JPH05128514A - Manufacture of vapor-deposited magnetic recording medium - Google Patents

Manufacture of vapor-deposited magnetic recording medium

Info

Publication number
JPH05128514A
JPH05128514A JP29115891A JP29115891A JPH05128514A JP H05128514 A JPH05128514 A JP H05128514A JP 29115891 A JP29115891 A JP 29115891A JP 29115891 A JP29115891 A JP 29115891A JP H05128514 A JPH05128514 A JP H05128514A
Authority
JP
Japan
Prior art keywords
oxygen
nozzle
vapor
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29115891A
Other languages
Japanese (ja)
Inventor
Hiroaki Tateno
裕昭 舘野
Kazuyuki Shimono
和幸 下野
Shinichi Imada
信一 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29115891A priority Critical patent/JPH05128514A/en
Publication of JPH05128514A publication Critical patent/JPH05128514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To stably introduce oxygen even when an oxygen introduction nozzle at the tip of a shutter is exposed to any high radiant heat for many hours and to obtain a magnetic characteristic which is stable with respect to a width and a length by a method wherein the oxygen introduction nozzle is cooled. CONSTITUTION:A cooling-water circulation pipe 11 is installed around an oxygen introduction nozzle 10 installed at the tip part of a shutter; cooling water is supplied. The oxygen introduction nozzle 10 is formed in the following manner: e.g. holes 0.02mm in diameter are made in 50 places at intervals of 10mm in a pipe whose main body has a length of 600mm and a diameter of 10mm. When the oxygen introduction nozzle 10 is cooled in this manner, the blowoff holes in the nozzle are not changed even when they are exposed to any radiant heat in a vapor-deposition operation for many hours, and it is possible to form a vapor-deposited magnetic recording medium provided with a magnetic characteristic which is stable with respect to its width and its length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に最適な
金属薄膜型の蒸着磁気記録媒体の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal thin film type vapor deposition magnetic recording medium most suitable for high density magnetic recording.

【0002】[0002]

【従来の技術】近年、磁気記録の分野においては、ディ
ジタル化,小型化,長時間化等の高性能化がすすんでい
るが、それにともなって高密度磁気記録媒体の要求が高
まり磁気記録層を強磁性金属薄膜で構成した金属薄膜型
の磁気記録媒体が短波長記録に極めて有利なことから盛
んに検討されている。磁気記録媒体に要求される性能と
しては、磁性体固有の性能である感度,ノイズ,歪,消
去特性等と磁性層の表面及び裏面の処理により得られる
走行性能,耐久性能等が挙げられる。
2. Description of the Related Art In recent years, in the field of magnetic recording, high performance such as digitalization, miniaturization, and long time has been progressing, but the demand for a high density magnetic recording medium has increased accordingly, and a magnetic recording layer has been formed. A metal thin film type magnetic recording medium composed of a ferromagnetic metal thin film has been actively studied because it is extremely advantageous for short wavelength recording. Performances required of the magnetic recording medium include sensitivity, noise, distortion, erasing characteristics and the like, which are characteristics peculiar to the magnetic material, and running performance and durability performance obtained by treating the front and back surfaces of the magnetic layer.

【0003】以下に従来の斜め蒸着方法について説明す
る。図6は、従来の真空蒸着槽内部の蒸着部を示すもの
であり、1は巻取り部、2は巻出し部、3は冷却キャ
ン、4は酸素導入ノズル、5はシャッター、6は蒸発
源、7は電子銃、8は防着板、9はポリエチレンテレフ
タレートのフィルム基板である。
The conventional oblique vapor deposition method will be described below. FIG. 6 shows a vapor deposition section in a conventional vacuum vapor deposition tank, where 1 is a winding section, 2 is an unwinding section, 3 is a cooling can, 4 is an oxygen introduction nozzle, 5 is a shutter, and 6 is an evaporation source. , 7 is an electron gun, 8 is a deposition preventive plate, and 9 is a polyethylene terephthalate film substrate.

【0004】以上のように構成された蒸着装置の蒸着方
法について説明する。まず、蒸着するポリエチレンテレ
フタレートのフィルム基板9を巻出し側にセットし、真
空排気後、電子銃7により蒸着材を溶解する。その後、
酸素導入ノズル4より規定の酸素量を導入し、ライン速
度が規定速度に到達後、シャッター5を開閉し蒸着す
る。この時、シャッター5で規制される最低入射角及び
酸素ノズルの位置により磁気特性が大きく変化し、最低
入射角が高く、酸素ノズルがシャッター先端部にある方
が磁気特性の良いことが知られている。さらに、酸素ノ
ズルの吹き出し角度,吹き出し量によっても磁気特性,
蒸着膜の耐久性等が左右され、酸素ノズルの安定性が性
能,品質に重要なウエイトを占めることが一般的に知ら
れている。
A vapor deposition method of the vapor deposition apparatus configured as described above will be described. First, the film substrate 9 of polyethylene terephthalate to be vapor-deposited is set on the unwinding side, and after evacuation, the vapor deposition material is melted by the electron gun 7. afterwards,
A prescribed amount of oxygen is introduced from the oxygen introduction nozzle 4, and after the line speed reaches the prescribed speed, the shutter 5 is opened and closed to perform vapor deposition. At this time, the magnetic characteristics greatly change depending on the minimum incident angle regulated by the shutter 5 and the position of the oxygen nozzle, and it is known that the magnetic characteristic is better when the minimum incident angle is high and the oxygen nozzle is at the tip of the shutter. There is. Furthermore, depending on the blowing angle and the blowing amount of the oxygen nozzle, the magnetic characteristics,
It is generally known that the durability of the vapor deposition film is affected and the stability of the oxygen nozzle occupies an important weight for performance and quality.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、蒸着磁
気記録媒体の生産性の向上にともない電子銃のPowe
rを上げる必要があり、さらには蒸着効率を高めるた
め、蒸着部の開口部を広げたり、蒸発源を移動させたり
して蒸発レートを高くする取り組みが行われているが、
それにともない輻射熱による影響が増加し、酸素導入ノ
ズルにおいても、この輻射熱によりノズルの酸素吹き出
し穴が変形し、酸素ノズルの幅方向分布や酸素吹き付け
角度がバラツキ、幅方向,長手方向に安定した酸素導入
が図れなくなり、面的に安定した磁気特性を有する蒸着
磁気記録媒体が得られないという問題点を有していた。
However, as the productivity of the vapor-deposited magnetic recording medium is improved, the Powe of the electron gun is increased.
It is necessary to increase r, and in order to further increase the evaporation efficiency, efforts are being made to increase the evaporation rate by widening the opening of the evaporation section or moving the evaporation source.
As a result, the effect of radiant heat increases, and even in the oxygen introduction nozzle, the oxygen blowing holes of the nozzle are deformed by this radiant heat, and the oxygen nozzle width direction distribution and oxygen blowing angle vary, and stable oxygen introduction in the width direction and longitudinal direction. However, there is a problem in that a vapor-deposited magnetic recording medium having a stable magnetic property cannot be obtained.

【0006】本発明は、上記従来の問題点を解決するも
ので、蒸着レートの向上にともない輻射熱が上昇しても
安定した酸素導入を図り、面的に安定な磁気特性を有す
る蒸着磁気記録媒体を得ることを目的とする。
The present invention solves the above-mentioned problems of the prior art. It aims to stably introduce oxygen even if the radiant heat rises with the improvement of the vapor deposition rate, and the vapor-deposited magnetic recording medium has a stable magnetic characteristic in plane. Aim to get.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の蒸着磁気記録媒体の製造方法は、シャッター
の先端部に設けた酸素導入ノズルを冷却するものであ
る。
In order to achieve this object, a method of manufacturing a vapor-deposited magnetic recording medium according to the present invention cools an oxygen introducing nozzle provided at a tip portion of a shutter.

【0008】[0008]

【作用】酸素導入ノズルを冷却することにより、いかな
る蒸着時の輻射熱に長時間さらされても、蒸着材で覆わ
れない限り、ノズルの吹き出し穴は変化することなく、
幅、長手においても、ノズル穴、吹き出し流量の初期分
布を維持することができ、常に安定した酸素導入を図る
ことができる。
[Function] By cooling the oxygen introducing nozzle, no matter how it is exposed to radiant heat during vapor deposition for a long time, as long as it is not covered with the vapor deposition material, the nozzle blowing hole does not change,
Even in the width and the length, the initial distribution of the nozzle holes and the flow rate of the blown air can be maintained, and stable oxygen introduction can be always achieved.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明に使用した酸素導入ノズル
で、10は酸素導入ノズル本体、11は冷却水循環パイ
プである。酸素導入ノズルは本体の長さ600mm,直径
10mmのパイプに10mmの間隔で50箇所直径0.2mm
の穴を開けたものである。この酸素導入ノズルを用い
て、図6の構成で蒸着を行なった。
FIG. 1 shows an oxygen introducing nozzle used in the present invention, 10 is an oxygen introducing nozzle main body, and 11 is a cooling water circulation pipe. Oxygen introduction nozzles are 600 mm long and have a diameter of 10 mm at intervals of 10 mm in a pipe with a diameter of 10 mm.
It has a hole in it. Using this oxygen introduction nozzle, vapor deposition was performed with the configuration of FIG.

【0011】蒸着条件は、最低入射角10度,蒸着材C
o,蒸着基板PET,蒸着幅500mm,蒸着速度100
m/min,酸素流量3.0L/min,酸素導入ノズルへの
冷却水流量2L/min,冷却水温度20℃、で透過率が
2%一定になるように電子銃のPowerを調整し、1
0000m処理した。
The vapor deposition conditions are as follows: minimum incident angle 10 degrees, vapor deposition material C
o , vapor deposition substrate PET, vapor deposition width 500 mm, vapor deposition rate 100
Adjust the power of the electron gun so that the transmittance becomes constant at 2% at m / min, oxygen flow rate of 3.0 L / min, cooling water flow rate to the oxygen introduction nozzle of 2 L / min, and cooling water temperature of 20 ° C.
It was treated for 0000 m.

【0012】蒸着の処理前後で酸素導入ノズルの各々の
吹き出し穴からの酸素吹き出し流量を流量計により測定
した結果を図2に示す。縦軸は酸素流量、横軸は酸素導
入ノズルの幅方向の吹き出し穴である。尚、酸素導入ノ
ズル本体への酸素供給圧縮は1kg/cm2とした。又、こ
のようにして得られた磁気記録媒体の磁気特性をVSM
で測定した結果を図3に示す。縦軸は保持力、横軸は蒸
着原反の幅方向で測定点数を10点とした。グラフ上の
実線は蒸着始め、破線は蒸着終わりで蒸着の長手を表わ
す。次に酸素導入ノズルの冷却水を停止し、上記と同じ
蒸着条件で10000m処理し、上記同様、幅方向の磁
気特性を図4、酸素導入ノズルの幅方向の流量分布を図
5に示す。
FIG. 2 shows the results of measuring the flow rate of oxygen blown out from each blowout hole of the oxygen introducing nozzle before and after the vapor deposition process with a flowmeter. The vertical axis represents the oxygen flow rate, and the horizontal axis represents the blowing hole in the width direction of the oxygen introducing nozzle. The oxygen supply compression to the oxygen introduction nozzle body was 1 kg / cm 2 . In addition, the magnetic characteristics of the magnetic recording medium obtained in this way are measured by VSM.
The result measured by the method is shown in FIG. The vertical axis represents the holding power, and the horizontal axis represents the width direction of the vapor deposition substrate, with 10 measurement points. The solid line on the graph indicates the start of vapor deposition and the broken line indicates the end of vapor deposition, which represents the length of vapor deposition. Next, the cooling water of the oxygen introducing nozzle was stopped, and the treatment was performed for 10000 m under the same vapor deposition conditions as above. Similarly to the above, the magnetic characteristics in the width direction are shown in FIG. 4, and the flow rate distribution in the width direction of the oxygen introducing nozzle is shown in FIG.

【0013】以上の結果より、酸素導入ノズル冷却する
ことにより、高レートにともなう高い輻射熱を受けても
長手、幅方向で安定した磁気特性を有する磁気記録媒体
を得ることができる。
From the above results, by cooling the oxygen introducing nozzle, it is possible to obtain a magnetic recording medium having stable magnetic characteristics in the longitudinal and width directions even if it receives high radiant heat at a high rate.

【0014】尚、本実施例では冷却パイプを酸素導入ノ
ズルと平行にろう付したものを使用したが、冷却パイプ
を酸素導入ノズルに螺旋状に取り付けたり、又は、ジャ
ケット構造を有する酸素導入ノズルを用いてもよい。
In this embodiment, the cooling pipe is brazed in parallel with the oxygen introducing nozzle, but the cooling pipe is spirally attached to the oxygen introducing nozzle or the oxygen introducing nozzle having the jacket structure is used. You may use.

【0015】[0015]

【発明の効果】以上のように、本発明は、シャッター先
端部に設けられた酸素導入ノズルを冷却することによ
り、いかなる高い輻射熱に長時間さらされても安定した
酸素導入がはかれ、面的(幅,長手)に安定した磁気特
性を有する蒸着磁気記録媒体を得ることができる。
As described above, according to the present invention, by cooling the oxygen introduction nozzle provided at the tip of the shutter, stable oxygen introduction can be achieved even if exposed to any high radiant heat for a long time. It is possible to obtain a vapor-deposited magnetic recording medium having stable magnetic properties (width, length).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた冷却パイプ付き酸素導
入ノズルの見取図
FIG. 1 is a sketch of an oxygen introduction nozzle with a cooling pipe used in an embodiment of the present invention.

【図2】本発明の一実施例の酸素導入ノズルを冷却した
時の蒸着前後の酸素導入ノズルの幅方向流量分布図
FIG. 2 is a flow rate distribution diagram in the width direction of the oxygen introducing nozzle before and after vapor deposition when the oxygen introducing nozzle of one embodiment of the present invention is cooled.

【図3】本発明の一実施例の酸素導入ノズルを冷却した
時の蒸着の幅、長手の保磁力測定結果を示す特性図
FIG. 3 is a characteristic diagram showing coercive force measurement results of vapor deposition width and length when an oxygen introducing nozzle of one embodiment of the present invention is cooled.

【図4】従来の酸素導入ノズルを冷却しない時の蒸着の
幅、長手の保磁力測定結果を示す特性図
FIG. 4 is a characteristic diagram showing measurement results of coercive force in the width and length of vapor deposition when the conventional oxygen introduction nozzle is not cooled.

【図5】従来の酸素導入ノズルを冷却しない時の蒸着後
の酸素導入ノズルの幅方向の流量分布を示す特性図
FIG. 5 is a characteristic diagram showing a flow rate distribution in the width direction of the oxygen introducing nozzle after vapor deposition when the conventional oxygen introducing nozzle is not cooled.

【図6】真空蒸着機の構造を示す模式図FIG. 6 is a schematic diagram showing the structure of a vacuum vapor deposition machine.

【符号の説明】[Explanation of symbols]

10 酸素導入ノズル本体 11 冷却水循環パイプ 10 Oxygen introduction nozzle body 11 Cooling water circulation pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸着磁気記録媒体の蒸着層形成時に酸素
導入ノズルを冷却することを特徴とする蒸着磁気記録媒
体の製造方法。
1. A method for producing a vapor-deposited magnetic recording medium, which comprises cooling an oxygen introducing nozzle when forming a vapor-deposited layer of the vapor-deposited magnetic recording medium.
JP29115891A 1991-11-07 1991-11-07 Manufacture of vapor-deposited magnetic recording medium Pending JPH05128514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29115891A JPH05128514A (en) 1991-11-07 1991-11-07 Manufacture of vapor-deposited magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29115891A JPH05128514A (en) 1991-11-07 1991-11-07 Manufacture of vapor-deposited magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05128514A true JPH05128514A (en) 1993-05-25

Family

ID=17765199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29115891A Pending JPH05128514A (en) 1991-11-07 1991-11-07 Manufacture of vapor-deposited magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05128514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872344A2 (en) 1997-04-16 1998-10-21 Seiko Epson Corporation Ink jet recording method and ink jet recording apparatus therefor
US6238730B1 (en) * 1997-06-25 2001-05-29 Sony Corporation Gas introduction pipe and magnetic recording medium production method using the pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872344A2 (en) 1997-04-16 1998-10-21 Seiko Epson Corporation Ink jet recording method and ink jet recording apparatus therefor
US6238730B1 (en) * 1997-06-25 2001-05-29 Sony Corporation Gas introduction pipe and magnetic recording medium production method using the pipe

Similar Documents

Publication Publication Date Title
US4220117A (en) Apparatus for fabrication of magnetic recording media
JPH05128514A (en) Manufacture of vapor-deposited magnetic recording medium
US4935605A (en) Apparatus for correcting curl of magnetic recording medium
US4999220A (en) Method for manufacturing perpendicular magnetic recording medium
JPH06228743A (en) Vacuum deposition device
JPH11200011A (en) Vacuum deposition device
JP3335803B2 (en) Method for manufacturing magnetic recording medium, apparatus for manufacturing thin film, and magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS595733Y2 (en) Vacuum deposition equipment
JPH04283912A (en) Manufacture of magnetic recording medium
JPH06215369A (en) Production of magnetic recording medium
JPH1112721A (en) Gas introducing pipe and production of magnetic recording medium with using same
JPH09316628A (en) Production of vapor-deposited body and vapor deposition device
JP4048643B2 (en) Method for manufacturing magnetic recording medium
JPH10188277A (en) Apparatus for production of tape-like magnetic recording medium and its production
JPS63241723A (en) Production of magnetic recording medium
JPH0714161A (en) Production of magnetic recording medium
JPH0512657A (en) Thin-film magnetic tape and method and apparatus for producing the tape
JPH0121537B2 (en)
JP2001236641A (en) Vapor deposition device for thin film magnetic tape
JPH10124870A (en) Production of magnetic recording medium
JPS6059536A (en) Producing device of magnetic thin film
JPS5936329A (en) Manufacture of magnetic recording medium
JPS5845625A (en) Manufacture for magnetic recording medium
JPH10112027A (en) Producing device of magnetic recording medium