JPH0511009A - Diagnosing method for insulation of cv cable - Google Patents

Diagnosing method for insulation of cv cable

Info

Publication number
JPH0511009A
JPH0511009A JP3183810A JP18381091A JPH0511009A JP H0511009 A JPH0511009 A JP H0511009A JP 3183810 A JP3183810 A JP 3183810A JP 18381091 A JP18381091 A JP 18381091A JP H0511009 A JPH0511009 A JP H0511009A
Authority
JP
Japan
Prior art keywords
cable
current
component
resonator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3183810A
Other languages
Japanese (ja)
Other versions
JP3034651B2 (en
Inventor
Yoshio Tsunoda
美伯 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3183810A priority Critical patent/JP3034651B2/en
Publication of JPH0511009A publication Critical patent/JPH0511009A/en
Application granted granted Critical
Publication of JP3034651B2 publication Critical patent/JP3034651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accurately diagnose the insulation of a power cable by applying an AC voltage across the power cable and detecting a pulsating current from a grounding conductor. CONSTITUTION:An AC power source S is connected to the conductor 1a of a power cable 1 to be diagnosed and a transformer 2 which detects a grounding conductor current (i) is coupled between the shielding layer 1b of the cable 1 and earth, with the output of the transformer 2 being connected to a display 6 through the first low-pass filter 3 which removes an AC component and takes out a pulsating current component only from the output of the transformer 2, the first resonator 4 which only extracts signals having a specific frequency, and variable gain amplifier 5. The power source S is connected with a transformer 7, the second low-pass filter 8, and second resonator 9 and the output of the resonator 9 is connected to the gain controlling input terminal of the amplifier 5 so as to adjust the gain of the amplifier 5 in accordance with the output of the resonator 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば活線下において
CVケーブルの水トリー等による絶縁劣化の程度を診断
するCVケーブルの絶縁診断方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CV cable insulation diagnosis method for diagnosing a degree of insulation deterioration of a CV cable due to a water tree or the like under a live line.

【0002】[0002]

【従来の技術】一般的に、電力ケーブルは布設後の経年
変化により電気絶縁体の絶縁性能が低下する。特に、C
Vケーブルでは架橋ポリエチレン絶縁体に樹状の亀裂が
生じ、この亀裂に水分が進入する所謂水トリーの発生が
絶縁劣化の主な原因であることが知られている。このよ
うな絶縁性能の低下は、放置すると進展して何れは大き
な絶縁破壊事故につながる虞れがある。従って、ケーブ
ルの絶縁抵抗の変化を把握し、劣化を早期に発見するこ
とが極めて重要である。このため、従来から種々の絶縁
測定方法が知られているが、特に近年では測定時に送電
を停止することなく活線状態で診断する方法が幾つか提
案されており、常時の状態監視も可能である等の有利な
点が多いため注目されている。
2. Description of the Related Art Generally, a power cable is deteriorated in insulation performance of an electric insulator due to aging after installation. In particular, C
It is known that a V-cable causes a tree-like crack in a cross-linked polyethylene insulator, and a so-called water tree in which moisture enters the crack is a main cause of insulation deterioration. Such deterioration in insulation performance may progress if left unattended and eventually lead to a large dielectric breakdown accident. Therefore, it is extremely important to grasp the change in the insulation resistance of the cable and detect the deterioration early. For this reason, various insulation measurement methods have been conventionally known, but in recent years, in particular, several methods have been proposed for diagnosing in a live state without stopping power transmission during measurement, and constant state monitoring is also possible. It is attracting attention because of its many advantages.

【0003】このような常時監視を行う方法としては、
従来では例えば特公昭60−8465号公報等に記載さ
れているように送電交流電圧に直流電圧を重畳させ、こ
の結果として検出されるケーブル漏洩電流の直流成分か
らケーブルの絶縁抵抗を求めて評価する所謂直流重畳法
や、或いは特開昭60−185171号公報等に記載さ
れているように送電電圧波形と電流波形とを測定し、誘
電正接を求めて評価する所謂 tanδ法が一般に用いられ
ている。また、特にCVケーブルの場合では特開昭59
−202075号公報において水トリーに電流整流作用
があるとして、交流送電中のケーブル漏洩電流の直流分
を測定し、その方向と絶対値とから水トリーの分布と長
さ及び体積を推定する方法が開示されている。
As a method of performing such constant monitoring,
Conventionally, for example, as described in Japanese Patent Publication No. 60-8465, a DC voltage is superimposed on a transmission AC voltage, and the insulation resistance of the cable is obtained and evaluated from the DC component of the cable leakage current detected as a result. A so-called DC superposition method or a so-called tan δ method, which measures a transmission voltage waveform and a current waveform and obtains and evaluates a dielectric loss tangent, is generally used, as described in JP-A-60-185171. .. Further, especially in the case of a CV cable, Japanese Patent Laid-Open No. 59-59
In Japanese Patent Laid-Open No. 202075, it is assumed that the water tree has a current rectifying action, and a method of measuring the DC component of the cable leakage current during AC power transmission and estimating the distribution, length, and volume of the water tree from the direction and absolute value thereof. It is disclosed.

【0004】しかしながら、上述した公知の従来方法は
何れも絶縁劣化を早期にかつ正確に発見したいという要
求を必ずしも充分に満足し得る方法ではない。即ち、第
1に述べた直流重畳法は一般に劣化の程度に対する検出
感度が悪いとされ、相当に程度の激しい劣化でなければ
検出されないという問題がある。また測定時に数10V
程度の直流重畳電圧を必要とし、このため直流電源を別
個に準備しなければらない。一方、 tanδ法ではケーブ
ル全体に渡る劣化は検出されるものの、水トリーのよう
に局部的な劣化に対する検出感度は悪いという欠点が知
られている。
However, none of the above-mentioned known conventional methods can sufficiently satisfy the demand for early and accurate detection of insulation deterioration. That is, the DC superposition method described in the first section is generally considered to have poor detection sensitivity to the degree of deterioration, and there is a problem in that it cannot be detected unless it is considerably deteriorated. Also, several tens of volts at the time of measurement
A DC superimposed voltage of a certain degree is required, and therefore a DC power supply must be prepared separately. On the other hand, it is known that the tan δ method detects deterioration over the entire cable, but the detection sensitivity for local deterioration such as water tree is poor.

【0005】更に、水トリーの整流作用を利用する特開
昭59−202075号公報の場合では、ケーブル絶縁
体に導体側から発生する所謂内導水トリーとシース側か
ら発生する外導水トリーとでは、発生する直流電流が互
いに逆極性であることから、両種の水トリーが同時に発
生した場合には検出される直流電流は互いに打ち消し合
って、充分な測定ができなくなる虞れがある。
Further, in the case of Japanese Patent Laid-Open No. 59-202075, which utilizes the rectifying action of a water tree, a so-called inner water guiding tree generated from the conductor side and an outer water guiding tree generated from the sheath side of the cable insulator are Since the generated DC currents have mutually opposite polarities, when both types of water trees are generated at the same time, the detected DC currents may cancel each other out, and sufficient measurement may not be possible.

【0006】上述のような問題点にを基に本発明者らが
水トリー現象について研究したところ、測定対象とする
電力ケーブルに交流電圧を印加し、この印加交流電圧の
振幅を零から次第に大きくしてゆく過程で、その接地線
電流のうち10数Hz以下の準直流成分を検出した場合
に、印加交流電圧の振幅が或る値に達すると交流電圧に
重畳していたパルス性雑音に基づく脈動電流が検出され
ることを見い出した、つまり、この脈動電流は活線に付
随する線路のパルス性雑音の変化に刺激されてケーブル
絶縁体の劣化部で発生するものであり、その大きさは水
トリーの大きさに関連している。
On the basis of the above problems, the present inventors have studied the water tree phenomenon. As a result, an AC voltage is applied to the power cable to be measured, and the amplitude of the applied AC voltage is gradually increased from zero. In the process, when a quasi-DC component of less than 10 Hz is detected in the ground line current, when the amplitude of the applied AC voltage reaches a certain value, it is based on the pulse noise superimposed on the AC voltage. We found that a pulsating current is detected, that is, this pulsating current is generated in the deteriorated part of the cable insulator by being stimulated by the change in the pulse noise of the line accompanying the live line, and its magnitude is It is related to the size of the water tree.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者らは
新しい絶縁劣化診断方法を特願平1−167910号と
して先に提案したが、絶縁劣化診断を行うに際しては次
のような問題があることが判明した。即ち、接地線電流
より検出される脈動電流の大きさから絶縁体の劣化度合
を判定するわけであるが、脈動電流信号は微小な信号で
あるため評価が極めて困難なのである。また、評価を容
易とするために脈動電流を単に増幅すると、雑音電流成
分も同時に増幅されてしまい、やはり評価が困難となっ
てしまう。また、得られる脈動電流はケーブルに印加さ
れる交流電源に元々重畳されている雑音性の脈動電流の
大きさにも影響され、その補正を行う必要があることも
判った。
Therefore, the inventors of the present invention have previously proposed a new insulation deterioration diagnosing method as Japanese Patent Application No. 1-167910, but there are the following problems in diagnosing insulation deterioration. It has been found. That is, the degree of deterioration of the insulator is determined based on the magnitude of the pulsating current detected from the ground line current, but the pulsating current signal is a very small signal, which makes evaluation extremely difficult. Further, if the pulsating current is simply amplified to facilitate the evaluation, the noise current component is also amplified at the same time, which makes the evaluation difficult. It was also found that the obtained pulsating current is also affected by the magnitude of the noisy pulsating current that is originally superimposed on the AC power source applied to the cable, and it is necessary to correct it.

【0008】本発明の目的は、上述の脈動電流を利用し
て、より確実に絶縁劣化の検知を行い得るCVケーブル
の絶縁診断方法を提供することにある。
An object of the present invention is to provide a method for diagnosing insulation of a CV cable which can more reliably detect insulation deterioration by utilizing the above-mentioned pulsating current.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係るCVケーブルの絶縁診断方法は、測定
対象の電力ケーブルに電源から交流電圧を印加し、その
接地線から接地線電流を検出し、該接地線電流より交流
成分を除去すると共に特定低周波数の信号のみを抽出す
る第1の工程と、前記交流電流から交流成分を除去する
と共に前記特定低周波数成分のみを抽出する第2の工程
と、前記第1の工程で得られた値を前記第2の工程で得
られた値によって補正して、ケーブル絶縁体の劣化の程
度を検知する第3の工程とを有することを特徴とする。
In order to achieve the above object, a method for diagnosing insulation of a CV cable according to the present invention applies an AC voltage from a power source to a power cable to be measured, and then a ground wire current from the ground wire. A first step of detecting an AC component from the ground line current and extracting only a signal of a specific low frequency and a step of removing an AC component from the AC current and extracting only the specific low frequency component. And a third step of detecting the degree of deterioration of the cable insulator by correcting the value obtained in the first step by the value obtained in the second step. Characterize.

【0010】[0010]

【作用】上述の構成を有するCVケーブルの絶縁診断方
法は、電力ケーブルに交流電圧を印加し、接地線で得ら
れる設置線電流から交流成分を除去して特定低周波数成
分を検出すると共に、電源の交流成分を除去して同様な
特定低周波数成分を求めて補正する。
According to the method for diagnosing insulation of a CV cable having the above-mentioned structure, an AC voltage is applied to the power cable to remove an AC component from the installation line current obtained by the ground line to detect a specific low frequency component, and a power supply. The AC component of is removed and a similar specific low frequency component is obtained and corrected.

【0011】[0011]

【実施例】本発明に係る方法を図示の実施例に基づいて
詳細に説明する。図1は本発明の劣化診断方法を実施す
るためのブロック図である。図において、1は測定対象
であるCVケーブル等の供試電力ケーブルであり、導体
1aと遮蔽層1b間に静電容量Ckを有している。Sは交
流電源であり、一端を接地し他端を供試電力ケーブル1
の導体1a側に接続する。また、供試電力ケーブル1の
遮蔽層側1bと接地間の接地線に変流器2をカップリン
グし、変流器2の出力は第1のローパスフィルタ3、第
1の共振器4、可変ゲイン増幅器5を介して表示器6に
接続する。更に、交流電源Sには変圧器7、第2のロー
パスフィルタ8、第2の共振器9を接続し、第2の共振
器9の出力を可変ゲイン増幅器5のゲイン制御入力端に
接続する。なお、接地線には変流器2の代りに、抵抗を
挿入して抵抗による検出を行ってもよい。
The method according to the present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a block diagram for carrying out the deterioration diagnosis method of the present invention. In the figure, reference numeral 1 denotes a power cable under test such as a CV cable to be measured, which has a capacitance Ck between the conductor 1a and the shield layer 1b. S is an AC power supply, one end of which is grounded and the other end of which is the power cable for test 1
Connected to the conductor 1a side. In addition, the current transformer 2 is coupled to the ground wire between the shield layer side 1b of the test power cable 1 and the ground, and the output of the current transformer 2 is the first low-pass filter 3, the first resonator 4, and the variable It is connected to the display 6 via the gain amplifier 5. Further, the AC power source S is connected to the transformer 7, the second low-pass filter 8, and the second resonator 9, and the output of the second resonator 9 is connected to the gain control input terminal of the variable gain amplifier 5. In addition, instead of the current transformer 2, a resistance may be inserted in the ground line to perform detection by the resistance.

【0012】ここで、交流電源Sから供試電力ケーブル
1に電圧を印加すると、ケーブルが有する静電容量Ckに
充電電流が流れ、遮蔽層1b側から大地に接地線を通っ
て接地線電流iが流れることになる。変流器2は接地線
から接地線電流iを検出し、第1のローパスフィルタ3
に送出し、接地線電流iから印加した50Hz又は60
Hzの交流成分を除去し低周波の脈流成分のみを取り出
す。第1のローパスフィルタ3としては、例えば定K型
フィルタを用い、ケーブル導体1aへの交流電源Sの印
加により生ずる接地線電流iの中から基本交流成分を除
去して脈流成分のみを出力し、この出力を狭帯域型の第
1の共振器4に入力する。第1の共振器4では、脈流成
分の中から特定低周波数成分のみを抽出する。この第1
の共振器4としては、各種狭帯域型のものを用いること
ができるが、例えば低周波帯でよく用いられる並列T型
CR回路を使用できる。この並列T型CR帰還増幅回路
(Twin-T回路)は、同抵抗値の2つの抵抗Ra、Raとコン
デンサCbから成るT型回路、及び2個の同容量のコンデ
ンサCa、Caと抵抗Rbから成るT型回路の並列回路で構成
し、コンデンサCb及び抵抗RbはそれぞれCb=2・Ca、Rb
=Ra/2の値とする。このように構成された並列T型C
R回路は、f=1/2π・Ca・Raの周波数信号を最大信
号で通過させる周波数特性を備えており、周波数fの信
号の選択、即ち脈流成分の中から或る1つの特定周波数
の信号のみを抽出することができる。更に、この信号を
可変ゲイン増幅器5によって増幅して、ペングラフ、オ
シロスコープ等の表示器6に送信する。
Here, when a voltage is applied from the AC power source S to the power cable under test 1, a charging current flows in the electrostatic capacitance Ck of the cable, and the ground wire current i is passed from the shield layer 1b side to the ground through the ground wire. Will flow. The current transformer 2 detects the ground line current i from the ground line, and the first low pass filter 3
50Hz or 60 applied from the ground wire current i
The AC component of Hz is removed and only the low-frequency pulsating flow component is extracted. As the first low-pass filter 3, for example, a constant K type filter is used, and the basic AC component is removed from the ground line current i generated by the application of the AC power source S to the cable conductor 1a to output only the pulsating component. This output is input to the narrow band type first resonator 4. The first resonator 4 extracts only a specific low frequency component from the pulsating flow component. This first
As the resonator 4, various narrow band types can be used, but for example, a parallel T-type CR circuit which is often used in a low frequency band can be used. This parallel T-type CR feedback amplifier circuit (Twin-T circuit) consists of a T-type circuit consisting of two resistors Ra and Ra of the same resistance value and a capacitor Cb, and two capacitors Ca and Ca and a resistor Rb of the same capacity. It is composed of a parallel circuit of T-type circuit, and the capacitor Cb and the resistor Rb are Cb = 2 · Ca and Rb
= Ra / 2. Parallel T-type C configured in this way
The R circuit has a frequency characteristic of allowing a frequency signal of f = 1 / 2π · Ca · Ra to pass with the maximum signal, and selects a signal of frequency f, that is, a certain specific frequency from among pulsating flow components. Only the signal can be extracted. Further, this signal is amplified by the variable gain amplifier 5 and transmitted to the display 6 such as a pen graph or an oscilloscope.

【0013】同時に、交流電源Sを変圧器7を介して第
2のローパスフィルタ8により印加交流成分を除去し、
第2の共振器9により第1の共振器4で抽出した同じ特
定周波数を抽出し、この大きさに比例した信号により可
変ゲイン増幅器5のゲインを調整する。即ち、第2の共
振器9の出力が大きければ可変ゲイン増幅器5のゲイン
を大きくするように調整し、逆に小さければゲインを小
さくするように調整する。
At the same time, the AC power source S is removed via the transformer 7 by the second low-pass filter 8 to remove the applied AC component.
The same specific frequency extracted by the first resonator 4 is extracted by the second resonator 9, and the gain of the variable gain amplifier 5 is adjusted by a signal proportional to this magnitude. That is, if the output of the second resonator 9 is large, the gain of the variable gain amplifier 5 is adjusted to be large, and conversely, if the output is small, the gain is adjusted to be small.

【0014】図2は可変ゲイン増幅器5の出力の印加電
圧に対するグラフ図であり、横軸に印加電圧、縦軸に電
流Iを示している。供試電力ケーブル1に交流電圧が印
加されると、遮蔽層1bには導体1aとの静電結合によ
り印加交流電圧に応じた電荷が誘起され、この時間変化
のため大地との間に印加交流電圧の周波数と同程度の周
期で変動する接地線電流iが流れることになるが、これ
に加えて絶縁体1cに水トリー劣化が存在する場合に
は、前述の脈動電流が重畳されることとなる。脈動電流
とは前述したように印加交流電圧に依存する電流以外の
電流であり、交流電源Sに重畳したパルス性雑音に起因
して劣化部で発生したものであって、印加交流電圧の周
波数以下の周波数電流である。通常、印加交流電圧の周
波数は50Hz又は60Hzであるので、例えば50H
z又は60Hz以下の周波数信号が通過するように第1
のローパスフィルタ3の回路を設計すれば、脈流成分の
みを接地線電流iの中から検出することができる。検出
する脈流成分の周波数は任意であるが、周波数が高い程
対地容量の面で不利となるため、5Hz程度以下である
ことが望ましく、例えば1Hzなどが好適である。
FIG. 2 is a graph showing the output voltage of the variable gain amplifier 5 with respect to the applied voltage. The horizontal axis shows the applied voltage and the vertical axis shows the current I. When an AC voltage is applied to the power cable 1 under test, an electric charge corresponding to the applied AC voltage is induced in the shield layer 1b by electrostatic coupling with the conductor 1a, and due to this time change, the AC applied to the ground is changed. The ground wire current i that fluctuates at a cycle similar to the frequency of the voltage will flow, but in addition to this, when there is water tree deterioration in the insulator 1c, the above-mentioned pulsating current is superimposed. Become. As described above, the pulsating current is a current other than the current that depends on the applied AC voltage, is generated in the deteriorated portion due to the pulse noise superimposed on the AC power supply S, and is equal to or lower than the frequency of the applied AC voltage. Frequency current. Normally, the frequency of the applied AC voltage is 50 Hz or 60 Hz, so for example 50 H
First to allow frequency signals below z or 60 Hz to pass
If the circuit of the low-pass filter 3 is designed, only the pulsating current component can be detected from the ground line current i. The frequency of the pulsating flow component to be detected is arbitrary, but the higher the frequency, the more disadvantageous it is in terms of ground capacity.

【0015】この脈流成分の大きさは、水トリー劣化の
程度が激しい程大きくなるので、この大きさを求めるこ
とにより水トリー劣化の程度を推測することができる。
例えば、ケーブル絶縁体1cに水トリーが存在しない健
全な供試電力ケーブル1においては、電圧変化に拘ら
ず、表示器6で得られる電流の大きさはAに示すように
ほぼ一定であるのに対し、水トリーが存在すると電圧を
大きくするにつれ電流値はBに示すように大きくなる。
Since the magnitude of this pulsating flow component increases as the degree of water tree deterioration increases, the degree of water tree deterioration can be estimated by obtaining this magnitude.
For example, in the sound test power cable 1 in which the water tree does not exist in the cable insulator 1c, the magnitude of the current obtained by the indicator 6 is almost constant as indicated by A, regardless of the voltage change. On the other hand, when a water tree exists, the current value increases as the voltage increases, as shown by B.

【0016】この場合において、可変ゲイン増幅器5の
ゲインを固定した場合には、表示器6で得られる値に
は、交流電源Sに重畳したパルス性の雑音の大きさの影
響に関連した図2の測定値Cが得られる。この測定値C
は必ずしも水トリーの大きさを一義的に現したものでは
なく、交流電源S中のパルス性雑音の影響も受けている
ために、水トリーの程度は正確に判別し難い。
In this case, when the gain of the variable gain amplifier 5 is fixed, the value obtained by the display 6 is related to the influence of the magnitude of the pulse noise superimposed on the AC power supply S. The measured value C of is obtained. This measured value C
Does not necessarily uniquely represent the size of the water tree, and is also affected by the pulse noise in the AC power source S, so it is difficult to accurately determine the degree of the water tree.

【0017】そこで、交流電源Sから直接求めた脈動電
流の大きさ、即ち第2のローパスフィルタ8を通した信
号により可変ゲイン増幅器5のゲインを調整すると、測
定値Bが得られる。この測定値Bは交流電源Sに含まれ
るパルス性雑音の大きさによって測定値Cを校正したも
のに他ならず、より正確に絶縁体1cの劣化の程度を診
断することができることになる。
Therefore, the measured value B is obtained by adjusting the gain of the variable gain amplifier 5 by the magnitude of the pulsating current directly obtained from the AC power source S, that is, the signal passed through the second low pass filter 8. The measured value B is nothing more than the calibrated measured value C according to the magnitude of the pulse noise included in the AC power source S, and the degree of deterioration of the insulator 1c can be diagnosed more accurately.

【0018】なお、上述の実施例においては、第1、第
2のローパスフィルタ3、8、及び第2の共振器4、9
を別個に設けたが、これらを共通にしてスイッチで切換
えて使用することもできる。また、本実施例においては
ケーブル静電容量Ckによる充電電流の小さい単芯電力ケ
ーブルに適用した場合を例にしているが、三芯一括電力
ケーブル或いは単芯三線電力ケーブル線路の三芯一括測
定にも同様に適用可能である。
In the above embodiment, the first and second low pass filters 3 and 8 and the second resonators 4 and 9 are used.
Although they are provided separately, they can be used in common by switching them with a switch. Further, in the present embodiment, the case of applying to a single core power cable with a small charging current due to the cable capacitance Ck is taken as an example, but for a three core batch power cable or a three core batch measurement of a single core three wire power cable line. Is similarly applicable.

【0019】[0019]

【発明の効果】以上説明したように本発明に係るCVケ
ーブルの絶縁診断方法によれば、ケーブル接地線電流中
の脈流成分を検出し、更にこの脈流成分の中から単一周
波数信号を抽出して増幅した出力信号を、同様に交流電
源中から得られた同一周波数信号のパルス性雑音の大き
さにより補正するので、元々のパルス性雑音の大きさに
拘らず水トリー劣化の程度を正確に検知でき、より正確
な劣化診断を行い得る。
As described above, according to the CV cable insulation diagnosis method of the present invention, a pulsating current component in the cable ground wire current is detected, and a single frequency signal is detected from the pulsating current component. The extracted and amplified output signal is similarly corrected by the magnitude of the pulse noise of the same frequency signal obtained from the AC power source, so the degree of water tree deterioration can be determined regardless of the original pulse noise magnitude. It can be accurately detected, and more accurate deterioration diagnosis can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するためのブロック回路構成図で
ある。
FIG. 1 is a block circuit configuration diagram for implementing the present invention.

【図2】測定結果のグラフ図である。FIG. 2 is a graph of measurement results.

【符号の説明】[Explanation of symbols]

1 供試電力ケーブル 1a 導体 1b 遮蔽層 1c 絶縁体 2 変流器 3、8 ローパスフィルタ 4、9 共振器 5 可変ゲイン増幅器 6 表示器 7 変圧器 S 交流電流 i 接地線電流 1 Power cable under test 1a Conductor 1b Shielding layer 1c Insulator 2 Current transformer 3, 8 Low-pass filter 4, 9 Resonator 5 Variable gain amplifier 6 Indicator 7 Transformer S AC current i Ground wire current

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年11月8日[Submission date] November 8, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】009[Correction target item name] 009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【009】[0109]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係るCVケーブルの絶縁診断方法は、測定
対象の電力ケーブルに電源から交流電圧を印加し、その
接地線から接地線電流を検出し、該接地線電流より交流
成分を除去すると共に特定低周波数の信号のみを抽出す
る第1の工程と、前記交流電圧から交流成分を除去する
と共に前記特定低周波数成分のみを抽出する第2の工程
と、前記第1の工程で得られた値を前記第2の工程で得
られた値によって補正して、ケーブル絶縁体の劣化の程
度を検知する第3の工程とを有することを特徴とする。
In order to achieve the above object, a method for diagnosing insulation of a CV cable according to the present invention applies an AC voltage from a power source to a power cable to be measured, and then a ground wire current from the ground wire. A first step of detecting an AC component from the ground line current and extracting only a signal of a specific low frequency; and a step of removing an AC component from the AC voltage and extracting only the specific low frequency component. And a third step of detecting the degree of deterioration of the cable insulator by correcting the value obtained in the first step by the value obtained in the second step. Characterize.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【作用】上述の構成を有するCVケーブルの絶縁診断方
法は、電力ケーブルに交流電圧を印加し、接地線で得ら
れる接地線電流から交流成分を除去して特定低周波数成
分を検出すると共に、電源の交流成分を除去して同様な
特定低周波数成分を求めて補正する。
According to the insulation diagnosis method for a CV cable having the above-mentioned structure, an AC voltage is applied to the power cable to remove the AC component from the ground line current obtained by the ground line to detect a specific low frequency component, and at the same time, to supply the power. The AC component of is removed and a similar specific low frequency component is obtained and corrected.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】同時に、交流電源Sを変圧器7を介して第
2のローパスフィルタ8により印加交流成分を除去し、
第2の共振器9により第1の共振器4で抽出した同じ特
定周波数を抽出し、この大きさに比例した信号により可
変ゲイン増幅器5のゲインを調整する。即ち、第2の共
振器9の出力が大きければ可変ゲイン増幅器5のゲイン
小さくするように調整し、逆に小さければゲインを
きくするように調整する。
At the same time, the AC power source S is removed via the transformer 7 by the second low-pass filter 8 to remove the applied AC component.
The same specific frequency extracted by the first resonator 4 is extracted by the second resonator 9, and the gain of the variable gain amplifier 5 is adjusted by a signal proportional to this magnitude. That is, if the output of the second resonator 9 is greater adjusted to reduce the gain of the variable gain amplifier 5, the gain is smaller in the opposite large
It is adjusted to hear.

Claims (1)

【特許請求の範囲】 【請求項1】 測定対象の電力ケーブルに電源から交流
電圧を印加し、その接地線から接地線電流を検出し、該
接地線電流より交流成分を除去すると共に特定低周波数
の信号のみを抽出する第1の工程と、前記交流電流から
交流成分を除去すると共に前記特定低周波数成分のみを
抽出する第2の工程と、前記第1の工程で得られた値を
前記第2の工程で得られた値によって補正して、ケーブ
ル絶縁体の劣化の程度を検知する第3の工程とを有する
ことを特徴とするCVケーブルの絶縁診断方法。
Claim: What is claimed is: 1. An AC voltage is applied from a power source to a power cable to be measured, a ground line current is detected from the ground line, an AC component is removed from the ground line current, and a specific low frequency is detected. The first step of extracting only the signal of the above, the second step of removing the alternating current component from the alternating current and extracting only the specific low frequency component, and the value obtained in the first step as the first step. And a third step of detecting the degree of deterioration of the cable insulator by correcting the value obtained in the second step.
JP3183810A 1991-06-28 1991-06-28 Diagnosis method for insulation of CV cable Expired - Fee Related JP3034651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183810A JP3034651B2 (en) 1991-06-28 1991-06-28 Diagnosis method for insulation of CV cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183810A JP3034651B2 (en) 1991-06-28 1991-06-28 Diagnosis method for insulation of CV cable

Publications (2)

Publication Number Publication Date
JPH0511009A true JPH0511009A (en) 1993-01-19
JP3034651B2 JP3034651B2 (en) 2000-04-17

Family

ID=16142273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183810A Expired - Fee Related JP3034651B2 (en) 1991-06-28 1991-06-28 Diagnosis method for insulation of CV cable

Country Status (1)

Country Link
JP (1) JP3034651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882131B1 (en) * 2007-08-20 2009-02-06 삼성전기주식회사 Integrated passive device
CN103723280A (en) * 2012-10-11 2014-04-16 空中客车德国运营有限责任公司 Supply system for an aircraft, use of a shielded supply line in an aircraft and an aircraft with a supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882131B1 (en) * 2007-08-20 2009-02-06 삼성전기주식회사 Integrated passive device
CN103723280A (en) * 2012-10-11 2014-04-16 空中客车德国运营有限责任公司 Supply system for an aircraft, use of a shielded supply line in an aircraft and an aircraft with a supply system
EP2720334A1 (en) * 2012-10-11 2014-04-16 Airbus Operations GmbH Supply system for an aircraft, use of a shielded supply line in an aircraft and an aircraft with a supply system
US9305731B2 (en) 2012-10-11 2016-04-05 Airbus Operations Gmbh Supply system for an aircraft, use of a shielded supply line in an aircraft and an aircraft with a supply system

Also Published As

Publication number Publication date
JP3034651B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP7132319B2 (en) Method and test apparatus for measuring partial discharge impulses in screened cables
Arman et al. The measurement of discharges in dielectrics
JPH09184866A (en) Diagnostic method for degradation of cable under electrification
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JP2742637B2 (en) Diagnosis method for insulation of CV cable
JPH05256894A (en) Method for diagnosing insulation deterioration of power cable
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
US9035659B2 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP2929047B2 (en) Diagnosis method for insulation deterioration of power cable
JP2000009788A (en) Deterioration diagnosis method of cables
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JPH0331776A (en) Diagnostic device for insulation deterioration of cv cable
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0836004A (en) Deterioration diagnosing method for cv cable
JP2873697B2 (en) Monitoring method for insulation deterioration of ungrounded circuit
JPH05180884A (en) Insulation resistance measuring method for load apparatus
JPH0331775A (en) Diagnostic method for insulation deterioration of cv cable
JPH06249898A (en) Insulation diagnostic method for cv cable
JP2001133508A (en) Method of diagnosing deterioration of cable hot-line
JPH07151815A (en) Diagnostic method for insulation degradation of power cable
JP2003084028A (en) Hot line diagnostic method for power cable
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JPH11326436A (en) Diagnostic device for insulation deterioration of closed bus bar

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees