JP4078895B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4078895B2
JP4078895B2 JP2002184675A JP2002184675A JP4078895B2 JP 4078895 B2 JP4078895 B2 JP 4078895B2 JP 2002184675 A JP2002184675 A JP 2002184675A JP 2002184675 A JP2002184675 A JP 2002184675A JP 4078895 B2 JP4078895 B2 JP 4078895B2
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
region
conductivity type
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184675A
Other languages
Japanese (ja)
Other versions
JP2004031575A (en
Inventor
功 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002184675A priority Critical patent/JP4078895B2/en
Publication of JP2004031575A publication Critical patent/JP2004031575A/en
Application granted granted Critical
Publication of JP4078895B2 publication Critical patent/JP4078895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力変換装置などに搭載される半導体装置に関する。
【0002】
【従来の技術】
電流容量が大きいパワー半導体装置では、半導体基板の表面と裏面に主電極を配置し、主電流を半導体基板に対して縦方向に流す縦型半導体装置が主流である。
図6は、半導体装置の要部平面図である。この半導体チップ200はIGBTチップであり、チップ周辺部には耐圧構造201、その内側には活性領域202が形成される。この活性領域202には、エミッタ電極やゲートパッドなどが形成される。
【0003】
縦型半導体装置では、半導体装置の阻止耐圧を確保するために、主電流が流れる活性領域の周囲に耐圧構造配置している。この耐圧構造は、フィールドリミティングリングやフィールドプレートなどが代表的であり、半導体基板の表面に形成される。
一方、横型半導体装置の耐圧構造は、シングルリサーフおよびダブルリサーフなどの構造が多用されている。
【0004】
このダブルリサーフにすると、横型半導体装置のドリフト層(ベース層)の濃度設計の自由度を広げることが可能であり、前記のフィールドリミッティングリングやフィールドプレートに比べて、耐圧構造の占める面積を低減できる。
図7は、耐圧構造201としてフィールドリミティングリングを適用した縦型のIGBTで、図6のX−X線で切断した要部断面図である。
【0005】
図中の1はn形のドリフト層、2はp形のウエル領域、5はn形のエミッタ領域、6は絶縁膜(ゲート電極下はゲート絶縁膜)、8はゲート電極、10は絶縁膜、11はエミッタ電極、13はn形のバッファ層、14はp形のコレクタ層、15はコレクタ電極、61はフローティングリング、62はp形もしくはn形のストッパ領域、9、63は導電膜である。便宜的に最外周に配置されるウエル領域2の中央部より外側を耐圧構造201と内側を活性領域202とする。
【0006】
図8は、縦型IGBTの耐圧構造201として、横型半導体装置に多用されているリサーフ構造を適用したものである。ここではダブルリサーフ構造を例として挙げた。耐圧構造201としてダブルリサーフ構造を採用すると、フィールドリミティング構造に比べて、製造プロセスにおいて、イオン注入時の濃度の制御が必要となるものの、耐圧構造に要する面積を縮小することができる。
【0007】
図8において、図7と同じ構成については同じ符号を付して説明は省略する。3は第1領域、10は絶縁膜である。
図7、図8の耐圧構造は、半導体装置がオフ状態のときに、活性領域を構成するウエル領域2から広がる空乏層を、半導体チップ200の外周方向へ(活性領域202から遠ざける方向)延ばすことで、ウエル領域2の近傍で電界集中を緩和する。
【0008】
【発明が解決しようとする課題】
しかし、耐圧構造201が占める領域(耐圧構造領域)は、半導体装置がオフ状態の場合には、阻止耐圧を確保するために有効な領域であるが、半導体装置がオン状態の場合は、この耐圧構造領域には主電流が流れないために、無用な領域となる。
【0009】
このため、電流容量が小さい(半導体チップが小さい)縦型半導体装置ほど、素子面積(活性領域の面積+耐圧構造領域の面積でほぼ半導体チップ200の面積となる)に占める耐圧構造領域の面積の割合が大きくなり、その結果、活性領域の面積の割合は小さくなる。そのため、主電流通電領域の面積が減少して、オン電圧は大きくなる。
【0010】
この発明の目的は、前記の課題を解決して、主電流通電領域を増大し、オン電圧の低減を図ることができる半導体装置を提供することにある。
【0011】
【課題を解決するための手段】
前記の目的を達成するために、絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に形成される第1導電形の第5半導体領域と、前記最外周に配置された第2半導体領域の表面層に形成される第4半導体領域と前記第5半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と前記第5半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極と、前記第5半導体領域上に形成され、第2主電極と接続するための第2副電極とを具備することを特徴とする半導体装置。
【0012】
(請求項2) 絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と分離し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に形成される第1導電形の第5半導体領域と、最外周に配置された前記第2半導体領域と対向して前記第3半導体領域の表面層に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第5半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極と、前記第5半導体領域上に形成され、第2主電極と接続するための第2副電極とを具備する構成とする。
【0013】
また、絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に形成される第1導電形の第5半導体領域と、前記最外周に配置された第2半導体領域の表面層に形成される第4半導体領域と前記第5半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と前記第5半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極と、前記第5半導体領域上に形成され、第2主電極と接続するための第2副電極とを具備し、前記第2副電極と接続し、前記第5半導体領域の表面層に形成される第2導電形の第7半導体領域を有するとよい。
また、前記第5半導体領域上に絶縁膜を介して前記第1主電極と前記第2副電極が対向して形成されるとよい。
また、絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第8半導体領域と、最外周に配置された前記第2半導体領域の表面層に形成された第4半導体領域と前記第8半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第8半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第8半導体領域を、互いの半導体領域の表面層に交互に形成される第1導電形の環状の第9半導体領域と第2導電形の環状の第10半導体領域とで構成し、最上段に形成される第9半導体領域上に形成され、前記第2主電極と接続する第2副電極を有する構成とする。
【0014】
また、絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と分離し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第8半導体領域と、最外周に配置された前記第2半導体領域に対向して前記第3半導体領域の表面層に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第8半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第8半導体領域を、互いの半導体領域の表面層に交互に形成される第1導電形の環状の第9半導体領域と第2導電形の環状の第10半導体領域とで構成し、露出した第9半導体領域上に形成され、前記第2主電極と接続する第2副電極を有する構成とする。
【0015】
また、絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第11半導体領域と、最外周に配置された前記第2半導体領域の表面層に形成される第4半導体領域と前記11半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第11半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第11半導体領域を、前記第3半導体領域の環状の長手方向に、互いに接して環状の長手方向に交互に形成される第1導電形の第12半導体領域と第2導電形の第13半導体領域とから形成し、前記第12半導体領域上に形成され、前記第2主電極と接続する第2副電極を有する構成とする。
