true JP2002096205A (en) | 2002-04-02 |
JP3404012B2 JP3404012B2 (en) | 2003-05-06 |
Family
ID=18767916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000283574A Expired - Lifetime JP3404012B2 (en) | 2000-09-19 | 2000-09-19 | Hard coating tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3404012B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001503A (en) * | 2001-06-20 | 2003-01-08 | Mmc Kobelco Tool Kk | Cemented carbide-made cutting tool with surface clad exerting excellent chipping resistivity in high velocity cutting processing |
JP2006255793A (en) * | 2005-03-15 | 2006-09-28 | Hitachi Tool Engineering Ltd | End mill for cutting heat-resisting alloy |
JP2007056290A (en) * | 2005-08-23 | 2007-03-08 | Hitachi Tool Engineering Ltd | Hard film |
JP2011504808A (en) * | 2007-11-16 | 2011-02-17 | ベーレリト ゲーエムベーハー ウント コー. カーゲー. | Friction stir welding tool |
JP2012139694A (en) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | Coated rotating tool |
KR20150076468A (en) * | 2013-12-26 | 2015-07-07 | 재단법인 포항산업과학연구원 | Nitride coating layer and the method thereof |
JP2015136752A (en) * | 2014-01-22 | 2015-07-30 | 三菱マテリアル株式会社 | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance |
WO2018123042A1 (en) | 2016-12-28 | 2018-07-05 | 住友電気工業株式会社 | Coating film |
KR20180123703A (en) | 2016-04-19 | 2018-11-19 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Surface-coated cutting tool |
US10689748B2 (en) | 2015-07-15 | 2020-06-23 | Sumitomo Electric Industries, Ltd. | Coating |
WO2023277077A1 (en) * | 2021-06-30 | 2023-01-05 | 住友電工ハードメタル株式会社 | Cutting tool |
-
2000
- 2000-09-19 JP JP2000283574A patent/JP3404012B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001503A (en) * | 2001-06-20 | 2003-01-08 | Mmc Kobelco Tool Kk | Cemented carbide-made cutting tool with surface clad exerting excellent chipping resistivity in high velocity cutting processing |
JP2006255793A (en) * | 2005-03-15 | 2006-09-28 | Hitachi Tool Engineering Ltd | End mill for cutting heat-resisting alloy |
JP2007056290A (en) * | 2005-08-23 | 2007-03-08 | Hitachi Tool Engineering Ltd | Hard film |
JP2011504808A (en) * | 2007-11-16 | 2011-02-17 | ベーレリト ゲーエムベーハー ウント コー. カーゲー. | Friction stir welding tool |
JP2012139694A (en) * | 2010-12-28 | 2012-07-26 | Sumitomo Electric Ind Ltd | Coated rotating tool |
KR20150076468A (en) * | 2013-12-26 | 2015-07-07 | 재단법인 포항산업과학연구원 | Nitride coating layer and the method thereof |
KR101637945B1 (en) | 2013-12-26 | 2016-07-11 | 재단법인 포항산업과학연구원 | Nitride coating layer and the method thereof |
JP2015136752A (en) * | 2014-01-22 | 2015-07-30 | 三菱マテリアル株式会社 | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance |
US10689748B2 (en) | 2015-07-15 | 2020-06-23 | Sumitomo Electric Industries, Ltd. | Coating |
US11167357B2 (en) | 2016-04-19 | 2021-11-09 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool |
KR20180123703A (en) | 2016-04-19 | 2018-11-19 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Surface-coated cutting tool |
KR20190099394A (en) | 2016-12-28 | 2019-08-27 | 스미토모덴키고교가부시키가이샤 | film |
WO2018123042A1 (en) | 2016-12-28 | 2018-07-05 | 住友電気工業株式会社 | Coating film |
US11408065B2 (en) | 2016-12-28 | 2022-08-09 | Sumitomo Electric Industries, Ltd. | Coating |
WO2023277077A1 (en) * | 2021-06-30 | 2023-01-05 | 住友電工ハードメタル株式会社 | Cutting tool |
WO2023276066A1 (en) * | 2021-06-30 | 2023-01-05 | 住友電工ハードメタル株式会社 | Cutting tool |
JPWO2023277077A1 (en) * | 2021-06-30 | 2023-01-05 | ||
JP7355293B2 (en) | 2021-06-30 | 2023-10-03 | 住友電工ハードメタル株式会社 | Cutting tools |
EP4365330A4 (en) * | 2021-06-30 | 2024-05-08 | Sumitomo Electric Hardmetal Corp. | Cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP3404012B2 (en) | 2003-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3598074B2 (en) | Hard coating tool | |
JP6687390B2 (en) | Tool with TiAlCrSiN coating by PVD | |
JP5866650B2 (en) | Surface coated cutting tool | |
CN100418679C (en) | Composite coatings for finishing of hardened steels | |
KR102033188B1 (en) | Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance | |
US8137795B2 (en) | Indexable insert | |
TWI537405B (en) | Cutting tool | |
JP6386457B2 (en) | TiAlN coated tool | |
JP4783153B2 (en) | Replaceable cutting edge | |
JP5715570B2 (en) | Coated tool | |
JP3781374B2 (en) | Hard film coated tool and manufacturing method thereof | |
JP3392115B2 (en) | Hard coating tool | |
KR101713884B1 (en) | Coated cutting tool | |
JP6519057B2 (en) | Method of manufacturing surface coated cutting tool | |
JPH09323205A (en) | Multilayer coated hard tool | |
KR20130025381A (en) | Surface-coated cutting tool | |
WO2014129273A1 (en) | Surface-coated cutting tool and process for producing same | |
JP3404012B2 (en) | Hard coating tool | |
CN109475945B (en) | Coated cutting tool | |
KR20130019378A (en) | Surface-coated cutting tool | |
KR20100126357A (en) | Oxide coated cutting insert | |
JP3586216B2 (en) | Hard coating tool | |
JP2004130514A (en) | Hard film coated tool and its manufacturing method | |
JPH10310878A (en) | Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance | |
KR102629997B1 (en) | Cutting insert having hard film with excellent wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3404012 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080229 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |