JPH05180884A - Insulation resistance measuring method for load apparatus - Google Patents

Insulation resistance measuring method for load apparatus

Info

Publication number
JPH05180884A
JPH05180884A JP35771391A JP35771391A JPH05180884A JP H05180884 A JPH05180884 A JP H05180884A JP 35771391 A JP35771391 A JP 35771391A JP 35771391 A JP35771391 A JP 35771391A JP H05180884 A JPH05180884 A JP H05180884A
Authority
JP
Japan
Prior art keywords
ground
low
load apparatus
insulation resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35771391A
Other languages
Japanese (ja)
Other versions
JP3301627B2 (en
Inventor
Tatsuji Matsuno
辰治 松野
Shunji Kashiwazaki
俊二 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP35771391A priority Critical patent/JP3301627B2/en
Publication of JPH05180884A publication Critical patent/JPH05180884A/en
Application granted granted Critical
Publication of JP3301627B2 publication Critical patent/JP3301627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To provide a method for measuring the insulation resistance of a load apparatus of a cable way, one line of which is earthed, by means of a low-priced device without using any expensive zero-phase current device. CONSTITUTION:Plural different resistance values R, R are inserted to be capable of being switched between the casing of a load apparatus Z and an earthing terminal G connected to cable ways 1, 2 to which a low-frequency signal is applied through an earthing line EL or the like and an earthing point E3 for the load apparatus. The insulation resistance of the load apparatus is computed from a low-frequency signal voltage value between the load apparatus earthing terminal G and the earthing cable way in the respective resistance values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電路に接続された負荷
機器の絶縁抵抗を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the insulation resistance of load equipment connected to an electric circuit.

【0002】[0002]

【従来技術】一線を接地した電路に接続された負荷機器
の絶縁抵抗を測定する方法の1例として同一出願人によ
る発明が特公平1ー45589号公報に開示されてい
る。この方法は、図4に示すように受電トランスTの低
圧側1、2のうち電路を接地する接地線ELに低周波測
定信号電圧発生器OSCを接続したトランスOTを結合
することによって、前記電路に低周波信号を印加し、電
路1、2を貫通するよう結合した変流器ZCTによって
電路に接続された負荷機器を経て大地に流れる上記低周
波の漏洩電流を検出し、これによって当該負荷機器の絶
縁抵抗を測定するものである。この方法では負荷機器に
電力を供給する電路のうち、接地側電路と大地間の電圧
を検出することにより、前記測定用信号と同相分の電圧
を検出し、この電圧を基準電圧として、上記ZCTによ
って検出した漏域電流を同期検波することによって負荷
機器の絶縁抵抗を測定するものであった。
2. Description of the Related Art An invention by the same applicant is disclosed in Japanese Patent Publication No. 1-45589 as an example of a method for measuring the insulation resistance of a load device connected to an electric line whose ground is grounded. In this method, as shown in FIG. 4, by connecting a transformer OT in which a low-frequency measurement signal voltage generator OSC is connected to a ground line EL of the low-voltage side 1 or 2 of a power receiving transformer T, which grounds the circuit, the circuit is connected. A low-frequency signal is applied to the load circuit, and the low-frequency leakage current flowing to the ground via the load device connected to the circuit is detected by the current transformer ZCT connected so as to penetrate through the circuit lines 1 and 2, thereby detecting the load device. The insulation resistance of is measured. In this method, among the electric paths for supplying power to the load equipment, the voltage between the ground side electric path and the ground is detected to detect the voltage for the same phase as the measurement signal, and the ZCT is used as a reference voltage. The insulation resistance of the load device is measured by synchronously detecting the leak region current detected by.

【0003】この方法を詳細に記すると、即ち第2種接
地線ELに注入トランスOTを介して、低周波発振器O
SCの出力電圧を印加すると共に、負荷機器Zの匡体を
第3種接地線Epにて接地する。第3種接地線Epと接
地側電路2間の電圧を高入力インピーダンス増幅器A1
で検出し、その出力中の低周波(一般に10〜20HZ
程度)の測定信号電圧をフィルタF1 で検出する。負荷
機器の漏域電流を検出する変流器ZCTの出力は増幅器
A2 で増幅され、フィルタF1 と同等の特性をもつフィ
ルタF2 に加え、その出力を同期検波器Mの一方の入力
に加え、先に得られている測定用信号電圧で同期検波す
ると、その出力には、絶縁抵抗に逆比例した電圧が得ら
れるものであった。しかし、このような絶縁抵抗測定方
法を装置化するに当っては、高価な零相電流器や2つの
フィルタ、同期検波器を必要とし、測定方法としての精
度はよいが、経済的に安価な装置を提供するのが困難で
あった。
This method will be described in detail. That is, the low frequency oscillator O is connected to the second type ground line EL via the injection transformer OT.
While applying the output voltage of SC, the casing of the load device Z is grounded by the third type grounding wire Ep. The voltage between the third type ground wire Ep and the ground side electric circuit 2 is set to a high input impedance amplifier A1.
The low frequency (generally 10-20HZ)
The measured signal voltage of (about) is detected by the filter F1. The output of the current transformer ZCT that detects the leakage current of the load equipment is amplified by the amplifier A2 and is added to the filter F2 having the same characteristics as the filter F1, and its output is added to one input of the synchronous detector M, When synchronous detection was performed using the measurement signal voltage obtained in Fig. 3, a voltage inversely proportional to the insulation resistance was obtained at the output. However, in order to implement such an insulation resistance measuring method as an apparatus, an expensive zero-phase current generator, two filters, and a synchronous detector are required, and the accuracy as a measuring method is good, but it is economically inexpensive. It was difficult to provide the device.

【0004】[0004]

【発明の目的】本発明は経済的に負荷機器の絶縁抵抗を
測定する方法を提供するものであり、その原理は従来の
方法と全く異なるものである。
SUMMARY OF THE INVENTION The present invention provides a method for economically measuring the insulation resistance of a load device, the principle of which is completely different from the conventional method.

【0005】[0005]

【発明の概要】以上目的を達成するために本発明では次
のような原理に基づいて測定を行なう。即ち、一端を接
地した電路の接地線に低周波の測定電圧(電圧e、周波
数f1)を印加する。該低周波信号は従来から所謂Ig
r絶縁抵抗検出器等でも同様に電路に印加することが多
いから、これを兼用して利用してもよい。図4に示した
電路を例にすると測定信号電圧による漏域電流の流れ
は、図3の如き等価回路で示すことができる。図3に於
いて、抵抗r2 、r3 は夫々、接地線ELの第2種接地
抵抗、機器Zの第3種接地線の接地抵抗であり、また負
荷機器の絶縁抵抗をR0 、対地静電容量をC0 である。
このように表わせば接地電路と第3種接地線間の電圧e
0 は、次式(1)
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention performs measurement based on the following principle. That is, a low-frequency measurement voltage (voltage e, frequency f 1 ) is applied to the ground wire of the electric path whose one end is grounded. The low-frequency signal is conventionally a so-called Ig
Since an r insulation resistance detector or the like is often applied to the electric path in the same manner, this may also be used. Taking the electric path shown in FIG. 4 as an example, the flow of the leakage region current due to the measured signal voltage can be shown by an equivalent circuit as shown in FIG. In FIG. 3, resistors r 2 and r 3 are the second type ground resistance of the ground line EL and the third type ground line of the equipment Z, respectively, and the insulation resistance of the load equipment is R 0 and ground. The capacitance is C 0 .
If expressed in this way, the voltage e between the ground line and the third type ground wire e
0 is the following equation (1)

【0006】[0006]

【数1】 となる。[Equation 1] Becomes

【0007】ところで地絡状態でなければ接地抵抗r
2 、r3 <<R0 となるから(1)式は、次式
By the way, if there is no ground fault, ground resistance r
2 and r 3 << R 0 , the formula (1) is

【0008】[0008]

【数2】 となり、例えば、r2 =10Ω、r3 =300Ω、f1
=10HZ、C0 =5μF程度としても上記式右辺の一
部は { ωc0(r2+r3)2}2=9.5×10-3 となり、{ ω c0(r2+r3)}2<<1 であるから、次式(2) の
ようになる。
[Equation 2] Therefore, for example, r 2 = 10Ω, r 3 = 300Ω, f 1
= 10HZ, C 0 = 5 μF or so, a part of the right side of the above formula becomes {ωc 0 (r 2 + r 3 ) 2 } 2 = 9.5 × 10 -3 , and {ω c 0 (r 2 + r 3 )} Since 2 << 1, we have the following equation (2).

【0009】[0009]

【数3】 ところで、図2のように第3種接地線に直列するスイッ
チSWを挿入し、常時はスイッチSWを接点S0 に設定
する。この場合の漏洩電流の流れは図3と等価となるか
ら上記各式にて示した通りとなる。
[Equation 3] By the way, as shown in FIG. 2, a switch SW in series with the third type ground line is inserted, and the switch SW is normally set to the contact S 0 . The flow of the leakage current in this case is equivalent to that in FIG. 3, and is as shown in the above equations.

【0010】次に、接点をS1 に設定した場合は、抵抗
1 が介在することからスイッチSと接地電路間の電圧
1 は、 e1=1/(r2+r3+R1)[ {(1/R0)+ ( 1/(r2+r3+R1))}2+(ω1c0)2]-1/2e ・・・(3) となる。ところでr2、3 <<R1 となるように抵抗値
1 を選べば、 e1=(1/R1)[{(1/R0) + (1/R1)}2+(ω1 c0)2]-1/2e ・・・(4) となる。
[0010] Then, if you set the contacts S 1, the voltage e 1 between the switch S from the resistance R 1 is interposed grounding path may, e 1 = 1 / (r 2 + r 3 + R 1 ) [{(1 / R 0 ) + (1 / (r 2 + r 3 + R 1 ))} 2 + (ω 1 c 0 ) 2 ] -1/2 e (3) By the way , if the resistance value R 1 is selected such that r 2 and r 3 << R 1 , then e 1 = (1 / R 1 ) [{(1 / R 0 ) + (1 / R 1 )} 2 + ( ω 1 c 0 ) 2 ] -1/2 e (4)

【0011】同様に、接点をS2 に設定すれば、抵抗R
2 が介在しスイッチSと接地側電路間の電圧e2 は次式
(5)
Similarly, if the contact is set to S 2 , the resistance R
2 and the voltage e 2 between the switch S and the ground side electric circuit is expressed by the following equation (5).

【0012】[0012]

【数4】 となり、r2 、r3 <<R2 となるように抵抗地R2
選べば、 e2=(1 /R2)[{(1/R0) + (1/R2)}2+(ω1 c0)2]-1/2e ・・・(6) となる。
[Equation 4] Therefore, if the resistance land R 2 is selected so that r 2 and r 3 << R 2 , then e 2 = (1 / R 2 ) [{(1 / R 0 ) + (1 / R 2 )} 2 + (ω 1 c 0 ) 2 ] -1/2 e (6)

【0013】即ち、(4)(6)式から明らかなように
上記測定電圧e1 、e2 には対地静電容量C0 の影響が
含まれている。そこで、この影響を次の方法で除去しつ
つ絶縁抵抗を求める。
That is, as is apparent from the equations (4) and (6), the measured voltages e 1 and e 2 include the influence of the capacitance C 0 to the ground. Therefore, the insulation resistance is obtained while removing this effect by the following method.

【0014】即ち(4)式から {(1/R0)+(1/R1)}2+(ω1 c0)2={e/(R1e1)}2・・・(4)’ (6)式から {(1/R0)+(1/R2)}2+(ω1 c0)2={e/(R2e2)}2・・・(6)’ (4)’(6)’式の差をとると、 {(1/R0)+(1/R1)}2− {(1/R0)+(1/R2)}2={e/(R1e1)}2-{e/(R2e2)}2 ・・・(7) (7)式を整理すると、 1/R0=[(R2/R1){(e/e1)2-1}-(R1/R2){(e/e2)2-1}] /(R2-R1) ・・・(8) となり、(8)式で、R1 、R2 は定数値、e1 、e2
は測定値、又、電圧eは一定であるから、静電容量C0
の影響なく絶縁抵抗R0 を算出することができる。
That is, from the equation (4), {(1 / R 0 ) + (1 / R 1 )} 2 + (ω 1 c 0 ) 2 = {e / (R 1 e 1 )} 2 ... (4 ) 'From equation (6), {(1 / R 0 ) + (1 / R 2 )} 2 + (ω 1 c 0 ) 2 = {e / (R 2 e 2 )} 2・ ・ ・ (6)' (4) Taking the difference of '(6)', {(1 / R 0 ) + (1 / R 1 )} 2 − {(1 / R 0 ) + (1 / R 2 )} 2 = { e / (R 1 e 1 )} 2- {e / (R 2 e 2 )} 2・ ・ ・ (7) When rearranging the equation (7), 1 / R 0 = [(R 2 / R 1 ) { (e / e 1 ) 2 -1}-(R 1 / R 2 ) {(e / e 2 ) 2 -1}] / (R 2 -R 1 ) ... (8) Where R 1 and R 2 are constant values, e 1 and e 2
Is the measured value, and the voltage e is constant, so the capacitance C 0
The insulation resistance R 0 can be calculated without the influence of

【0015】[0015]

【実施例】以下、図示した実施例に基づいて、本発明を
更に詳細に説明する。本発明の実施例を図1に示す。
EXAMPLES The present invention will be described in more detail based on the examples shown in the drawings. An embodiment of the present invention is shown in FIG.

【0016】同図に於いてTは受電トランスであって、
その低圧側電路1、2の一方2を接地線ELを介して第
2種接地したものであり、この接地線ELに結合した注
入トランスOTを介して電路1、2に低周波発振器OS
Cの出力を印加する。この注入回路は図示していない既
存のIgr絶縁検出器用のものを流用してもよいことは
上述した通りである。また、負荷機器Zの接地端子Gに
スイッチSWを設け、その一つの接点S0 に設定されて
いる時は直接第3種設置され、接点S1 に設定されてい
る時は抵抗R1 を、又接点S2 に設定されている場合は
抵抗R2 を介して接地されるように接続し、更に抵抗R
3 をスイッチSWのコモン端子と接地E3 間に接続する
ことによって接地端子と接地間がオープンになるのを防
ぐようにしている。更に、接地電路2と接地端子G間の
電圧を高入力インピーダンス増幅器Aで検出し、フィル
タFによりその出力中に含まれる商用周波の成分を除去
し、周波数f1 の測定信号成分を検出する。フィルタF
の出力は整流回路Dで整流し、その出力はアナログデジ
タル変換器A/Dにてデジタル信号に変換して演算回路
COMPに入力する。一方、演算回路COMPにはスイ
ッチSWの設定状態を表わす信号線3が入力される。
In the figure, T is a power receiving transformer,
One of the low-voltage side electric lines 1 and 2 is grounded by a second type via a ground line EL, and a low-frequency oscillator OS is connected to the electric lines 1 and 2 via an injection transformer OT coupled to the ground line EL.
Apply the output of C. As described above, the injection circuit for the existing Igr insulation detector (not shown) may be used. Further, a switch SW is provided on the ground terminal G of the load device Z, and when it is set to one contact S 0 , it is directly installed in the third type, and when it is set to the contact S 1 , a resistance R 1 is set, If it is set to contact S 2 , connect it so that it is grounded via resistor R 2
By connecting 3 between the common terminal of the switch SW and the ground E 3 , it is prevented that the ground terminal and the ground are open. Further, the voltage between the ground line 2 and the ground terminal G is detected by the high input impedance amplifier A, the commercial frequency component contained in the output is removed by the filter F, and the measurement signal component of the frequency f 1 is detected. Filter F
Is rectified by the rectifier circuit D, and its output is converted into a digital signal by the analog-digital converter A / D and input to the arithmetic circuit COMP. On the other hand, the signal line 3 representing the setting state of the switch SW is input to the arithmetic circuit COMP.

【0017】かくして、スイッチSWが、接点Sov−
に設定されている場合、A/D変換器出力には、前記
(2)式で示されるように測定信号電圧eが測定され、
デジタル値として演算回路COMPに入力される。
Thus, the switch SW has the contact Sov-
When set to, the measurement signal voltage e is measured at the output of the A / D converter as shown in the equation (2),
The digital value is input to the arithmetic circuit COMP.

【0018】次にスイッチSWがS1 に設定されている
場合、抵抗R1'が(1/R1')+(1/R3 )=1/R
1 となるように前もって抵抗値を定めておけば、A/D
変換器出力には、前記(4)式に等価な電圧e1 のデジ
タル値が出力される。また、演算回路COMPは上記ス
イッチの切替えによる各値を記憶するメモリを具える。
Next, when the switch SW is set to S 1 , the resistance R 1 ′ is (1 / R 1 ′) + (1 / R 3 ) = 1 / R
If the resistance value is set in advance so that it becomes 1 , A / D
At the output of the converter, the digital value of the voltage e 1 equivalent to the equation (4) is output. Further, the arithmetic circuit COMP includes a memory for storing each value obtained by switching the switch.

【0019】次に、スイッチSWが接点S2 に設定され
ている場合、抵抗R2'を、(1/R2')+(1/R3
=1/R2 となるように前もって抵抗値を定めておけ
ば、A/D変換器の出力には前記(6)式に等価なデジ
タル値が出力される。各スイッチの設定状態を信号線3
にて演算回路に入力するから、演算回路では、例えば
(8)式の右辺の演算を測定量e、e1 、e2 として前
もって演算回路に初期値として設定してある定数値(R
1 、R2 )から絶縁抵抗R0 が算出される。演算結果が
求まれば、スイッチSWを接点S0 に復帰させることに
より測定は終了する。なお、電圧器eは注入電圧値であ
るから測定しなくても定数値として取扱うことが可能で
ある。
Next, when the switch SW is set to the contact S 2 , the resistance R 2 'is set to (1 / R 2 ') + (1 / R 3 )
If the resistance value is set in advance so that = 1 / R 2 , a digital value equivalent to the equation (6) is output to the output of the A / D converter. Set the status of each switch to signal line 3
In the arithmetic circuit, for example, the arithmetic operation on the right side of the equation (8) is set as the measured values e, e 1 and e 2 in the arithmetic circuit, and the constant value (R
Insulation resistance R 0 is calculated from 1 , R 2 ). When the calculation result is obtained, the switch SW is returned to the contact S 0 to complete the measurement. Since the voltmeter e is the injection voltage value, it can be treated as a constant value without measurement.

【0020】なお、スイッチがS0 に設定されている状
態で接地側電路2と第3種接地線間の電圧が電路1、2
間の商用電圧に近い場合、負荷機器Zは地絡状態か、第
3種接地線が断線もしくは不完全な状態となっていると
判定することができる。これは増幅器Aの出力を整流回
路DETで検出し、この値が異常性を示すか否かを確認
することで判定される。もしこの値が異常なときは匡体
等が漏電しており感電事故の可能性があるから人体への
感電防止のためスイッチS1 、S2 に設定しないよう制
御する。また、S1 、S2 設定中に、整流回路DETの
値が異常値となることが発生したならば速やかにスイッ
チの設定をS0 に復帰させる必要のあることは同様に感
電防止上有効である。
In the state where the switch is set to S 0 , the voltage between the ground side electric line 2 and the third-type earth line is changed to the electric lines 1, 2
If the load voltage is close to the commercial voltage, it can be determined that the load device Z is in the ground fault state or the third type ground wire is broken or incomplete. This is determined by detecting the output of the amplifier A with the rectifier circuit DET and confirming whether or not this value shows abnormality. If this value is abnormal, there is a possibility of electric shock due to electric leakage in the enclosure and so on. To prevent electric shock to the human body, the switches S 1 and S 2 are controlled not to be set. Further, if the value of the rectifier circuit DET becomes an abnormal value during the setting of S 1 and S 2 , it is also effective in preventing electric shock that the setting of the switch needs to be promptly returned to S 0. is there.

【0021】又、本発明の実施例は一端接地した単相2
線式電路の場合について説明したが、受電電圧器の低圧
側を一端を接地した単相3線式電路、三相3線式電路等
にも本発明の測定法方が適用可能なことは明らかであ
る。
Also, the embodiment of the present invention is a single phase 2 grounded at one end.
Although the case of the wire type electric circuit has been described, it is clear that the measuring method of the present invention can be applied to a single-phase three-wire type electric line, a three-phase three-wire type electric line, etc. in which one end is grounded on the low-voltage side of the receiving voltage receiver. Is.

【0022】[0022]

【発明の効果】本発明の方法によれば、高価な零相変流
器を用いる必要がなく装置化が容易であり、安価な測定
装置を提供することができる。
According to the method of the present invention, there is no need to use an expensive zero-phase current transformer, the device can be easily constructed, and an inexpensive measuring device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の原理を示すための等価回路図である。FIG. 2 is an equivalent circuit diagram showing the principle of the present invention.

【図3】漏洩電流の流れを示す等価回路図である。FIG. 3 is an equivalent circuit diagram showing a leakage current flow.

【図4】従来の方法を示す図である。FIG. 4 is a diagram showing a conventional method.

【符号の説明】 T 受電トランス Z 負荷 OT 注入トランス A 増幅器 A1 増幅器 A2 増幅器 F フィルタ F1 フィルタ F2 フィルタ D 整流回路 A/D アナログデジタル変換器 COMP 演算回路[Explanation of Codes] T power receiving transformer Z load OT injection transformer A amplifier A 1 amplifier A 2 amplifier F filter F 1 filter F 2 filter D rectifier circuit A / D analog-digital converter COMP arithmetic circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一端接地電路の接地線を介して電路に低
周波の測定用信号電圧を印加し、該電路の負荷機器の接
地端子と負荷機器部接地線との間に第1の所定値の抵抗
を挿入したときの該接地端子と接地側電路間の低周波の
電圧値と、前記第1の抵抗を第2の所定値の抵抗に切替
えたときの前記接地端子と接地側電路間の低周波の電圧
値とを測定し、該負荷機器の絶縁抵抗を所定の演算によ
り算出することを特徴とする負荷機器の絶縁抵抗測定方
法。
1. A first predetermined value is applied between a grounding terminal of a load device and a grounding wire of a load device section by applying a low-frequency measuring signal voltage to the powering line through a grounding wire of the grounding circuit at one end. And a low-frequency voltage value between the ground terminal and the ground-side electric path when the resistance is inserted, and between the ground terminal and the ground-side electric path when the first resistance is switched to the resistance of the second predetermined value. A low-frequency voltage value is measured, and an insulation resistance of the load device is calculated by a predetermined calculation.
JP35771391A 1991-12-26 1991-12-26 Apparatus and method for measuring insulation resistance of load equipment Expired - Lifetime JP3301627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35771391A JP3301627B2 (en) 1991-12-26 1991-12-26 Apparatus and method for measuring insulation resistance of load equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35771391A JP3301627B2 (en) 1991-12-26 1991-12-26 Apparatus and method for measuring insulation resistance of load equipment

Publications (2)

Publication Number Publication Date
JPH05180884A true JPH05180884A (en) 1993-07-23
JP3301627B2 JP3301627B2 (en) 2002-07-15

Family

ID=18455535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35771391A Expired - Lifetime JP3301627B2 (en) 1991-12-26 1991-12-26 Apparatus and method for measuring insulation resistance of load equipment

Country Status (1)

Country Link
JP (1) JP3301627B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002132218A (en) * 2000-10-26 2002-05-09 Sony Corp Display device, brightness limiting circuit, and method for driving the display device
JP2008239324A (en) * 2007-03-28 2008-10-09 Hitachi Building Systems Co Ltd Insulation resistance measuring method of elevator
CN107209217A (en) * 2014-09-26 2017-09-26 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002132218A (en) * 2000-10-26 2002-05-09 Sony Corp Display device, brightness limiting circuit, and method for driving the display device
JP2008239324A (en) * 2007-03-28 2008-10-09 Hitachi Building Systems Co Ltd Insulation resistance measuring method of elevator
CN107209217A (en) * 2014-09-26 2017-09-26 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method
CN107209217B (en) * 2014-09-26 2018-11-30 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method

Also Published As

Publication number Publication date
JP3301627B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
US4638242A (en) Method and device for measuring insulation deterioration of electric line
JPH09184866A (en) Diagnostic method for degradation of cable under electrification
JPH05180884A (en) Insulation resistance measuring method for load apparatus
EP2588872B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP2742637B2 (en) Diagnosis method for insulation of CV cable
KR100241314B1 (en) Live cable insulation deterioration determining method and apparatus by ac four voltage measurement
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP2929047B2 (en) Diagnosis method for insulation deterioration of power cable
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable
JP2873697B2 (en) Monitoring method for insulation deterioration of ungrounded circuit
JP2000009788A (en) Deterioration diagnosis method of cables
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JPS5933233B2 (en) Grounding system insulation resistance measuring device
JPH05180885A (en) Insulation resistance measuring method and apparatus for one wire earthed three-phase three-wire cable way
RU2028638C1 (en) Method for insulation resistance test in branched dc and ac lines
SU951179A1 (en) Device for selective checking of electrical system insulation resistance
JP2943986B2 (en) Degradation diagnostic device under power line for power cable
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPH0458581B2 (en)
JPH0525308B2 (en)
JPH0587846A (en) Detection of insulation state of electric equipment and device therefor
JPH05180886A (en) Earth static capacity measuring method and apparatus for one wire earthed three-phase three-wire cable way

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080426

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080426

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10