JPH0331776A - Diagnostic device for insulation deterioration of cv cable - Google Patents

Diagnostic device for insulation deterioration of cv cable

Info

Publication number
JPH0331776A
JPH0331776A JP16791189A JP16791189A JPH0331776A JP H0331776 A JPH0331776 A JP H0331776A JP 16791189 A JP16791189 A JP 16791189A JP 16791189 A JP16791189 A JP 16791189A JP H0331776 A JPH0331776 A JP H0331776A
Authority
JP
Japan
Prior art keywords
cable
pass filter
low
quasi
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16791189A
Other languages
Japanese (ja)
Other versions
JPH0627766B2 (en
Inventor
Kunihiko Sanada
邦彦 真田
Shigeo Sakai
堺 繁夫
Yoshio Tsunoda
角田 美伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1167911A priority Critical patent/JPH0627766B2/en
Publication of JPH0331776A publication Critical patent/JPH0331776A/en
Publication of JPH0627766B2 publication Critical patent/JPH0627766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a power failure accident beforehand by providing a low- pass filter filtering a quasi-DC current with the frequency lower than several Hz and a waveform display means indicating an output signal of the low-pass filter on a time axis directly or being amplified. CONSTITUTION:The device consists of the low-pass filter 1 and the waveform display device 2 such as a waveform scope consisting of a CRT, pen-recorder, etc., and a timewise variation of the quasi-DC components with the frequency lower than several Hz, which are filtered with the low-pass filter 1 among currents flowing between the input terminals, is displayed on the waveform display device 2. In this case, only the desired quasi-DC components can be well filtered when the low-pass filter 1 having the characteristic shown as the figure is selected. In the waveform display device 2, the variation of the filtered quasi-DC components is displayed on an adequate time axis. The more severe the degree of water-tree deterioration is, the wider an amplitude A of this pulsation increases, so the water-tree deterioration degree for a CV cable C can be estimated by means of obtaining this amplitude A.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、CVケーブルと称する架橋ポリエチレン電力
ケーブルの絶縁劣化の程度を診断するCVケーブルの絶
縁劣化診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CV cable insulation deterioration diagnostic device for diagnosing the degree of insulation deterioration of a crosslinked polyethylene power cable called a CV cable.

[従来の技術] 一般的に、電力ケーブルは布設後の経年変化により電気
絶縁体の絶縁性能が低下する。特にCVケーブルでは架
橋ポリエチレン絶縁体に樹状の亀裂が生じ、この亀裂に
水分が侵入する所謂水トリーの発生が絶縁劣化の主な原
因であることが知られている。このような絶縁性能の低
下は、放置すると進展して早晩大きな絶縁破壊事故につ
ながる虞れがある。従って、ケーブルの絶縁抵抗の変化
を把握し、劣化を早期に発見することが極めて重要であ
る。このため、従来から種々の絶縁測定方法が知られて
いるが、特に近年では測定時に送電を停止することなく
活線状態で診断する方法が幾つか提案されており、常時
の状態監視も可能である等の有利な点が多いため注目さ
れている。
[Prior Art] Generally, the insulation performance of the electric insulator of a power cable deteriorates due to aging after installation. In particular, it is known that in CV cables, dendritic cracks occur in the crosslinked polyethylene insulator, and the occurrence of so-called water trees, in which water enters the cracks, is the main cause of insulation deterioration. If left untreated, such deterioration in insulation performance may progress and sooner or later lead to a major dielectric breakdown accident. Therefore, it is extremely important to understand changes in cable insulation resistance and discover deterioration early. For this reason, various insulation measurement methods have been known for a long time, but in recent years in particular, several methods have been proposed for diagnosing live wires without stopping the power transmission during measurement, making it possible to constantly monitor the condition. It is attracting attention because of its many advantages.

このような常時監視を行う方法としては、従来では例え
ば特公昭5Q−8465号公報等に記載されているよう
に送電夕波電流に直流電流を重畳させ、この結果として
検出されるケーブル漏洩電流の直流成分からケーブルの
絶縁抵抗を求めて評価する所謂直流重畳法や、或いは特
開昭60−185171号公報等に記載されているよう
に送電電圧波形と電流波形とを測定し、誘電正接を求め
て評価する所謂janδ法が一般に用いられている。ま
た、特にCVケーブルの場合では特開昭59〜2020
75号公報において水トリーに電流整流作用があるとし
て、交流送電中のケーブル漏洩電流の直流分を測定し、
その方向と絶対値とから水トリーの分布と長さ及び体積
を推定する方法が開示されている。
Conventionally, as a method for performing such constant monitoring, as described in Japanese Patent Publication No. 5Q-8465, etc., a direct current is superimposed on the transmitted evening wave current, and as a result, the direct current of the cable leakage current is detected. The so-called DC superposition method is used to determine and evaluate the insulation resistance of the cable from its components, or the dielectric loss tangent is determined by measuring the transmission voltage waveform and current waveform as described in Japanese Patent Laid-Open Publication No. 185171/1983. The so-called jan δ method for evaluation is generally used. In addition, especially in the case of CV cables,
In Publication No. 75, assuming that the water tree has a current rectifying effect, the DC component of the cable leakage current during AC power transmission was measured,
A method for estimating the distribution, length, and volume of a water tree from its direction and absolute value is disclosed.

[発明が解決しようとする課題] ところで、上述した従来技術のうち、公知の従来方法は
何れも劣化の早期に正確に絶縁不良を発見したいという
要求を必ずしも充分に満足し得る方法ではない、即ち、
第1に述べた直疏重畳法は一般的に劣化の程度に対する
検出感度が悪いとされ、相当に程度の激しい劣化でなけ
れば検出されないという問題がある。また測定時にet
ov程度の直流重畳電圧を必要とし、このための直流電
流を準備しなければならない。
[Problems to be Solved by the Invention] By the way, among the above-mentioned conventional techniques, none of the known conventional methods is a method that can fully satisfy the demand for accurately discovering insulation defects at an early stage of deterioration. ,
The first-mentioned direct convolution method is generally said to have poor detection sensitivity with respect to the degree of deterioration, and has the problem that only extremely severe deterioration is detected. Also, et when measuring
A DC superimposed voltage of approximately OV is required, and a DC current must be prepared for this purpose.

一方、 janδ法ではケーブル全体に渡る劣化は検出
されるものの、水トリーのような局部的な劣化に対する
検出感度は悪いという欠点が知られている。
On the other hand, although the JAN δ method can detect deterioration over the entire cable, it is known to have a drawback in that it has poor detection sensitivity for localized deterioration such as water trees.

更に、水トリーの整流作用を利用する特開昭59−20
2075号公報の場合では、同公報に記述されているよ
うにケーブル絶縁体に導体側から発生する所謂内溝水ト
リーとシース側から発生する外道水トリーとでは、発生
する直流電流がガいに逆極性であることから、両種の水
トリーが同時に発生した場合には検出される直流電流は
写いに打ち消し合って充分な測定ができなくなる虞れが
ある。
Furthermore, Japanese Patent Application Laid-Open No. 59-20 utilizes the rectification effect of water trees.
In the case of Publication No. 2075, as described in the same publication, the direct current generated is different between the so-called internal groove water tree generated from the conductor side of the cable insulator and the external water tree generated from the sheath side. Since they have opposite polarities, if both types of water trees occur at the same time, there is a risk that the detected DC currents will cancel each other out, making it impossible to make sufficient measurements.

本発明者らは水トリー現象について研究した結果1次の
ような新1s実を発見した。即ち、測定対象とする電力
ケーブルに交流電圧を印加し、この交流電圧の振幅を零
から次第に大きくしてゆく過程で、その接地線電流のう
ち数Hz以下の準直流成分を検出した場合に、 (1)印加交流電圧の振幅が成る値に達すると脈動電流
が検出される。
As a result of research on the water tree phenomenon, the present inventors discovered a new 1s fruit of the first order. That is, in the process of applying an AC voltage to the power cable to be measured and gradually increasing the amplitude of this AC voltage from zero, if a quasi-DC component of several Hz or less is detected in the ground line current, (1) A pulsating current is detected when the amplitude of the applied AC voltage reaches a certain value.

(2)水トリー劣化が激しいケーブルはど、脈動の始ま
る交!電圧の振幅値が小さい。
(2) Cables with severe water tree deterioration begin to pulsate! The voltage amplitude value is small.

(3)電流脈動の振幅は印加交流電圧の振幅に対して単
調に増加する。
(3) The amplitude of current pulsation increases monotonically with respect to the amplitude of applied AC voltage.

本発明の目的は、従来例の欠点を解消し、上述の新事実
を基に、劣化時に正確に絶縁不良を発見できるCVケー
ブルの絶縁劣化診断装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an insulation deterioration diagnosing device for a CV cable, which eliminates the drawbacks of the conventional example and can accurately detect insulation defects at the time of deterioration based on the above-mentioned new facts.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係るCVケーブ
ルの絶縁劣化診断装置においては、交流電圧が印加され
測定対象とされる電力ケーブルの遮蔽層と電位基準との
間を接続し、前記遮蔽層から前記電位基準に流れる接地
線電波を基に、前記電力ケーブルの絶縁劣化を診断する
電力ケーブルの絶縁劣化診断装置であって、前記接地線
電流から数Hz以下の準直流電波を濾過するローパスフ
ィルタと、該ローパスフィルタの出力信号を直接又は増
幅して時間軸に表示する波形表示手段とを備えたことを
特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, in the CV cable insulation deterioration diagnosis device according to the present invention, the shielding layer and potential reference of the power cable to which an alternating current voltage is applied and which is to be measured. A power cable insulation deterioration diagnosing device for diagnosing insulation deterioration of the power cable based on ground wire radio waves flowing from the shielding layer to the potential reference, the power cable insulation deterioration diagnosis device The present invention is characterized by comprising a low-pass filter that filters the following quasi-DC radio waves, and a waveform display means that directly or amplifies the output signal of the low-pass filter and displays it on a time axis.

[作用] 上記の構成を有するCVケーブルの絶縁劣化診断装置は
、ローパスフィルタにより接地IQ主電流ら数Hz以下
の準直流電圧成分を濾過し、この濾過信号を波形表示手
段で時間軸に表示し、その脈動の振幅が測定対象とされ
る電力ケーブルの水トリー劣化の判断基準とされる。
[Function] The CV cable insulation deterioration diagnostic device having the above configuration filters quasi-DC voltage components of several Hz or less from the ground IQ main current using a low-pass filter, and displays this filtered signal on a time axis using a waveform display means. The amplitude of the pulsation is used as a criterion for water tree deterioration of the power cable being measured.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明のCVケーブルの絶縁劣化診断装置を測
定対象とされるCVケーブルに接続した構成図であり、
活線状態における三芯−括のCVケーブルCを対象とし
た場合の回路構成を示している。即ち、第2図に周波数
特性を示すようなローパスフィルタl及びCRTから成
る波形スコープやペンレコーダ等の波形表示装M2から
成っており、入力端子間に流れるtJjQのうちローパ
スフィルタで濾過された数Hz以下の準直流成分の時間
的変動が、波形表示装置2に表示される構成となってい
る。
FIG. 1 is a configuration diagram in which the CV cable insulation deterioration diagnostic device of the present invention is connected to a CV cable to be measured.
The circuit configuration is shown for a three-core CV cable C in a live state. That is, it consists of a low-pass filter l whose frequency characteristics are shown in FIG. 2, and a waveform display device M2 such as a waveform scope made of a CRT or a pen recorder, and the number of tJjQ flowing between the input terminals that is filtered by the low-pass filter. The waveform display device 2 is configured to display temporal fluctuations of the quasi-DC component below Hz.

一方、測定対象のCVケーブルは三相高電圧母線に接続
され、この三相高電圧母線はY−Δ結線の変圧器丁rの
二次側にそれぞれ接続され、−次側に接続された図示し
ない三相交流電源からの電力を受電している。また、三
相高電圧母線に接続された接地用変圧器GP丁の一次巻
線の中性点は直接大地に接地されている。このような接
続の結果、アース電位を基準とした三相交流電源がcv
ケーブルに印加され、CVケーブルCは活線状態となっ
ている。
On the other hand, the CV cable to be measured is connected to a three-phase high-voltage bus, and the three-phase high-voltage bus is connected to the secondary side of a transformer with a Y-Δ connection, and Power is being received from a three-phase AC power source that is not connected. Further, the neutral point of the primary winding of the grounding transformer GP-D connected to the three-phase high voltage bus is directly grounded to the earth. As a result of such a connection, a three-phase AC power supply referenced to earth potential becomes cv
The voltage is applied to the cable, and the CV cable C is in a live state.

測定に際しては、前述した構成を有する絶縁劣化診断装
置の入力端子の一端をcvケーブルCの遮蔽層Sに接続
し、他端を接地する。このとき、CVケーブルCの遮蔽
層Sには内部導体との静電結合により、印加交流電圧に
応じた電荷が誇起され、この時間変化のため大地との間
に印加交流電圧の周波数と同程度の周期で変動する電流
が波れることになる。これに加えて、CVケーブルCに
水トリー劣化がある場合には前述の脈動電流が重畏され
、ローパスフィルタ1が脈動電流のみを抽出する。即ち
、印加交流電圧の周波数は通常50H2又は60Hzで
あるから、第2図に例示する特性を有するローパスフィ
ルタlを選択すれば、所望の準直流成分だけを良好に濾
過させることが可能である。波形表示装置2では、第3
図に示すように濾過された準直流成分の変動を適当な時
間軸に表示する。検者はこの表示波形を観察することで
脈動電流の振幅を容易に求めることができ、この脈動の
振幅Aは水トリー劣化の程度が激しいほど大きくなるの
で、この振@Aを求めることにより、CVケーブルCの
水トリー劣化の程度を推測できることになる。
During measurement, one end of the input terminal of the insulation deterioration diagnostic device having the above-described configuration is connected to the shielding layer S of the CV cable C, and the other end is grounded. At this time, a charge corresponding to the applied AC voltage is generated in the shielding layer S of the CV cable C due to electrostatic coupling with the internal conductor, and due to this time change, the shielding layer S has the same frequency as the applied AC voltage. This results in a wave of current that fluctuates with a certain period. In addition to this, when the CV cable C has water tree deterioration, the above-mentioned pulsating current is taken into consideration, and the low-pass filter 1 extracts only the pulsating current. That is, since the frequency of the applied AC voltage is usually 50H2 or 60Hz, by selecting the low-pass filter l having the characteristics illustrated in FIG. 2, it is possible to filter only the desired quasi-DC component well. In the waveform display device 2, the third
As shown in the figure, the fluctuation of the filtered quasi-DC component is displayed on an appropriate time axis. The examiner can easily determine the amplitude of the pulsating current by observing this displayed waveform, and since the amplitude A of this pulsation increases as the degree of water tree deterioration becomes more severe, by determining this oscillation @A, This means that the degree of water tree deterioration of CV cable C can be estimated.

なお、上述の実施例において、ローパスフィルタ1と波
形表示装置2の途中にローパスフィルタlの出力を#1
幅する増幅器3を挿入すれば、CVケーブルCに印加さ
れる交流電圧の振幅が小さくても、良好な観測が可能と
なる。
In the above embodiment, the output of the low-pass filter l is connected to #1 between the low-pass filter 1 and the waveform display device 2.
By inserting the amplifier 3 that increases the amplitude, good observation becomes possible even if the amplitude of the AC voltage applied to the CV cable C is small.

また、CVケーブルが単心三線のケーブル群C゛である
場合にも、同様の装置で診断することができる。即ち、
この場合には第4図の部分図に示すように、ケーブル群
C°を構成する各ケーブルの遮蔽層S°を並列的に装置
の入力端子に接続すれば、上述の方法と全く同様であり
、一方でケーブル群C′を構成する各ケーブルの遮蔽層
S゛の何れか1つを装置の入力端子に接続すれば、各ケ
ーブルの水トリー劣化を独立に診断することがOf能で
ある。
Furthermore, even when the CV cable is of the single-core, three-wire cable group C', diagnosis can be made using the same device. That is,
In this case, as shown in the partial diagram of FIG. 4, if the shielding layer S° of each cable constituting the cable group C° is connected to the input terminal of the device in parallel, the method described above is exactly the same. On the other hand, if any one of the shielding layers S' of each cable constituting the cable group C' is connected to the input terminal of the device, it is possible to independently diagnose the water tree deterioration of each cable.

この第4図の例は第5図の構成図に示すように、一端を
接地した単相電源Pによる活線状態のケーブルC″を診
断する場合と回路的に同等であり、三相交流のみならず
単相交流による活線ケーブルの診断も可能であることは
勿論である。
The example shown in Fig. 4 is circuit-wise equivalent to diagnosing a live cable C'' with a single-phase power source P whose one end is grounded, as shown in the configuration diagram of Fig. 5, and only three-phase AC is used. Of course, it is also possible to diagnose live cables using single-phase alternating current.

更に、同様な装置で停止状態のケーブルを診断すること
も可能である。この場合に、別途に交流電圧を印加する
電源装とが必要となるが、この際に印加交流電圧の振幅
が可変の交流可変電源S′とし、この交流可変電源S゛
の出力電圧振幅を零から次第に増加してゆくことにより
、より一層正確な診断ができる。この場合の準直流成分
の時間変化は、例えば第6図のグラフ図に示すようにな
る。なお、横軸は時間を或いはこれに比例した電源電圧
振幅V、縦軸は電流工としている。前述したように印加
交流電圧の振幅を増加してゆくと、第6図に示すように
成る振幅値vOから準直流成分に脈動が認められ、また
この脈動開始電圧vOは水トリー劣化が激しいほど低く
なる。従って、この脈動開始電圧vOを求めても、水ト
リー劣化の程度を推測することが可能となる。
Furthermore, it is also possible to diagnose a stopped cable with a similar device. In this case, a separate power supply unit that applies an AC voltage is required, but in this case, an AC variable power source S' whose amplitude of applied AC voltage is variable is used, and the output voltage amplitude of this AC variable power source S' is set to zero. A more accurate diagnosis can be made by gradually increasing the number from . The time change of the quasi-DC component in this case is as shown in the graph of FIG. 6, for example. Note that the horizontal axis represents time or the power supply voltage amplitude V proportional to this, and the vertical axis represents current flow. As mentioned above, when the amplitude of the applied AC voltage is increased, pulsations are observed in the quasi-DC component from the amplitude value vO shown in FIG. It gets lower. Therefore, even if this pulsation start voltage vO is determined, it is possible to estimate the degree of water tree deterioration.

なお、脈動開始電圧vOを用いて診断を行う場合の判定
の目安として、第7図に測定対象のケーブルの静電容量
Fと脈動開始電圧vOのグラフ図を示す、横軸は静電容
量Fを対数目盛で示し、縦軸には脈動開始電圧vOを示
している。第7図において、水トリー劣化のない健全ケ
ーブルに静電容量Fと脈動開始電圧vOを示す状態点X
が概ね実線B−B’上に存在するのに対し、水トリー劣
化が生じたケーブルでは同じ静電容量Fでの脈動開始電
圧vOは低下し、状態点X°は矢印で示すように実線B
−B’ でから外れることになる。従って、実1IB−
B’ からの状態点X°のずれを基に、水トリー劣化の
程度を定量的に評価することが可能となる。
As a guideline for making a diagnosis using the pulsation start voltage vO, Fig. 7 shows a graph of the capacitance F of the cable to be measured and the pulsation start voltage vO.The horizontal axis is the capacitance F. is shown on a logarithmic scale, and the vertical axis shows the pulsation start voltage vO. In Fig. 7, state point
is generally on the solid line B-B', whereas in a cable with water tree deterioration, the pulsation start voltage vO at the same capacitance F decreases, and the state point X° is on the solid line B as shown by the arrow.
-B' will deviate from the equation. Therefore, real 1IB-
Based on the deviation of the state point X° from B', it becomes possible to quantitatively evaluate the degree of water tree deterioration.

更に、上述した本発明に係るCVケーブルの絶縁劣化診
断装置は1診断すべき全てのケーブルに個々に設けて据
置型として常時監視に用いてもよいし、或いは運搬が容
易な図示しない佼体に組み入れた可搬型とし、複数のケ
ーブルに共通して用いてもよい。
Furthermore, the CV cable insulation deterioration diagnosis device according to the present invention described above may be installed individually on all the cables to be diagnosed and used for constant monitoring as a stationary type, or it may be installed in a case (not shown) that is easy to transport. It may be built into a portable type and used commonly for multiple cables.

なお、上述の何れの場合においても、実用する際にはケ
ーブルに印加される交流電圧の雑音等の出力変動分を別
途に測定して相殺するための除算手段や、変動波形の周
波数の信号を除去するノツチフィルタ等を設けることが
望ましい。
In any of the above cases, in practical use, a dividing means is required to separately measure and offset the output fluctuations such as noise of the AC voltage applied to the cable, and a signal with a frequency of the fluctuation waveform is required. It is desirable to provide a notch filter or the like to remove this.

[発明の効果] 以上説明したように本発明に係るCVケーブルの絶縁劣
化診断装置は、ローパスフィルタが電力ケーブルの接地
線電流の準直流成分を濾過し、波形表示手段がこの濾過
成分を時間軸に表示するので、この濾過成分の脈動の振
幅から電力ケーブルの水トリー劣化の程度を容易に推測
することが可能で、ケーブルの絶縁破壊事故をひいては
停′#、車故を未然に防ぐことができ、電力需要家の損
害を大幅に低減できる。
[Effects of the Invention] As explained above, in the CV cable insulation deterioration diagnosis device according to the present invention, the low-pass filter filters the quasi-DC component of the ground line current of the power cable, and the waveform display means displays this filtered component on a time axis. It is possible to easily estimate the degree of water tree deterioration of the power cable from the amplitude of the pulsation of this filtered component, which can prevent cable insulation breakdown accidents, stoppages, and car accidents. It is possible to significantly reduce damage to electricity consumers.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るC■ケーブルの絶縁劣化診断装置の
実施例を示し、第1図は三芯−括の電力ケーブルの活線
診断に適用した場合の回路a成因、第2図はローパスフ
ィルタの特性図、第3図は活線状態での測定における表
示波形のグラフ図、第4図は単心3線の電力ケーブルの
活線診断における部分構成図、第5図は単相活線状態の
ケーブルの診断における部分構成図、第6図は停止線路
の診断における表示波形のグラフ図、m7図は停止線路
の診断基準のグラフ図である。 符号lはローパスフィルタ、2は波形表示装置、3は増
幅器、C,C’ 、C″は電力ケーブル、s、s’ 、
s”は遮蔽層である。
The drawings show an embodiment of the insulation deterioration diagnosis device for a C■ cable according to the present invention. Fig. 1 shows circuit a factors when applied to live-line diagnosis of a three-core power cable, and Fig. 2 shows a low-pass filter. Figure 3 is a graphical representation of the displayed waveform during measurement in a live line state, Figure 4 is a partial configuration diagram for live line diagnosis of a single-core 3-wire power cable, and Figure 5 is a single-phase live line state. FIG. 6 is a graph of displayed waveforms in diagnosis of a stopped line, and Figure m7 is a graph of diagnostic criteria for a stopped line. Symbol l is a low-pass filter, 2 is a waveform display device, 3 is an amplifier, C, C', C'' are power cables, s, s',
s'' is a shielding layer.

Claims (1)

【特許請求の範囲】[Claims] 1、交流電圧が印加され測定対象とされる電力ケーブル
の遮蔽層と電位基準との間を接続し、前記遮蔽層から前
記電位基準に流れる接地線電流を基に、前記電力ケーブ
ルの絶縁劣化を診断する電力ケーブルの絶縁劣化診断装
置であって、前記接地線電流から数Hz以下の準直流電
流を濾過するローパスフィルタと、該ローパスフィルタ
の出力信号を直接又は増幅して時間軸に表示する波形表
示手段とを備えたことを特徴とするCVケーブルの絶縁
劣化診断装置。
1. Connect the shielding layer of the power cable to which an AC voltage is applied and which is the measurement target, and a potential reference, and measure the insulation deterioration of the power cable based on the ground line current flowing from the shielding layer to the potential reference. A power cable insulation deterioration diagnostic device to be diagnosed, comprising a low-pass filter that filters quasi-direct current of several Hz or less from the ground wire current, and a waveform that directly or amplifies the output signal of the low-pass filter and displays it on a time axis. 1. An insulation deterioration diagnostic device for a CV cable, comprising: a display means.
JP1167911A 1989-06-28 1989-06-28 CV cable insulation deterioration diagnosis device Expired - Fee Related JPH0627766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167911A JPH0627766B2 (en) 1989-06-28 1989-06-28 CV cable insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167911A JPH0627766B2 (en) 1989-06-28 1989-06-28 CV cable insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH0331776A true JPH0331776A (en) 1991-02-12
JPH0627766B2 JPH0627766B2 (en) 1994-04-13

Family

ID=15858338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167911A Expired - Fee Related JPH0627766B2 (en) 1989-06-28 1989-06-28 CV cable insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JPH0627766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142290A (en) * 1991-11-15 1993-06-08 Tokyo Electric Power Co Inc:The Diagnosing method of insulation of cv cable
US5827389A (en) * 1994-06-14 1998-10-27 Lintec Corporation Printed label, method and apparatus for manufacturing printed labels, and method and apparatus for attaching printed labels
CN101975914A (en) * 2010-10-19 2011-02-16 华中科技大学 On-line monitoring method and device for insulating state of power cable
JP2020042005A (en) * 2018-09-05 2020-03-19 株式会社デンソー Time measuring circuit and integrating a/d converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629277A (en) * 1985-07-05 1987-01-17 Asahi Eng Kk Diagnostic method for cable insulation under hotline
JPS63281073A (en) * 1987-05-13 1988-11-17 Shikoku Electric Power Co Inc Detecting method for water tree current of cv cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629277A (en) * 1985-07-05 1987-01-17 Asahi Eng Kk Diagnostic method for cable insulation under hotline
JPS63281073A (en) * 1987-05-13 1988-11-17 Shikoku Electric Power Co Inc Detecting method for water tree current of cv cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142290A (en) * 1991-11-15 1993-06-08 Tokyo Electric Power Co Inc:The Diagnosing method of insulation of cv cable
US5827389A (en) * 1994-06-14 1998-10-27 Lintec Corporation Printed label, method and apparatus for manufacturing printed labels, and method and apparatus for attaching printed labels
US5989707A (en) * 1994-06-14 1999-11-23 Lintec Corporation Printed label, method and apparatus for manufacturing printed labels, and method and apparatus for attaching printed labels
US6085818A (en) * 1994-06-14 2000-07-11 Lintec Corporation Printed label, method and apparatus for manufacturing printed labels, and method and apparatus for attaching printed labels
CN101975914A (en) * 2010-10-19 2011-02-16 华中科技大学 On-line monitoring method and device for insulating state of power cable
JP2020042005A (en) * 2018-09-05 2020-03-19 株式会社デンソー Time measuring circuit and integrating a/d converter

Also Published As

Publication number Publication date
JPH0627766B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JP7132319B2 (en) Method and test apparatus for measuring partial discharge impulses in screened cables
JPH0331776A (en) Diagnostic device for insulation deterioration of cv cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP4316428B2 (en) Non-destructive deterioration diagnosis method for cables
JPH0580112A (en) Failure diagnostic device for power cable
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JP2742637B2 (en) Diagnosis method for insulation of CV cable
JP2000009788A (en) Deterioration diagnosis method of cables
JP2832737B2 (en) Method and apparatus for diagnosing insulation deterioration of CV cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
KR100202831B1 (en) Insulation degradation detection method for hot-line and device therefor
JPH0331775A (en) Diagnostic method for insulation deterioration of cv cable
JPH063390A (en) Diagnostic method for deterioration of cable
JP2893055B2 (en) Diagnosis method for insulation deterioration of CV cable
JP2002196030A (en) Method for diagnosing deterioration of power cable
JPH0429067A (en) Diagnostic device for water tree deterioration
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JP2023033849A (en) Insulation deterioration position estimation method and insulation deterioration estimation device
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape
JP3176490B2 (en) Diagnosis method for insulation of CV cable
JPH09269352A (en) Cable diagnosis method
JPH01174988A (en) Insulation deterioration diagnosis for power cable
JPH06249898A (en) Insulation diagnostic method for cv cable
JPH02122284A (en) Diagnostic device for deterioration of cable
JPH11326436A (en) Diagnostic device for insulation deterioration of closed bus bar

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees