JPH05129604A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH05129604A
JPH05129604A JP28528491A JP28528491A JPH05129604A JP H05129604 A JPH05129604 A JP H05129604A JP 28528491 A JP28528491 A JP 28528491A JP 28528491 A JP28528491 A JP 28528491A JP H05129604 A JPH05129604 A JP H05129604A
Authority
JP
Japan
Prior art keywords
effect transistor
parallel
field effect
gate
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28528491A
Other languages
Japanese (ja)
Inventor
Yasunobu Saito
泰伸 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28528491A priority Critical patent/JPH05129604A/en
Publication of JPH05129604A publication Critical patent/JPH05129604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make temperature distribution uniform and to improve reliability by providing an active layer region which is divided and formed with at least one band-like nonconductive region between parallel to a unit field effect transistor which is provided in parallel. CONSTITUTION:A plurality of gate electrodes 102 are provided in parallel on an element region of a field effect transistor. A plurality of source electrodes 103 and a plurality of drain electrodes 104 are arranged in parallel between the gate electrodes 102 alternately parallel with the gate electrode 102. An active layer region is divided and formed in 101a and 101b with a nonconductive region 109 between which is positioned at a central part of a gate electrode by selective ion implantation and mesa separation. Since drain current does not flow in the nonconductive region 109 which divides the active layer, heat is not generated in the center of a gate electric field. Thereby, burn-out and electromigration can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界効果トランジスタに
係り、特に高信頼で高出力動作に好適な電界効果トラン
ジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and more particularly to a field effect transistor which is highly reliable and suitable for high output operation.

【0002】[0002]

【従来の技術】一般に単位電界効果トランジスタを複数
個並列配置してなる電界効果トランジスタでは、ゲー
ト、ソース、およびドレインの各電極をくし型に配置す
る構造が採用される。
2. Description of the Related Art In general, a field effect transistor having a plurality of unit field effect transistors arranged in parallel employs a structure in which gate, source, and drain electrodes are arranged in a comb shape.

【0003】以下、従来の電界効果トランジスタについ
て図3を参照して説明する。図3は、ゲート、ソース、
ドレインの各電極がくし型に配置された電界効果トラン
ジスタを示すもので、(a)は構成の要部を透視して示
す平面図、(b)は(a)のAA線に沿う断面図であ
る。図において、例えばイオン注入法により選択的に形
成したn型の導電性を持つ能動層301(図中の施斜線
部)上に、所定間隔で並べたゲート電極302を複数個
配置するとともに、これら複数のゲート電極302間に
ソース電極303およびドレイン電極304が各々交互
に配置されている。そして各々のゲート電極302はバ
ス配線308によりゲート引き出し電極305と接続さ
れ、同じ様にドレイン電極304およびソース電極30
3は各々引き出し電極306,307に集められ、接続
されている。
A conventional field effect transistor will be described below with reference to FIG. 3 shows the gate, the source,
3A and 3B show a field effect transistor in which each electrode of a drain is arranged in a comb shape, FIG. 3A is a plan view showing a main part of the structure in a see-through manner, and FIG. .. In the figure, for example, a plurality of gate electrodes 302 arranged at predetermined intervals are arranged on an active layer 301 (hatched portion in the figure) having n-type conductivity selectively formed by an ion implantation method, and Source electrodes 303 and drain electrodes 304 are alternately arranged between the plurality of gate electrodes 302. Each gate electrode 302 is connected to the gate extraction electrode 305 by the bus wiring 308, and similarly, the drain electrode 304 and the source electrode 30 are connected.
3 are collected and connected to the extraction electrodes 306 and 307, respectively.

【0004】[0004]

【発明が解決しようとする課題】一般に電界効果トラン
ジスタは、ドレイン及びゲート電極に電圧を印加し、ド
レイン電流を流した状態では、ドレイン電流による発熱
とトランジスタ表面及び裏面より放散される熱との関係
で、トランジスタ表面の熱分布が決まる。図4には電界
効果トランジスタの1つの単位を取り出した平面図を示
し、ゲート電極に平行な方向の温度分布を併せ示してい
る。この図から明らかなように、ゲート電極202の中
央部近傍が高温になる。このような温度分布が生じる
と、高温部、即ち図4でゲート電極202の中央部で
は、他の比較的温度の低い部分に比べてバーンアウトや
エレクトロ・マイグレーション(Electro Mi
gration)が加速されやすく、またこの温度分布
に対応して電気特性も分布を持つため、不均一動作に起
因するバーンアウトも起こりやすくなる。
Generally, in a field effect transistor, in a state in which a voltage is applied to the drain and gate electrodes and a drain current is applied, the relationship between the heat generated by the drain current and the heat dissipated from the front and back surfaces of the transistor. Determines the heat distribution on the transistor surface. FIG. 4 shows a plan view in which one unit of the field effect transistor is taken out, and also shows the temperature distribution in the direction parallel to the gate electrode. As is clear from this figure, the temperature near the center of the gate electrode 202 becomes high. When such a temperature distribution occurs, burnout or electromigration (Electro Mi) is higher in the high temperature portion, that is, in the central portion of the gate electrode 202 in FIG.
(gration) is likely to be accelerated and the electrical characteristics have a distribution corresponding to this temperature distribution, so that burnout due to non-uniform operation is likely to occur.

【0005】本発明は上記従来の欠点を改良し、ゲート
電極方向中央部の発熱を押さえることで温度分布を均一
にし、高い信頼性をもった電界効果トランジスタを提供
することを目的とする。
It is an object of the present invention to provide a field-effect transistor with improved reliability by improving the above-mentioned conventional drawbacks and suppressing the heat generation in the central portion in the gate electrode direction to make the temperature distribution uniform.

【0006】[0006]

【課題を解決するための手段】本発明に係る電界効果ト
ランジスタは、ゲート、ソース、ドレインの各電極から
なる単位電界効果トランジスタを並設してなる電界効果
トランジスタにおいて、単位電界効果トランジスタの並
設方向に平行で、かつ少なくとも一つの帯状の非導電領
域を挟んで分割形成された能動層領域を具備したことを
特徴とする。
A field effect transistor according to the present invention is a field effect transistor in which unit field effect transistors composed of gate, source and drain electrodes are arranged in parallel. It is characterized in that it is provided with active layer regions parallel to the direction and divided and formed with at least one strip-shaped non-conductive region interposed therebetween.

【0007】[0007]

【作用】本発明による電界効果トランジスタは、単位電
界効果トランジスタの並設方向に平行な、少なくとも一
つの帯状の非導電領域を挟んで能動層領域が少くとも二
つに分割形成されている。能動層を分け隔てている非導
電領域にはドレイン電流が流れないため、発熱が起こら
ない。このため、非導電領域を従来構造の電界効果トラ
ンジスタ中で、動作時に高温になる部分に位置させるこ
とで、この部分での発熱を無くし、温度分布のピーク温
度を下げ、分布を平坦にすることができる。このため高
温部が局所的に生じる熱暴走によるバーンアウトやエレ
クトロ・マイグレーションを抑制でき、また温度分布に
対応して電気特性が分布を持つことによる不均一動作に
起因するバーンアウトも抑制することができる。
In the field-effect transistor according to the present invention, the active layer region is divided into at least two regions with at least one strip-shaped non-conductive region parallel to the juxtaposed direction of the unit field-effect transistors. No heat is generated because no drain current flows in the non-conductive regions that separate the active layer. Therefore, by placing the non-conductive region in the part of the field-effect transistor of the conventional structure where the temperature becomes high during operation, heat generation in this part is eliminated, the peak temperature of the temperature distribution is lowered, and the distribution is made flat. You can Therefore, it is possible to suppress burnout and electromigration due to thermal runaway locally generated in the high temperature portion, and also to suppress burnout due to uneven operation due to the distribution of electric characteristics corresponding to the temperature distribution. it can.

【0008】[0008]

【実施例】以下、本発明の一実施例にかかる電界効果ト
ランジスタについて図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A field effect transistor according to an embodiment of the present invention will be described below with reference to the drawings.

【0009】図1に本発明の一実施例の電界効果トラン
ジスタについて、電極と能動層部分の平面構成を説明す
るため透視して示す平面図(図1(a))、および
(a)におけるAA線に沿う断面図(図1(b))を示
す。図示の如く、電界効果トランジスタの素子領域上に
は、複数のゲート電極102を並列配置し、このゲート
電極102間には各々複数本のソース電極103および
ドレイン電極104を前記ゲート電極102と平行かつ
交互に並列配置している。そして、前記ゲート電極には
ゲート引き出し電極105を、またドレイン電極104
にはドレイン引き出し電極106を、ソース電極103
にはソース引き出し電極107を夫々接続している。
FIG. 1 is a plan view (FIG. 1 (a)) and an AA in FIG. 1 (a) showing a perspective view of a field effect transistor according to an embodiment of the present invention for explaining a planar structure of an electrode and an active layer portion. The cross-sectional view (FIG.1 (b)) along a line is shown. As shown in the figure, a plurality of gate electrodes 102 are arranged in parallel on the element region of the field effect transistor, and a plurality of source electrodes 103 and drain electrodes 104 are arranged between the gate electrodes 102 in parallel with the gate electrodes 102. They are arranged in parallel alternately. The gate electrode 105 and the drain electrode 104 are provided on the gate electrode.
Drain electrode 106 and source electrode 103
A source extraction electrode 107 is connected to each of these.

【0010】能動層領域(図1(a)の施斜線部)は、
選択イオン注入やメサ分離により101aと101bに
ゲート電極中央部に位置する非導電領域109をはさん
で分割形成されている。
The active layer region (the hatched portion in FIG. 1A) is
By the selective ion implantation or the mesa separation, the non-conductive region 109 located in the central portion of the gate electrode is divided and formed in 101a and 101b.

【0011】図示の電界効果トランジスタにおいては、
ドレイン電流はゲート電極中央部の非導電領域109を
流れない。このためゲート電極中央部の発熱がなくな
り、図2に示すような従来のゲート電極中央部をピーク
とした温度分布において中央部よりの発熱が抑制される
ためにピーク温度が低下し、かつ温度分布が平坦にな
る。
In the illustrated field effect transistor,
The drain current does not flow through the non-conductive region 109 at the center of the gate electrode. For this reason, heat generation in the central portion of the gate electrode is eliminated, and in the conventional temperature distribution having a peak in the central portion of the gate electrode as shown in FIG. 2, heat generation from the central portion is suppressed, so that the peak temperature decreases and the temperature distribution Becomes flat.

【0012】このようにして高温部の存在によるバーン
アウトやエレクトロ・マイグレーションを抑制でき、ま
た温度分布に対応した不均一動作に起因するバーンアウ
トも抑制することができる。
In this way, burnout and electromigration due to the presence of the high temperature portion can be suppressed, and burnout due to nonuniform operation corresponding to the temperature distribution can be suppressed.

【0013】なお、上記実施例では能動層は二つに分割
したが、動作時の温度分布の状況によっては三つ以上に
分割しても良く、また分割位置も上記実施例に限られな
いのはいうまでもない。
Although the active layer is divided into two in the above embodiment, it may be divided into three or more depending on the temperature distribution during operation, and the division position is not limited to that in the above embodiment. Needless to say.

【0014】[0014]

【発明の効果】以上説明したように本発明によれば、従
来の電界効果トランジスタでは避けることが困難であっ
た、ゲート電極中央部にピーク温度を持つような温度分
布を平坦にできる上、ピーク温度を低下させることがで
きる。このため、動作時の温度上昇に起因するバーンア
ウトやエレクトロ・マイグレーションを抑制することが
でき、また温度分布に対応した不均一動作に起因するバ
ーンアウトも抑制することができる。このため、本発明
によれば信頼性に優れた電界効果トランジスタを提供で
きる。
As described above, according to the present invention, a temperature distribution having a peak temperature in the central portion of the gate electrode, which is difficult to avoid in the conventional field effect transistor, can be flattened and the peak can be obtained. The temperature can be lowered. Therefore, burnout and electromigration due to temperature rise during operation can be suppressed, and burnout due to nonuniform operation corresponding to temperature distribution can be suppressed. Therefore, according to the present invention, a highly reliable field effect transistor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例の電界効果トランジ
スタを透視して示す平面図、(b)は(a)のAA線に
沿う断面図、
1A is a plan view showing a field effect transistor according to an embodiment of the present invention as seen through, FIG. 1B is a cross-sectional view taken along line AA of FIG.

【図2】本発明の電界効果トランジスタについてそのゲ
ート電極に平行な方向の温度分布を示す図、
FIG. 2 is a diagram showing a temperature distribution in a direction parallel to a gate electrode of a field effect transistor of the present invention,

【図3】(a)は従来例の電界効果トランジスタを透視
して示す平面図、(b)は(a)のAA線に沿う断面
図、
3A is a plan view showing a conventional field effect transistor as seen through, FIG. 3B is a sectional view taken along line AA of FIG.

【図4】従来例の電界効果トランジスタについてそのゲ
ート電極に平行な方向の温度分布を示す図、
FIG. 4 is a diagram showing a temperature distribution in a direction parallel to a gate electrode of a conventional field effect transistor,

【符号の説明】[Explanation of symbols]

101a,101b 能動層 102,202,302 ゲート電極 103,203,303 ソース電極 104,204,304 ドレイン電極 105,305 ゲート引き出し電極 106,306 ドレイン引き出し電極 107,307 ソース引き出し電極 108 バス配線 109 非導電領域 101a, 101b Active layer 102, 202, 302 Gate electrode 103, 203, 303 Source electrode 104, 204, 304 Drain electrode 105, 305 Gate extraction electrode 106, 306 Drain extraction electrode 107, 307 Source extraction electrode 108 Bus wiring 109 Non-conductive region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲート、ソース、ドレインの各電極から
なる単位電界効果トランジスタを並設してなる電界効果
トランジスタにおいて、単位電界効果トランジスタの並
設方向に平行な少なくとも一つの帯状の非導電領域を挟
んで分割形成された能動層領域を具備したことを特徴と
する電界効果トランジスタ。
1. A field-effect transistor comprising unit field-effect transistors composed of gate, source and drain electrodes arranged in parallel, wherein at least one strip-shaped non-conductive region parallel to a direction in which the unit field-effect transistors are arranged side by side. A field effect transistor characterized by comprising an active layer region divided and formed so as to sandwich it.
JP28528491A 1991-10-31 1991-10-31 Field effect transistor Pending JPH05129604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28528491A JPH05129604A (en) 1991-10-31 1991-10-31 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28528491A JPH05129604A (en) 1991-10-31 1991-10-31 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH05129604A true JPH05129604A (en) 1993-05-25

Family

ID=17689524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28528491A Pending JPH05129604A (en) 1991-10-31 1991-10-31 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH05129604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892435A1 (en) * 1997-07-14 1999-01-20 STMicroelectronics S.r.l. Integrated semiconductor transistor with current sensing
KR100898474B1 (en) * 2007-08-29 2009-05-21 주식회사 동부하이텍 Semiconductor device
CN102651365A (en) * 2011-02-25 2012-08-29 晶豪科技股份有限公司 Integrated circuit structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892435A1 (en) * 1997-07-14 1999-01-20 STMicroelectronics S.r.l. Integrated semiconductor transistor with current sensing
US6140680A (en) * 1997-07-14 2000-10-31 Thomson Microelectronics, S.R.L. Integrated power semiconductor transistor with current sensing
KR100898474B1 (en) * 2007-08-29 2009-05-21 주식회사 동부하이텍 Semiconductor device
CN102651365A (en) * 2011-02-25 2012-08-29 晶豪科技股份有限公司 Integrated circuit structure

Similar Documents

Publication Publication Date Title
US4532534A (en) MOSFET with perimeter channel
JP3382172B2 (en) Horizontal insulated gate bipolar transistor
GB2166290A (en) Vdmos device
JP2001028425A (en) Semiconductor device and manufacture thereof
JPH0758782B2 (en) Semiconductor device
JP4230681B2 (en) High voltage semiconductor device
JP4002319B2 (en) Insulated gate bipolar transistor
JPH05129604A (en) Field effect transistor
JPH049378B2 (en)
JP2906576B2 (en) Semiconductor device
JP4857458B2 (en) High voltage semiconductor device
JPS6220713B2 (en)
JPH09223703A (en) Field effect transistor
JP2000208765A (en) Insulated gate semiconductor device
JPH08130317A (en) Semiconductor device provided with resistive field plate
JP5114839B2 (en) Field effect transistor
JP3301271B2 (en) Horizontal power MOSFET
JPH0327534A (en) Junction-type field effect transistor
JP4078895B2 (en) Semiconductor device
JP2772215B2 (en) Static induction semiconductor device
JPS6327865B2 (en)
JPS631757B2 (en)
JPH0611052B2 (en) Transistor
JP2515017B2 (en) Thyristor
JPS6142952A (en) Semiconductor device