【0016】
また、絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と分離し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第11半導体領域と、最外周に配置される前記第2半導体領域に対向して前記第3半導体領域の表面層に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主電極と、前記11半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第11半導体領域を、前記第3半導体領域の環状の長手方向に、互いに接して環状の長手方向に交互に形成される第1導電形の第12半導体領域と第2導電形の第13半導体領域とから形成し、前記第12半導体領域上に形成され、前記第2主電極と接続する第2副電極を有する構成とする。
【0017】
また、前記第11半導体領域上に絶縁膜を介して前記第1主電極と前記第2副電極が対向して形成されるとよい。
【0018】
【0019】
【発明の実施の形態】
図1は、この発明の第1実施例の半導体装置の構成図で、同図(a)は要部平面図、同図(b)は要部断面図である。要部平面図は、図1(b)の最上層から半導体基板面までの層が分かるように描いた。また、図8と同一箇所には同一の符号を記した。
【0020】
縦型半導体装置は、耐圧クラス600VのIGBTで耐圧構造がダブルリサーフであり、この耐圧構造に、MOSFETを形成した場合である。また、この半導体装置は、半導体チップの大きさが2.5mm□で電流容量は5Aの場合である。厚さが500μm、比抵抗約60Ωcmのn形の半導体基板100を用いた。半導体基板100の一方の主面の表面層に、複数個のp形のウエル領域2を形成し、このウエル領域2の表面層にn形のエミッタ領域5を形成する。エミッタ領域5と半導体基板100(ドリフト層1)に挟まれたウエル領域2上に絶縁膜6(ゲート絶縁膜)を介してゲート電極8を形成する。エミッタ領域5とウエル領域2に接するようにエミッタ電極11を形成する。
【0021】
基板裏面には後述するようにバッファ層13、コレクタ層14、コレクタ電極15を形成して、IGBTセル部を構成する。尚、活性領域202内に形成する縦型半導体装置セルは、プレーナゲート構造のIGBTセルに限るものではない。例えば、ウエル領域2内にトレンチを形成し、トレンチ内に絶縁膜を介してゲート電極を形成したトレンチゲート構造のIGBTセルでもよい。また基板裏面の構造を変更して縦型のMOSFETセルを構成してもよい。また、図中の9は導電膜であり、削除しても構わない。
【0022】
つぎに、耐圧構造について説明する。耐圧構造201は、半導体基板100の外周部にp形の第1領域を形成し、第1領域の表面層にn形の第2領域4を形成し、ダブルリサーフを構成する。図1は、活性領域202の最外側のウエル領域2と第1領域3が接している場合を示したものである。
第1領域3内の第2領域とは離れた位置にn形のエミッタ領域51を形成し、第2領域4とエミッタ領域51とに挟まれた第1領域3上に絶縁膜(ゲート絶縁膜)を介してゲート電極81を形成する。エミッタ領域51並びにゲート電極81は縦型のIGBTセルのエミッタ領域5並びにゲート電極8にそれぞれ接続される。図1に示すように、第1領域3がウエル領域2と接している場合、エミッタ領域51を第1領域内の活性領域202寄りに設けると、共通のエミッタ電極11で一括して配線することができる。また、ゲート電極8とゲート電極81との接続も容易である。
【0023】
第2領域4の外周部に補助コレクタ12を形成し、エミッタ電極11と補助コレクタ電極12は第2領域上に形成した絶縁膜10を介して対向して張り出して形成される。
第1領域3とウエル領域2は通常は、不純物濃度および拡散深さが異なるが、同一条件で形成しても構わない。
【0024】
前記のダブルリサーフを形成するためのイオン種と注入量(ドーズ量)を説明する。第1領域は、イオン種はボロンで、注入量は約6.0×1012cm-2である。第2領域は、イオン種はリンで、注入量は約4.8×1012cm-2である。耐圧構造の幅は約100μmである。深さ方向の拡散プロファイルは図2に示す。
【0025】
このような諸元のダブルリサーフにすると、耐圧構造内に形成したMOSFETのドリフト領域の抵抗率は約0.2Ωcm2 (不純物濃度は約2.0×1016cm-3)と極めて小さな値となる。この値は、通常の600VMOSFETのドリフト領域の抵抗率60Ωcm(不純物濃度は約7.8×1013cm-3)の約1/300となる。
【0026】
前記の500μm厚さの半導体基板100を100μm厚程度まで研削した後、半導体基板100の他方の主面(研削した面)の表面層にn形のバッファ層13を形成し、このバッファ層13の表面層にコレクタ層14を形成し、このコレクタ層14上にコレクタ電極15を形成する。
前記のようにして形成した半導体チップ200の裏面側のコレクタ電極15を図示しない回路パターン付き絶縁基板にはんだで固着し、このコレクタ電極15が固着された回路パターンと補助コレクタ電極12をアルミニウムワイヤでボンディング接続する。また、表面電極パッド(エミッタ電極パッドやゲート電極パッド)と図示しない外部導出端子をアルミニウムワイヤでボンディング接続する。
【0027】
図1(b)に点線で囲んで示すように、耐圧構造内に横型のMOSFETを形成することで、IGBTのオン時に、主電流がIGBTセル部(活性領域)以外にこの横型のMOSFETを介しても流れるために、主電流通電面積を増大できて、オン電圧を低減することができる。
また、IGBTでは0.6Vのえん層電圧を超えるまでは、主電流が殆ど流れないが、この半導体装置では、横型のMOSFETを介して0Vから主電流が流れるために、通常のIGBTに比べてオン特性が向上する。
【0028】
また、主電流が増大し、IGBTのオン電圧が大きくなると、コレクタ層14、バッファ層13、ドリフト層1、第1領域3、第2領域4で構成されるpnpnのサイリスタ部(図1(b)に一点鎖線で示す)にも主電流が伝導度変調状態して流れるようになり、さらにオン電圧は低下する。
以上説明した実施例では、絶縁ゲート構造を有する縦型半導体装置の活性領域の外周に形成される耐圧構造に横型の絶縁ゲート構造を有する素子を形成し、両者のゲート端子同士を接続し、エミッタ端子同士、コレクタ端子同士をそれぞれ接続している。かかる構成により主電流通電領域を増大し、オン電圧の低減を図っている。
【0029】
上記の構成の他に、各端子同士を接続するのではなく個別に引き出してもよい。各素子のゲートしきい値電圧が異なる場合など、各素子にそれぞれ異なる電圧の供給が可能となる。
また、各素子へのゲート信号を同相とすれば、上述のようにオン電圧を低減することができるし、個々にゲート信号を供給すれば両者を独立して駆動することもできる。
【0030】
図3は、この発明の第2実施例の半導体装置の構成図で、同図(a)は要部平面図、同図(b)は要部断面図である。要部平面図は、最上層から半導体基板面までの層が分かるように描いた。
図1との違いは、(a)の平面図に示すように、エミッタ領域5から補助コレクタ電極12方向長手とするn形領域21とp形領域22をそれぞれ交互に形成し、第1図の第2領域4に相当する箇所を平面的に領域21、22が互いに交互に接するように配置された点である。補助コレクタ電極12とn形領域21はコンタクトホール23で接続する。このn形領域21とp形領域22で構成される領域は、ストライプで交互に配置されているのであるが、半導体チップの外周に沿ってリング状をしている第1領域3の表面層に形成され、第1領域3の長手方向に交互にこのストライプが接してリング状に配置される。
【0031】
各領域21、22の不純物濃度を最適化することで、図1よりさらにオン電圧を低減できる。
尚、図3では第1領域3とウエル領域2が接しているが、それぞれを分離していても構わない。
図4は、この発明の第3実施例の半導体装置の要部断面図である。平面図は図1(a)の要部平面図と同じである。
【0032】
図1との違いは、第1領域3内の第2領域4に相当する箇所にn形領域31とp形領域32を交互に形成した点である。補助コレクタ電極12とn形領域31はコンタクトホール33で接続する。
各領域31、32の不純物濃度を最適化することで、図1よりさらにオン電圧を低減できる。尚、図4では第1領域3とウエル領域2が接しているが、それぞれを分離していても構わない。
【0033】
また、前記の図3と図4は、図1の第2領域4に相当する箇所に、超接合構造(super junction構造)と言われる構造を適用したものである。
図5は、この発明の第4実施例の半導体装置の構成図で、 (a) は要部平面図であり、(b)は要部断面図である。図1との違いは、第2領域の表面層にp形の補助コレクタ領域41を形成して、横型のIGBTとした点である。横型のMOSFETを横型のIGBTとすることで、オン状態において、補助コレクタ電極12からホールの注入が生じ、耐圧構造内に形成する横型素子のオン抵抗を大幅に小さくできる。その結果、図1に比べてオン電圧を小さくできる。尚、図5では第1領域3とウエル領域2が接しているが、それぞれを分離していても構わない。
【0034】
第1から第4実施例に相当する縦型半導体装置(IGBT)を縦型のMOSFETとしても構わない。
【0035】
【発明の効果】
この発明によれば、縦型半導体装置の耐圧構造部に多重リサーフ構造を採用して、この耐圧構造内に横型素子を形成することで、主電流導通領域を拡大し、オン電圧を低減することができる。
【図面の簡単な説明】
【図1】 この発明の第1実施例の半導体装置の構成図で、(a)は要部平面図、(b)は要部断面
【図2】 第1領域と第2領域の拡散プロフィル図
【図3】 この発明の第2実施例の半導体装置の構成図で、(a)は要部平面図、(b)は要部断面
【図4】 この発明の第3実施例の半導体装置の要部断面図
【図5】 この発明の第4実施例の半導体装置の構成図で、(a)は要部平面図、(b)は要部断面
【図6】 半導体装置の要部平面図
【図7】 耐圧構造としてフィールドリミティングリングを適用した縦型のIGBTの要部断面図である。
【図8】 耐圧構造としてダブリリサーフを適用した縦型のIGBTの要部断面図
【符号の説明】
1 ドリフト層
2 ウエル領域
3 第1領域
4 第2領域
5、51 エミッタ領域
6 絶縁膜(ゲート絶縁膜を含む)
8、81 ゲート電極
9、63 導電膜
10 絶縁膜(層間絶縁膜)
11 エミッタ電極
12 補助コレクタ電極
13 バッファ層
14 コレクタ層
15 コレクタ電極
21、31 n形領域
22、32 p形領域
23、33 コンタクトホール
61 フィールドリミッティングリング
62 ストッパ領域
100 半導体基板
200 半導体チップ
201 耐圧構造
202 活性領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device mounted on a power conversion device or the like.
[0002]
[Prior art]
In a power semiconductor device having a large current capacity, a vertical semiconductor device in which main electrodes are arranged on the front and back surfaces of a semiconductor substrate and a main current is passed in a vertical direction with respect to the semiconductor substrate is the mainstream.
FIG. 6 is a plan view of a principal part of the semiconductor device. The semiconductor chip 200 is an IGBT chip. A breakdown voltage structure 201 is formed around the chip, and an active region 202 is formed inside thereof. In the active region 202, an emitter electrode and a gate pad are formed.
[0003]
In a vertical semiconductor device, a withstand voltage structure is arranged around an active region through which a main current flows in order to ensure the blocking withstand voltage of the semiconductor device. This breakdown voltage structure is typically a field limiting ring or a field plate, and is formed on the surface of the semiconductor substrate.
On the other hand, structures such as single resurf and double resurf are often used as the breakdown voltage structure of the horizontal semiconductor device.
[0004]
With this double resurf, it is possible to increase the degree of freedom in designing the concentration of the drift layer (base layer) of the lateral semiconductor device, and the area occupied by the breakdown voltage structure is smaller than that of the field limiting ring or field plate. Can be reduced.
FIG. 7 is a vertical cross-sectional view taken along line XX in FIG. 6, which is a vertical IGBT to which a field limiting ring is applied as the breakdown voltage structure 201.
[0005]
In the figure, 1 is an n-type drift layer, 2 is a p-type well region, 5 is an n-type emitter region, 6 is an insulating film (a gate insulating film below the gate electrode), 8 is a gate electrode, and 10 is an insulating film. , 11 is an emitter electrode, 13 is an n-type buffer layer, 14 is a p-type collector layer, 15 is a collector electrode, 61 is a floating ring, 62 is a p-type or n-type stopper region, and 9 and 63 are conductive films. is there. For the sake of convenience, the outer side of the center of the well region 2 arranged on the outermost periphery is defined as a pressure resistant structure 201 and the inner side is defined as an active region 202 .
[0006]
FIG. 8 shows a structure in which a RESURF structure frequently used in a horizontal semiconductor device is applied as a breakdown voltage structure 201 of a vertical IGBT. Here, a double resurf structure is taken as an example. When the double resurf structure is adopted as the breakdown voltage structure 201, the area required for the breakdown voltage structure can be reduced, although the concentration control at the time of ion implantation is required in the manufacturing process as compared with the field limiting structure.
[0007]
In FIG. 8, the same components as those in FIG. Reference numeral 3 denotes a first region, and 10 denotes an insulating film.
7 and 8 extends the depletion layer extending from the well region 2 constituting the active region toward the outer periphery of the semiconductor chip 200 (in a direction away from the active region 202) when the semiconductor device is in the off state. Thus, the electric field concentration is relaxed in the vicinity of the well region 2.
[0008]
[Problems to be solved by the invention]
However, the region occupied by the withstand voltage structure 201 (withstand voltage structure region) is an effective region for securing a blocking withstand voltage when the semiconductor device is in an off state, but this withstand voltage when the semiconductor device is in an on state. Since the main current does not flow in the structure region, it becomes a useless region.
[0009]
For this reason, the vertical semiconductor device having a smaller current capacity (smaller semiconductor chip) has an area of the breakdown voltage structure region that occupies the element area (the area of the active region + the area of the breakdown voltage structure region is approximately the area of the semiconductor chip 200). The ratio increases, and as a result, the area ratio of the active region decreases. As a result, the area of the main current supply region decreases and the on-voltage increases.
[0010]
An object of the present invention is to provide a semiconductor device capable of solving the above-described problems, increasing a main current conduction region, and reducing an on-voltage.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type and a plurality of second conductivity types formed on a surface layer of the first semiconductor region. The second semiconductor region is connected to the second semiconductor region arranged on the outermost periphery, and is formed in an annular shape surrounding the second semiconductor region in the surface layer of the first semiconductor region outside the second semiconductor region. A third semiconductor region of the second conductivity type, a fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, and a first semiconductor layer formed in the surface layer of the third semiconductor region. A first conductivity type formed between a fifth semiconductor region of one conductivity type, a fourth semiconductor region formed in a surface layer of the second semiconductor region disposed on the outermost periphery, and the fifth semiconductor region; A sixth semiconductor region and the fourth semiconductor in all the second semiconductor regions; A main gate electrode formed in a region sandwiched between the first semiconductor region and a region sandwiched between the first semiconductor region and a region sandwiched between the fifth semiconductor region and the sixth semiconductor region via a gate insulating film and a sub-gate electrode to be formed, a first main electrode formed on said fourth semiconductor region, a second main electrode of the back electrode prior Kitate type semiconductor device, formed on the fifth semiconductor region And a second sub-electrode for connecting to the second main electrode.
[0012]
2. A vertical semiconductor device having an insulated gate structure, wherein a first conductivity type first semiconductor region and a plurality of second conductivity type second semiconductors formed on a surface layer of the first semiconductor region are provided. A second conductive region formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region and separated from the second semiconductor region disposed on the outermost periphery A third semiconductor region having a shape, a fourth semiconductor region having a first conductivity type formed in a surface layer of all the second semiconductor regions, and a first conductivity type formed in a surface layer of the third semiconductor region. A fifth semiconductor region, a sixth semiconductor region of a first conductivity type formed in a surface layer of the third semiconductor region so as to face the second semiconductor region disposed on the outermost periphery, and all the second semiconductors In a region between the fourth semiconductor region and the first semiconductor region, A main gate electrode formed through a gate insulating film, a sub-gate electrode formed through a gate insulating film on a region sandwiched between the fifth semiconductor region and the sixth semiconductor region, and the fourth semiconductor a first main electrode formed on a region, a second main electrode of the back electrode of the vertical semiconductor device is formed in the fifth semiconductor region, for connection to the second main electrode the It is set as the structure which comprises 2 subelectrodes.
[0013]
In the vertical semiconductor device having an insulated gate structure, a first semiconductor region of the first conductivity type, and a plurality of second semiconductor regions of the second conductivity type formed on the surface layer of the first semiconductor region, A second conductivity type second electrode connected to the second semiconductor region disposed on the outermost periphery and formed in an annular shape surrounding the second semiconductor region on the surface layer of the first semiconductor region outside the second semiconductor region. 3 semiconductor regions, fourth semiconductor regions of the first conductivity type formed in the surface layer of all the second semiconductor regions, and fifth semiconductors of the first conductivity type formed in the surface layer of the third semiconductor region A sixth semiconductor region of the first conductivity type formed between the region and the fourth semiconductor region and the fifth semiconductor region formed in the surface layer of the second semiconductor region disposed on the outermost periphery, The fourth semiconductor region and the first semiconductor region of the second semiconductor region A main gate electrode formed through a gate insulating film in a region sandwiched between them, a sub-gate electrode formed through a gate insulating film over a region sandwiched between the fifth semiconductor region and the sixth semiconductor region, The first main electrode formed on the fourth semiconductor region, the second main electrode as the back electrode of the vertical semiconductor device, and the second main electrode formed on the fifth semiconductor region and connected to the second main electrode And a second sub-electrode for connecting the second sub-electrode to the second sub-electrode and having a second conductivity type seventh semiconductor region formed in a surface layer of the fifth semiconductor region .
Furthermore, may the fifth semiconductor region via an insulating film wherein the first main electrodes second sub electrodes are formed to face.
In the vertical semiconductor device having an insulated gate structure, a first semiconductor region of the first conductivity type, and a plurality of second semiconductor regions of the second conductivity type formed on the surface layer of the first semiconductor region, A second conductivity type second electrode connected to the second semiconductor region disposed on the outermost periphery and formed in an annular shape surrounding the second semiconductor region on the surface layer of the first semiconductor region outside the second semiconductor region . Three semiconductor regions, a fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eighth semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, A sixth semiconductor region of a first conductivity type formed between a fourth semiconductor region and an eighth semiconductor region formed in a surface layer of the second semiconductor region disposed on the outermost periphery; Two semiconductor regions sandwiched between the fourth semiconductor region and the first semiconductor region. A main gate electrode formed through a gate insulating film in the region, a sub-gate electrode formed through a gate insulating film on a region sandwiched between the eighth semiconductor region and the sixth semiconductor region; comprising a first main electrode formed on said fourth semiconductor region, and a second main electrode of the back electrode prior Kitate type semiconductor device,
The eighth semiconductor region includes a first conductivity type annular ninth semiconductor region and a second conductivity type annular tenth semiconductor region which are alternately formed on the surface layer of each semiconductor region, and the uppermost stage. And a second sub-electrode connected to the second main electrode. The second sub-electrode is formed on the ninth semiconductor region.
[0014]
In the vertical semiconductor device having an insulated gate structure, a first semiconductor region of the first conductivity type, and a plurality of second semiconductor regions of the second conductivity type formed on the surface layer of the first semiconductor region, A second conductivity type second ring formed in an annular shape surrounding the second semiconductor region in the surface layer of the first semiconductor region outside the second semiconductor region, separated from the second semiconductor region disposed on the outermost periphery. Three semiconductor regions, a fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eighth semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, a sixth semiconductor region of the first conductivity type formed on the surface layer of the third semiconductor region so as to face the second semiconductor regions disposed on the outermost circumference, the fourth semiconductor of all of the second semiconductor region A gate insulating film in a region sandwiched between the region and the first semiconductor region A main gate electrode formed on the fourth semiconductor region, a sub-gate electrode formed on a region sandwiched between the eighth semiconductor region and the sixth semiconductor region via a gate insulating film, and formed on the fourth semiconductor region comprising a first main electrode that is, a second main electrode of the back electrode prior Kitate type semiconductor device,
The eighth semiconductor region is composed of an annular first semiconductor region of the first conductivity type and an annular tenth semiconductor region of the second conductivity type that are alternately formed on the surface layer of each semiconductor region, and is exposed. The second sub-electrode is formed on the ninth semiconductor region and is connected to the second main electrode.
[0015]
In the vertical semiconductor device having an insulated gate structure, a first semiconductor region of the first conductivity type, and a plurality of second semiconductor regions of the second conductivity type formed on the surface layer of the first semiconductor region, A second conductivity type second electrode connected to the second semiconductor region disposed on the outermost periphery and formed in an annular shape surrounding the second semiconductor region on the surface layer of the first semiconductor region outside the second semiconductor region . Three semiconductor regions, a fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eleventh semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, A sixth semiconductor region of the first conductivity type formed between the fourth semiconductor region and the eleventh semiconductor region formed in the surface layer of the second semiconductor region disposed on the outermost periphery; and all the second semiconductor regions In the fourth semiconductor region and the first semiconductor region of the semiconductor region A main gate electrode formed in a region sandwiched between the eleventh semiconductor region and a sixth semiconductor region, and a sub-gate electrode formed in a region sandwiched between the eleventh semiconductor region and the sixth semiconductor region; A first main electrode formed on the fourth semiconductor region; and a second main electrode as a back electrode of the vertical semiconductor device;
The eleventh semiconductor region is alternately formed in the annular longitudinal direction in contact with each other in the annular longitudinal direction of the third semiconductor region, and the 12th semiconductor region of the first conductivity type and the 13th semiconductor of the second conductivity type. And a second sub-electrode formed on the twelfth semiconductor region and connected to the second main electrode.
[0016]
In the vertical semiconductor device having an insulated gate structure, a first semiconductor region of the first conductivity type, and a plurality of second semiconductor regions of the second conductivity type formed on the surface layer of the first semiconductor region, A second conductivity type second ring formed in an annular shape surrounding the second semiconductor region in the surface layer of the first semiconductor region outside the second semiconductor region, separated from the second semiconductor region disposed on the outermost periphery. Three semiconductor regions, a fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eleventh semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, A sixth semiconductor region of a first conductivity type formed in a surface layer of the third semiconductor region so as to face the second semiconductor region disposed on the outermost periphery, and the fourth semiconductors of all the second semiconductor regions Gate insulation in a region sandwiched between the region and the first semiconductor region A main electrode formed via a gate electrode; a sub-gate electrode formed via a gate insulating film on a region sandwiched between the eleventh semiconductor region and the sixth semiconductor region; and formed on the fourth semiconductor region. A first main electrode, and a second main electrode as a back electrode of the vertical semiconductor device,
The eleventh semiconductor region is alternately formed in the annular longitudinal direction in contact with each other in the annular longitudinal direction of the third semiconductor region, and the 12th semiconductor region of the first conductivity type and the 13th semiconductor of the second conductivity type. And a second sub-electrode formed on the twelfth semiconductor region and connected to the second main electrode.
[0017]
Moreover, not good when the eleventh the said first main electrode through an insulating film on a semiconductor region second sub electrode are formed opposite.
[0018]
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A and 1B are configuration diagrams of a semiconductor device according to a first embodiment of the present invention, in which FIG. 1A is a plan view of an essential part and FIG. The main part plan view was drawn so that the layers from the uppermost layer of FIG. 1B to the semiconductor substrate surface could be seen. Moreover, the same code | symbol was described in the same location as FIG.
[0020]
The vertical semiconductor device is an IGBT having a withstand voltage class of 600 V and a double withstand voltage structure, and a MOSFET is formed in the withstand voltage structure. This semiconductor device is a case where the size of the semiconductor chip is 2.5 mm and the current capacity is 5A. An n-type semiconductor substrate 100 having a thickness of 500 μm and a specific resistance of about 60 Ωcm was used. A plurality of p-type well regions 2 are formed in the surface layer of one main surface of the semiconductor substrate 100, and an n-type emitter region 5 is formed in the surface layer of the well region 2. A gate electrode 8 is formed on the well region 2 sandwiched between the emitter region 5 and the semiconductor substrate 100 (drift layer 1) via an insulating film 6 (gate insulating film). An emitter electrode 11 is formed in contact with the emitter region 5 and the well region 2.
[0021]
As will be described later, a buffer layer 13, a collector layer 14, and a collector electrode 15 are formed on the back surface of the substrate to constitute an IGBT cell portion. The vertical semiconductor device cell formed in the active region 202 is not limited to an IGBT cell having a planar gate structure. For example, an IGBT cell having a trench gate structure in which a trench is formed in the well region 2 and a gate electrode is formed in the trench via an insulating film may be used. Further, the structure of the back surface of the substrate may be changed to constitute a vertical MOSFET cell. Further, 9 in the figure is a conductive film, which may be deleted.
[0022]
Next, the breakdown voltage structure will be described. The breakdown voltage structure 201 forms a p-type first region 3 on the outer peripheral portion of the semiconductor substrate 100 and forms an n-type second region 4 on the surface layer of the first region 3 to form a double RESURF. FIG. 1 shows a case where the outermost well region 2 of the active region 202 and the first region 3 are in contact with each other.
The n-type emitter region 51 is formed at a position apart from the second region 4 in the first region 3 of the insulating film (gate insulating on the first region 3 sandwiched between the second region 4 and the emitter region 51 A gate electrode 81 is formed through the film. The emitter region 51 and the gate electrode 81 are connected to the emitter region 5 and the gate electrode 8 of the vertical IGBT cell, respectively. As shown in FIG. 1, when the first region 3 is in contact with the well region 2, if the emitter region 51 is provided near the active region 202 in the first region, wiring with the common emitter electrode 11 is performed at once. Can do. Further, the gate electrode 8 and the gate electrode 81 can be easily connected.
[0023]
An auxiliary collector 12 is formed on the outer peripheral portion of the second region 4, and the emitter electrode 11 and the auxiliary collector electrode 12 are formed so as to face each other through the insulating film 10 formed on the second region.
The first region 3 and the well region 2 are usually different in impurity concentration and diffusion depth, but may be formed under the same conditions.
[0024]
The ion species and implantation amount (dose amount) for forming the double RESURF will be described. In the first region, the ion species is boron, and the implantation amount is about 6.0 × 10 12 cm −2 . In the second region, the ion species is phosphorus, and the implantation amount is about 4.8 × 10 12 cm −2 . The width of the breakdown voltage structure is about 100 μm. The diffusion profile in the depth direction is shown in FIG.
[0025]
When the double resurf having such specifications is used, the resistivity of the drift region of the MOSFET formed in the breakdown voltage structure is about 0.2 Ωcm 2 (impurity concentration is about 2.0 × 10 16 cm -3 ), which is an extremely small value. It becomes. This value is about 1/300 of the resistivity 60Ωcm (impurity concentration is about 7.8 × 10 13 cm −3 ) of the drift region of a normal 600V MOSFET.
[0026]
After the 500 μm-thick semiconductor substrate 100 is ground to a thickness of about 100 μm, an n-type buffer layer 13 is formed on the surface layer of the other main surface (ground surface) of the semiconductor substrate 100. A collector layer 14 is formed on the surface layer, and a collector electrode 15 is formed on the collector layer 14.
The collector electrode 15 on the back side of the semiconductor chip 200 formed as described above is fixed to an insulating substrate with a circuit pattern (not shown) by soldering, and the circuit pattern to which the collector electrode 15 is fixed and the auxiliary collector electrode 12 are made of aluminum wire. Connect by bonding. Further, the surface electrode pads (emitter electrode pads and gate electrode pads) and external lead-out terminals (not shown) are connected by bonding with aluminum wires.
[0027]
As shown by a dotted line in FIG. 1 (b), by forming a lateral MOSFET in the breakdown voltage structure, when the IGBT is turned on, the main current passes through the lateral MOSFET in addition to the IGBT cell portion (active region). However, since it flows, the main current supply area can be increased and the on-voltage can be reduced.
Also, to more than ene layer voltage of 0.6V at IGBT, but the main current hardly flows in the semiconductor device, since the main current flows from 0V through the lateral MOSFET, as compared to a normal IGBT ON characteristics are improved.
[0028]
Further, when the main current increases and the on-voltage of the IGBT increases, a pnpn thyristor portion (FIG. 1 (b)) composed of the collector layer 14, the buffer layer 13, the drift layer 1, the first region 3, and the second region 4. The main current also flows in a conductivity-modulated state, and the on-voltage decreases.
In the embodiment described above, an element having a horizontal insulated gate structure is formed in a breakdown voltage structure formed on the outer periphery of an active region of a vertical semiconductor device having an insulated gate structure, both gate terminals are connected to each other, and an emitter is formed. The terminals and collector terminals are connected to each other. With such a configuration, the main current energization region is increased and the on-voltage is reduced.
[0029]
In addition to the above-described configuration, each terminal may be pulled out individually instead of being connected. When the gate threshold voltage of each element is different, a different voltage can be supplied to each element.
Further, if the gate signals to the respective elements are in phase, the on-voltage can be reduced as described above, and if the gate signals are individually supplied, both can be driven independently.
[0030]
FIGS. 3A and 3B are configuration diagrams of a semiconductor device according to a second embodiment of the present invention, in which FIG. 3A is a plan view of the main part and FIG . 3B is a cross-sectional view of the main part. The main part plan view was drawn so that the layers from the uppermost layer to the semiconductor substrate surface could be seen.
The difference from FIG. 1, formed in as shown in the plan view, the n-type region 21 and the p-type region 22 to the auxiliary collector electrode 12 direction is the longitudinal from the emitter region 5, respectively alternating (a), Figure 1 The points corresponding to the second region 4 are arranged such that the regions 21 and 22 are alternately in contact with each other in a plane . The auxiliary collector electrode 12 and the n-type region 21 are connected by a contact hole 23. The regions composed of the n-type region 21 and the p-type region 22 are alternately arranged in stripes , but on the surface layer of the first region 3 that is ring-shaped along the outer periphery of the semiconductor chip. The stripes are alternately formed in the longitudinal direction of the first region 3 and arranged in a ring shape.
[0031]
By optimizing the impurity concentration in each of the regions 21 and 22, the on-voltage can be further reduced as compared with FIG.
In FIG. 3, the first region 3 and the well region 2 are in contact with each other, but they may be separated from each other.
FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the third embodiment of the present invention. The plan view is the same as the plan view of the main part of FIG.
[0032]
The difference from FIG. 1 is that n-type regions 31 and p-type regions 32 are alternately formed at locations corresponding to the second region 4 in the first region 3. The auxiliary collector electrode 12 and the n-type region 31 are connected by a contact hole 33.
By optimizing the impurity concentration in each of the regions 31 and 32, the on-voltage can be further reduced as compared with FIG. In FIG. 4, the first region 3 and the well region 2 are in contact with each other, but they may be separated from each other.
[0033]
3 and 4 are obtained by applying a structure called a super junction structure to a portion corresponding to the second region 4 in FIG.
Figure 5 is a block diagram of a semiconductor device of the fourth embodiment of the present invention, (a) is a main portion plan view, (b) is a fragmentary cross-sectional view. A difference from FIG. 1 is that a p-type auxiliary collector region 41 is formed in the surface layer of the second region to form a lateral IGBT. By using the lateral MOSFET as the lateral MOSFET, holes are injected from the auxiliary collector electrode 12 in the on state, and the on-resistance of the lateral element formed in the breakdown voltage structure can be significantly reduced. As a result, the on-voltage can be reduced as compared with FIG. In FIG. 5, the first region 3 and the well region 2 are in contact with each other, but they may be separated from each other.
[0034]
The vertical semiconductor device (IGBT) corresponding to the first to fourth embodiments may be a vertical MOSFET.
[0035]
【The invention's effect】
According to the present invention, by adopting a multiple RESURF structure in the breakdown voltage structure of the vertical semiconductor device and forming a horizontal element in the breakdown voltage structure, the main current conduction region is expanded and the ON voltage is reduced. Can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a semiconductor device according to a first embodiment of the present invention, where FIG. 1 (a) is a plan view of an essential part and FIG. 2 (b) is a cross-sectional view of the essential part; FIGS. 3A and 3B are configuration diagrams of a semiconductor device according to a second embodiment of the present invention, where FIG. 4A is a plan view of the main part and FIG. 4B is a cross-sectional view of the main part. FIG. 5 is a block diagram of a semiconductor device according to a fourth embodiment of the present invention, in which (a) is a plan view of the relevant part and (b) is a cross-sectional view of the relevant part. FIG. 7 is a fragmentary cross-sectional view of a vertical IGBT to which a field limiting ring is applied as a breakdown voltage structure.
FIG. 8 is a cross-sectional view of the main part of a vertical IGBT using double surf as a pressure-resistant structure.
1 Drift layer
2 well region
3 First area
4 Second area
5, 51 Emitter area
6 Insulating film (including gate insulating film)
8, 81 Gate electrode
9, 63 Conductive film 10 Insulating film (interlayer insulating film)
11 Emitter electrode 12 Auxiliary collector electrode 13 Buffer layer 14 Collector layer 15 Collector electrode 21, 31 n-type region 22, 32 p-type region 23, 33 Contact hole 61 Field limiting ring 62 Stopper region 100 Semiconductor substrate 200 Semiconductor chip 201 Withstand voltage structure 202 Active region

Claims (10)

絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に形成される第1導電形の第5半導体領域と、前記最外周に配置された第2半導体領域の表面層に形成される第4半導体領域と前記第5半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と前記第5半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極と、前記第5半導体領域上に形成され、第2主電極と接続するための第2副電極とを具備することを特徴とする半導体装置。In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type connected to the second semiconductor region disposed in the ring and formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region A first conductivity type fourth semiconductor region formed in the surface layer of all the second semiconductor regions, and a first conductivity type fifth semiconductor region formed in the surface layer of the third semiconductor region; The sixth semiconductor region of the first conductivity type formed between the fourth semiconductor region and the fifth semiconductor region formed in the surface layer of the second semiconductor region disposed on the outermost periphery, and all the above The second semiconductor region is sandwiched between the fourth semiconductor region and the first semiconductor region. A main gate electrode formed through a gate insulating film in the region, a sub-gate electrode formed through a gate insulating film on a region sandwiched between the fifth semiconductor region and the sixth semiconductor region; a first main electrode formed on the fourth semiconductor region, a second main electrode of the back electrode prior Kitate type semiconductor device, formed on the fifth semiconductor region is connected to the second main electrode And a second sub-electrode for the semiconductor device. 絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と分離し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に形成される第1導電形の第5半導体領域と、最外周に配置された前記第2半導体領域と対向して前記第3半導体領域の表面層に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第5半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極と、前記第5半導体領域上に形成され、第2主電極と接続するための第2副電極とを具備することを特徴とする半導体装置。In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type that is formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region, separated from the second semiconductor region disposed in A first conductivity type fourth semiconductor region formed in the surface layer of all the second semiconductor regions, and a first conductivity type fifth semiconductor region formed in the surface layer of the third semiconductor region; The sixth semiconductor region of the first conductivity type formed in the surface layer of the third semiconductor region so as to face the second semiconductor region disposed on the outermost periphery, and the fourth of all the second semiconductor regions A gate insulating film in a region sandwiched between the semiconductor region and the first semiconductor region A main gate electrode formed through the gate electrode, a sub-gate electrode formed through a gate insulating film on a region sandwiched between the fifth semiconductor region and the sixth semiconductor region, and formed on the fourth semiconductor region. a first main electrode that is, a second main electrode of the back electrode of the vertical semiconductor device is formed in the fifth semiconductor region, and the second sub-electrode for connection to the second main electrode A semiconductor device comprising: 絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に形成される第1導電形の第5半導体領域と、前記最外周に配置された第2半導体領域の表面層に形成される第4半導体領域と前記第5半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と前記第5半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極と、前記第5半導体領域上に形成され、第2主電極と接続するための第2副電極とを具備し、前記第2副電極と接続し、前記第5半導体領域の表面層に形成される第2導電形の第7半導体領域を有することを特徴とする半導体装置。In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type connected to the second semiconductor region disposed in the ring and formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region A first conductivity type fourth semiconductor region formed in the surface layer of all the second semiconductor regions, and a first conductivity type fifth semiconductor region formed in the surface layer of the third semiconductor region; The sixth semiconductor region of the first conductivity type formed between the fourth semiconductor region and the fifth semiconductor region formed in the surface layer of the second semiconductor region disposed on the outermost periphery, and all the above A second semiconductor region sandwiched between the fourth semiconductor region and the first semiconductor region. A main gate electrode formed through a gate insulating film in the region, a sub-gate electrode formed through a gate insulating film on a region sandwiched between the fifth semiconductor region and the sixth semiconductor region; A first main electrode formed on the fourth semiconductor region, a second main electrode as a back electrode of the vertical semiconductor device, and formed on the fifth semiconductor region and connected to the second main electrode And a second sub-electrode, and a seventh semiconductor region of a second conductivity type connected to the second sub-electrode and formed in a surface layer of the fifth semiconductor region. 前記第5半導体領域上に絶縁膜を介して前記第1主電極と前記第2副電極が対向して形成されることを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。According to any one of claims 1 to 3, characterized in that said fifth semiconductor region via an insulating film wherein the first main electrodes second sub electrodes are formed opposite Semiconductor device. 絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第8半導体領域と、最外周に配置された前記第2半導体領域の表面層に形成された第4半導体領域と前記第8半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第8半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第8半導体領域を、互いの半導体領域の表面層に交互に形成される第1導電形の環状の第9半導体領域と第2導電形の環状の第10半導体領域とで構成し、最上段に形成される第9半導体領域上に形成され、前記第2主電極と接続する第2副電極を有することを特徴とする半導体装置。
In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type connected to the second semiconductor region disposed in the ring and formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region A fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eighth semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, and an outermost periphery A sixth semiconductor region of a first conductivity type formed between a fourth semiconductor region and an eighth semiconductor region formed in a surface layer of the second semiconductor region disposed in the second semiconductor region, and all the second semiconductors A region sandwiched between the fourth semiconductor region and the first semiconductor region A main gate electrode formed in a region through a gate insulating film; a sub-gate electrode formed through a gate insulating film on a region sandwiched between the eighth semiconductor region and the sixth semiconductor region; 4 comprises a first main electrode formed on the semiconductor region, and a second main electrode of the back electrode prior Kitate type semiconductor device,
The eighth semiconductor region includes a first conductivity type annular ninth semiconductor region and a second conductivity type annular tenth semiconductor region which are alternately formed on the surface layer of each semiconductor region, and the uppermost stage. A semiconductor device comprising: a second sub-electrode formed on a ninth semiconductor region formed on the substrate and connected to the second main electrode.
絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と分離し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第8半導体領域と、最外周に配置された前記第2半導体領域に対向して前記第3半導体領域の表面層に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第8半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第8半導体領域を、互いの半導体領域の表面層に交互に形成される第1導電形の環状の第9半導体領域と第2導電形の環状の第10半導体領域とで構成し、露出した第9半導体領域上に形成され、前記第2主電極と接続する第2副電極を有することを特徴とする半導体装置。
In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type that is formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region, separated from the second semiconductor region disposed in A fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eighth semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, and an outermost periphery a sixth semiconductor region of a first conductivity type opposite to is formed on the surface layer of the third semiconductor region to said second semiconductor region disposed in a fourth semiconductor region of all of the second semiconductor region A region sandwiched between the first semiconductor regions via a gate insulating film A main gate electrode formed; a sub-gate electrode formed on a region sandwiched between the eighth semiconductor region and the sixth semiconductor region through a gate insulating film; and formed on the fourth semiconductor region. comprising a first main electrode, a second main electrode of the back electrode prior Kitate type semiconductor device,
The eighth semiconductor region is composed of an annular first semiconductor region of the first conductivity type and an annular tenth semiconductor region of the second conductivity type that are alternately formed on the surface layer of each semiconductor region, and is exposed. A semiconductor device comprising a second sub-electrode formed on a ninth semiconductor region and connected to the second main electrode.
前記第9半導体領域上に絶縁膜を介して前記第1主電極と前記第2副電極が対向して形成されることを特徴とする請求項5または6に記載の半導体装置。The semiconductor device according to claim 5, wherein the first main electrode and the second sub electrode are formed on the ninth semiconductor region so as to face each other with an insulating film interposed therebetween. 絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と接続し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第11半導体領域と、最外周に配置された前記第2半導体領域の表面層に形成される第4半導体領域と前記11半導体領域との間に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主ゲート電極と、前記第11半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第11半導体領域を、前記第3半導体領域の環状の長手方向に、互いに接して環状の長手方向に交互に形成される第1導電形の第12半導体領域と第2導電形の第13半導体領域とから形成し、前記第12半導体領域上に形成され、前記第2主電極と接続する第2副電極を有することを特徴とする半導体装置。
In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type connected to the second semiconductor region disposed in the ring and formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region A fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eleventh semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, and an outermost periphery A sixth semiconductor region of the first conductivity type formed between the fourth semiconductor region formed in the surface layer of the second semiconductor region and the eleventh semiconductor region disposed in the second semiconductor region, and all the second semiconductor regions Sandwiched between the fourth semiconductor region and the first semiconductor region A main gate electrode formed in a region through a gate insulating film; a sub-gate electrode formed through a gate insulating film on a region sandwiched between the eleventh semiconductor region and the sixth semiconductor region; 4 comprising a first main electrode formed on the semiconductor region and a second main electrode as a back electrode of the vertical semiconductor device;
The eleventh semiconductor region is alternately formed in the annular longitudinal direction in contact with each other in the annular longitudinal direction of the third semiconductor region, and the 12th semiconductor region of the first conductivity type and the 13th semiconductor of the second conductivity type. And a second sub-electrode formed on the twelfth semiconductor region and connected to the second main electrode.
絶縁ゲート構造を有する縦型の半導体装置において、第1導電形の第1半導体領域と、該第1半導体領域の表面層に複数個形成される第2導電形の第2半導体領域と、最外周に配置された該第2半導体領域と分離し、該第2半導体領域の外側の前記第1半導体領域の表面層に該第2半導体領域を取り囲む環状に形成される第2導電形の第3半導体領域と、全ての前記第2半導体領域の表面層に形成される第1導電形の第4半導体領域と、前記第3半導体領域の表面層に環状に形成される第11半導体領域と、最外周に配置される前記第2半導体領域に対向して前記第3半導体領域の表面層に形成される第1導電形の第6半導体領域と、全ての前記第2半導体領域の前記第4半導体領域と前記第1半導体領域に挟まれた領域にゲート絶縁膜を介して形成される主電極と、前記11半導体領域と前記第6半導体領域に挟まれた領域上にゲート絶縁膜を介して形成される副ゲート電極と、前記第4半導体領域上に形成される第1主電極と、前記縦型の半導体装置の裏面電極としての第2主電極とを具備し、
前記第11半導体領域を、前記第3半導体領域の環状の長手方向に、互いに接して環状の長手方向に交互に形成される第1導電形の第12半導体領域と第2導電形の第13半導体領域とから形成し、前記第12半導体領域上に形成され、前記第2主電極と接続する第2副電極を有することを特徴とする半導体装置。
In a vertical semiconductor device having an insulated gate structure, a first semiconductor region of a first conductivity type, a plurality of second semiconductor regions of a second conductivity type formed on a surface layer of the first semiconductor region, and an outermost periphery A third semiconductor of a second conductivity type that is formed in an annular shape surrounding the second semiconductor region in a surface layer of the first semiconductor region outside the second semiconductor region, separated from the second semiconductor region disposed in A fourth semiconductor region of the first conductivity type formed in the surface layer of all the second semiconductor regions, an eleventh semiconductor region formed in an annular shape in the surface layer of the third semiconductor region, and an outermost periphery A sixth semiconductor region of a first conductivity type formed in a surface layer of the third semiconductor region so as to face the second semiconductor region disposed on the fourth semiconductor region; and the fourth semiconductor regions of all the second semiconductor regions; A gate insulating film is interposed in the region sandwiched between the first semiconductor regions. A main electrode formed on the fourth semiconductor region, a sub-gate electrode formed on a region sandwiched between the eleventh semiconductor region and the sixth semiconductor region via a gate insulating film, and a fourth electrode formed on the fourth semiconductor region. 1 main electrode and a second main electrode as a back electrode of the vertical semiconductor device,
The eleventh semiconductor region is alternately formed in the annular longitudinal direction in contact with each other in the annular longitudinal direction of the third semiconductor region, and the 12th semiconductor region of the first conductivity type and the 13th semiconductor of the second conductivity type. And a second sub-electrode formed on the twelfth semiconductor region and connected to the second main electrode.
前記第11半導体領域上に絶縁膜を介して前記第1主電極と前記第2副電極が対向して形成されることを特徴とする請求項8または9に記載の半導体装置。10. The semiconductor device according to claim 8, wherein the first main electrode and the second sub-electrode are formed on the eleventh semiconductor region so as to face each other with an insulating film interposed therebetween.
JP2002184675A 2002-06-25 2002-06-25 Semiconductor device Expired - Fee Related JP4078895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184675A JP4078895B2 (en) 2002-06-25 2002-06-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184675A JP4078895B2 (en) 2002-06-25 2002-06-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004031575A JP2004031575A (en) 2004-01-29
JP4078895B2 true JP4078895B2 (en) 2008-04-23

Family

ID=31180535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184675A Expired - Fee Related JP4078895B2 (en) 2002-06-25 2002-06-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4078895B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196766B2 (en) * 2006-11-20 2013-05-15 株式会社東芝 Semiconductor device
JP5655052B2 (en) * 2012-11-05 2015-01-14 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP2004031575A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US9589952B2 (en) Reverse conducting IGBT
JP4185157B2 (en) Semiconductor elements and electrical equipment
JP4167294B2 (en) Semiconductor elements and electrical equipment
JP3751463B2 (en) High voltage semiconductor element
JP4126915B2 (en) Semiconductor device
JP6096109B2 (en) High density gallium nitride device using island topology
JP2021192461A (en) Semiconductor device
JP4289123B2 (en) Semiconductor device
JPH0434311B2 (en)
TWI415256B (en) Power semiconductor device
JP2004363327A (en) Semiconductor device
JP4230681B2 (en) High voltage semiconductor device
JPS6043668B2 (en) semiconductor equipment
JPH0529614A (en) Horizontal insulated-gate transistor
US20120068258A1 (en) Semiconductor device and method for manufacturing same
JP2003174169A (en) Semiconductor device
JP4797445B2 (en) Insulated gate bipolar transistor
JP4432332B2 (en) Semiconductor device and manufacturing method thereof
JP4078895B2 (en) Semiconductor device
JP7338242B2 (en) semiconductor equipment
CN116490978B (en) Bidirectional thyristor device
JP7227999B2 (en) RC-IGBT semiconductor device
JPH11307785A (en) Power semiconductor device
JP7472613B2 (en) Semiconductor Device
US10700185B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees