JPH0690245B2 - Insulation deterioration related quantity measuring device - Google Patents

Insulation deterioration related quantity measuring device

Info

Publication number
JPH0690245B2
JPH0690245B2 JP62115826A JP11582687A JPH0690245B2 JP H0690245 B2 JPH0690245 B2 JP H0690245B2 JP 62115826 A JP62115826 A JP 62115826A JP 11582687 A JP11582687 A JP 11582687A JP H0690245 B2 JPH0690245 B2 JP H0690245B2
Authority
JP
Japan
Prior art keywords
current
low
frequency
unit
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62115826A
Other languages
Japanese (ja)
Other versions
JPS63281063A (en
Inventor
淳 伊賀
茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Shikoku Instrumentation Co Ltd
Original Assignee
Shikoku Electric Power Co Inc
Shikoku Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Shikoku Instrumentation Co Ltd filed Critical Shikoku Electric Power Co Inc
Priority to JP62115826A priority Critical patent/JPH0690245B2/en
Publication of JPS63281063A publication Critical patent/JPS63281063A/en
Publication of JPH0690245B2 publication Critical patent/JPH0690245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は、ケーブル、電気機器(たとえば、変圧器)
等の絶縁抵抗、誘電正接、ケーブルの絶縁劣化に基づく
水トリー電流等の絶縁劣化関係量を、活線状態すなわち
ケーブルに電力を供給している状態あるいは電気機器に
電源電力を供給している状態で、測定することのできる
絶縁劣化関係量測定装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a cable, an electric device (for example, a transformer).
Insulation resistance, dielectric loss tangent, etc., and insulation deterioration related quantities such as water tree current due to cable insulation deterioration are in a live state, that is, a state where power is being supplied to the cable or a state where power is being supplied to electrical equipment. The present invention relates to an improvement of an insulation deterioration related quantity measuring device capable of measuring.

(従来の技術) 従来から、ケーブル、電気機器等の測定対象回路の絶縁
抵抗、誘電正接等の絶縁劣化関係量を測定する手段とし
ては、ケーブル、電気機器を無課電の状態として電力の
供給を停止し、交流又は直流の高電圧を測定対象回路に
印加し、その絶縁抵抗、誘電正接等の絶縁劣化関係量を
測定するようにしたものが知られている。
(Prior Art) Conventionally, as a means for measuring the amount of insulation resistance and dielectric loss tangent related insulation deterioration of a circuit to be measured such as a cable or an electric device, power is supplied with the cable or the electric device in a non-energized state. There is known a method in which a high voltage of alternating current or direct current is applied to a circuit to be measured and the insulation deterioration related amount such as insulation resistance and dielectric loss tangent is measured.

次に、活線状態で絶縁劣化関係量を測定する手段として
は、たとえば、CVケーブルの絶縁抵抗を活線状態で測定
するために、GPT中性点に直流低電圧を重畳し、CVケー
ブルの遮蔽銅と大地との間の接地線に流れる直流成分電
流を測定し、絶縁劣化関係量としての絶縁抵抗を測定す
るようにしたものがある。また、絶縁劣化関係量として
のCVケーブルの水トリー電流を測定する絶縁劣化関係量
測定装置としては、交流電圧を印加して遮蔽銅と大地と
の間の接地線に流れる直流成分電流を検出して測定する
ようにしたものがある。
Next, as a means of measuring the insulation deterioration related amount in a live state, for example, in order to measure the insulation resistance of the CV cable in a live state, superimpose a DC low voltage on the GPT neutral point, There is a method in which a direct current component current flowing through a ground wire between the shield copper and the ground is measured to measure an insulation resistance as an insulation deterioration related amount. Also, as an insulation deterioration related quantity measuring device that measures the water tree current of the CV cable as the insulation deterioration related quantity, an AC voltage is applied to detect the DC component current flowing in the ground wire between the shielded copper and the ground. There are some that are designed to be measured.

(発明が解決しようとする問題点) ところで、絶縁劣化関係量測定装置としては、CVケーブ
ル、電気機器等を活線状態で測定できるようにすること
が望ましいのであるが、しかしながら、従来のCVケーブ
ルの絶縁抵抗を活線状態で測定するために、GPT中性点
に直流低電圧を重畳し、CVケーブルの遮蔽銅と大地との
間の接地線に流れる直流電流成分を測定し、絶縁劣化関
係量としての絶縁抵抗(シース抵抗)を測定するように
したものでは、電池作用に基づく迷走電流、絶縁劣化に
基づく水トリー電流が生じていると、GPT中性点に印加
された直流低電圧に基づく直流測定電流にその電池作用
に基づく迷走電流、絶縁劣化に基づく水トリー電流が重
畳されるため、測定した絶縁抵抗値に電池作用による迷
走電流、水トリー電流に基づく誤差が含まれる不具合が
ある。
(Problems to be solved by the invention) By the way, as an insulation deterioration related amount measuring device, it is desirable to be able to measure a CV cable, an electric device, etc. in a live state, however, a conventional CV cable is used. In order to measure the insulation resistance of the GPT in a live state, superimpose a DC low voltage on the GPT neutral point, measure the DC current component flowing in the ground wire between the shielded copper of the CV cable and the ground, and check the insulation deterioration relationship. When measuring the insulation resistance (sheath resistance) as a quantity, if a stray current due to the battery action or a water tree current due to insulation deterioration occurs, the DC low voltage applied to the GPT neutral point Since the DC measurement current based on this is superposed with the stray current due to the battery action and the water tree current due to insulation deterioration, the measured insulation resistance value includes errors due to the stray current due to the battery action and the water tree current. There is a problem.

また、絶縁劣化関係量としてのCVケーブルの水トリー電
流を測定するために、交流電圧を印加して遮蔽銅と大地
との間の接地線に流れる直流成分電流を検出するもので
は、迷走電流があると以下に説明する不具合がある。
In addition, in order to measure the water tree current of the CV cable as an insulation deterioration related amount, in the case of detecting the DC component current flowing in the ground wire between the shield copper and the ground by applying an AC voltage, the stray current is If so, there is a problem described below.

第1図、第2図に示すように、たとえば、CVケーブル1
は、導体2を内部半導体層3で被覆し、外部半導体層4
と内部半導体層3との間に絶縁体としての架橋ポリエチ
レン5を介在させ、外部半導体層4を遮蔽銅テープ6に
より被覆してシールドし、その遮蔽銅テープ6に押さえ
布7を巻き、その押さえ布7を絶縁ビニールシース8に
より被覆して形成されている。なお、CVケーブル1には
第3図に示すように遮蔽銅テープ6まで構成した構成体
を3個設け、その遮蔽銅テープ6を互いに接触させてそ
の3個の構成体に押さえ布7を巻いて、その押さえ布7
を絶縁ビニールシース8により被覆したCVケーブルであ
る。また、いわゆるトリプレックス形のCVケーブル(CV
T)もある。符号9は介在物である。
As shown in FIGS. 1 and 2, for example, a CV cable 1
Covers the conductor 2 with the inner semiconductor layer 3 and the outer semiconductor layer 4
A cross-linked polyethylene 5 as an insulator is interposed between the inner semiconductor layer 3 and the inner semiconductor layer 3, the outer semiconductor layer 4 is covered with a shielding copper tape 6 to be shielded, and a pressing cloth 7 is wound around the shielding copper tape 6 and the pressing is performed. It is formed by covering the cloth 7 with an insulating vinyl sheath 8. As shown in FIG. 3, the CV cable 1 is provided with three structural bodies including the shielding copper tape 6, the shielding copper tapes 6 are brought into contact with each other, and the pressing cloth 7 is wound around the three structural bodies. The pressing cloth 7
Is a CV cable in which an insulating vinyl sheath 8 is covered. In addition, a so-called triplex type CV cable (CV
There is also T). Reference numeral 9 is an inclusion.

このCVケーブル1はそれが絶縁劣化すると、第4図に示
すように水トリー電流Iiが発生する。この第4図に示す
例は、遮蔽銅テープ6の側が+電位、導体2の側が−電
位である。また、逆方向に流れる場合もある。この水ト
リー電流Iiを測定するために、第5図に示すように、高
圧配電線10に一方側が接続されかつ他方側が負荷に接続
されたCVケーブル1の他方側の遮蔽銅テープ6から接地
線11を引き出し、その接地線11の途中に絶縁劣化関係量
としての水トリー電流Iiを測定するための測定器12を接
続する。この測定器12は検出抵抗13とフイルタを有する
増幅器14及び記録装置15とから概略構成される。
When the CV cable 1 is insulation deteriorated, a water tree current I i is generated as shown in FIG. In the example shown in FIG. 4, the shielding copper tape 6 side is + potential, and the conductor 2 side is −potential. Moreover, it may flow in the opposite direction. In order to measure this water tree current I i, as shown in FIG. 5, the shield copper tape 6 on the other side of the CV cable 1 having one side connected to the high voltage distribution line 10 and the other side connected to a load is grounded. A wire 11 is drawn out, and a measuring device 12 for measuring a water tree current I i as an insulation deterioration related amount is connected in the middle of the ground wire 11. The measuring device 12 is roughly composed of a detection resistor 13, an amplifier 14 having a filter, and a recording device 15.

ところが、絶縁ビニールシース8と大地との間には電池
作用起電力ES、GPT16の接地線17と大地との間には系統
負荷のアンバランスによる商用周波起電力EACがあり、G
PT16の接地部分には電池作用起電力EEがある。この状態
を等価回路で示したのが第6図である。この第6図にお
いて、RiはCVケーブル1の架橋ポリエチレン5を含む絶
縁抵抗、RSは絶縁ビニールシース8の部分のシース抵抗
であり、起電力Ei、絶縁抵抗Riと並列にコンデンサCi
あると考えられ、電池作用起電力ES、シース抵抗RSと並
列にコンデンサCSがあると考えられる。これらの起電力
ES、EE、EACがあると、迷走電流IS、IE、交流電流IAC
発生し、迷走電流IS、IEが直流電流成分Iとして水トリ
ー電流Iiと共に測定器12に流れることになる。その第6
図に示す等価回路を直流電流成分Iのみに着目して、書
き換えて表現した等価回路が第7図である。
However, there is a battery acting electromotive force E S between the insulating vinyl sheath 8 and the ground, and a commercial frequency electromotive force E AC due to the unbalance of the system load between the ground wire 17 of the GPT 16 and the ground.
There is a battery action electromotive force E E in the grounded part of PT16. FIG. 6 shows this state by an equivalent circuit. In FIG. 6, R i is the insulation resistance including the crosslinked polyethylene 5 of the CV cable 1, R S is the sheath resistance of the insulating vinyl sheath 8, and the electromotive force E i and the insulation resistance R i are connected in parallel with the capacitor C. It is considered that there is i, and that there is a capacitor C S in parallel with the battery electromotive force E S and the sheath resistance R S. These electromotive forces
When E S , E E , and E AC are present, stray currents I S , I E , and AC current I AC are generated, and the stray currents I S and I E are DC current components I together with the water tree current I i. Will flow to. The sixth
FIG. 7 shows an equivalent circuit rewritten by paying attention to only the direct current component I of the equivalent circuit shown in the figure.

その第7図には、直流電流成分としての迷走電流IS、IE
が水トリー電流Iiと共に流れている状態が示されてい
る。この迷走電流IS、IEは抵抗RS、REと電池作用起電力
ES、EEによって定まるものであるが、迷走電流IEは測定
器12と大地との間の接地線11aをGPT16の接地線17と共用
化することにより除去できる。そこで、迷走電流ISにつ
いて考えると、水トリー電流Iiの起電力Eiは通常数10ボ
ルト程度以下、電池作用起電力ES、EEは0.5ボルト程度
以下である。また、絶縁抵抗Riは数十万MΩ以下、シー
ス抵抗RSは通常絶縁抵抗より小さく、シース抵抗RSが20
0MΩ以上であると迷走電流ISは2.5ナノアンペア以下で
あり、これに対して劣化したCVケーブルでは水トリー電
流Iiは数10ナノアンペア程度以上であるので、通常の条
件下では迷走電流ISを考慮しなくともよいが、シース抵
抗RSは環境条件その他によって大きく変動し、シース抵
抗RSが200MΩ以下になると相対的に迷走電流ISの寄与す
る割合が大きくなって迷走電流ISを測定しているのが水
トリー電流Iiを測定しているのか識別できなくなる。こ
のような場合、直流成分電流に影響を受けることなくシ
ース抵抗RSを測定することができれば、正確に水トリー
電流Iiを測定できるので、この観点から測定対象回路に
流れる直流成分電流に影響を受けることなく絶縁劣化関
係量としての絶縁抵抗(シース抵抗も絶縁抵抗という意
味で用いる)を測定できるようにすることが望ましい。
なお、第5図において、18は電源、19はCVケーブル1の
一方側の遮蔽銅テープ6から引き出された接地線、20は
測定時に開放するスイッチである。
The stray currents I S and I E as DC current components are shown in FIG.
Is shown flowing with the water tree current I i . This stray current I S , I E is the resistance R S , R E
The stray current I E can be removed by sharing the ground wire 11a between the measuring device 12 and the ground with the ground wire 17 of the GPT 16, which is determined by E S and E E. Therefore, considering the stray current I S , the electromotive force E i of the water tree current I i is usually about several tens of volts or less, and the battery acting electromotive forces E S , E E are about 0.5 V or less. The insulation resistance R i is less than several hundred thousand MΩ, the sheath resistance R S is smaller than the normal insulation resistance, and the sheath resistance R S is 20
When it is 0 MΩ or more, the stray current I S is 2.5 nanoamps or less, whereas in the deteriorated CV cable, the water tree current I i is several tens of nanoamps or more. Although it is not necessary to consider S , the sheath resistance R S greatly varies depending on environmental conditions and the like, and when the sheath resistance R S is 200 MΩ or less, the contribution of the stray current I S becomes relatively large and the stray current I S It becomes impossible to discriminate whether or not the water is being measured for the water tree current I i . In such a case, if the sheath resistance R S can be measured without being affected by the DC component current, the water tree current I i can be accurately measured. It is desirable to be able to measure the insulation resistance (sheath resistance is also used in the sense of insulation resistance) as a quantity related to insulation deterioration without being affected.
In FIG. 5, 18 is a power source, 19 is a ground wire drawn from the shielded copper tape 6 on one side of the CV cable 1, and 20 is a switch opened at the time of measurement.

この発明は、上記の事情を考慮して為されたもので、そ
の目的とするところは、測定対象回路に直流電流成分が
流れている場合にもその影響を受けることなく絶縁抵抗
を直流成分電流と同時に測定することのできる絶縁劣化
関係量測定装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to reduce an insulation resistance to a DC component current without being affected even when a DC current component flows in a circuit to be measured. Another object of the present invention is to provide an insulation deterioration related quantity measuring device capable of measuring at the same time.

発明の構成 (問題点を解決するための手段) この発明に係る絶縁劣化関係量測定装置は、上記の目的
を達成するために、絶縁劣化関係量が測定される測定対
象回路に低周波電圧を印加する低周波電圧印加部と、該
低周波電圧に基づいて前記測定対象回路を経由して流れ
る低周波電流を検出する低周波電流検出部と、前記低周
波電圧印加部に同期して絶縁抵抗に寄与しない低周波無
効電流を発生する低周波無効電流発生部と、前記低周波
電流と前記無効電流とが入力され、該低周波電流と前記
無効電流とを重畳して差分を検出し、絶縁抵抗に寄与す
る有効分電流を取り出すために前記低周波電流が最小と
なるように前記低周波無効電流発生部を制御すると共
に、前記有効分電流を絶縁抵抗演算部に向かって出力す
る差動回路部と、前記絶縁抵抗演算部の出力に基づいて
絶縁抵抗を記録する記録部と前記測定対象回路に該測定
対象回路の交流インピーダンス成分への影響が無視でき
る程度の超低周波電圧を印加する超低周波電圧印加部
と、該超低周波電圧に基づいて前記測定対象回路を経由
して流れる直流成分電流を検出する直流成分電流検出部
と、該直流成分電流検出部の検出出力に基づいて絶縁抵
抗と直流成分電流とを演算する演算部と、前記直流成分
電流と前記絶縁抵抗とを得るために該演算部と前記超低
周波電圧印加部と前記直流成分電流検出部とをタイミン
グ制御するタイミング制御部とを有する構成としたので
ある。
Configuration of the Invention (Means for Solving the Problems) In order to achieve the above-mentioned object, the insulation deterioration related quantity measuring device applies a low frequency voltage to a measurement target circuit whose insulation deterioration related quantity is measured. A low-frequency voltage applying section to apply, a low-frequency current detecting section to detect a low-frequency current flowing through the circuit to be measured based on the low-frequency voltage, and an insulation resistance in synchronization with the low-frequency voltage applying section. A low-frequency reactive current generator that generates a low-frequency reactive current that does not contribute to the input, the low-frequency current and the reactive current are input, the low-frequency current and the reactive current are superimposed to detect a difference, and insulation A differential circuit that controls the low-frequency reactive current generator so that the low-frequency current is minimized in order to extract the effective component current that contributes to resistance, and that outputs the effective component current toward the insulation resistance calculator. And the insulation resistance A recording unit that records the insulation resistance based on the output of the arithmetic unit; and an ultra-low frequency voltage applying unit that applies an ultra-low frequency voltage to the measurement target circuit that has a negligible effect on the AC impedance component of the measurement target circuit. , A DC component current detection unit that detects a DC component current flowing through the circuit to be measured based on the ultra low frequency voltage, and an insulation resistance and a DC component current based on the detection output of the DC component current detection unit And a timing control unit that controls the timing of the calculation unit, the ultra-low frequency voltage application unit, and the DC component current detection unit to obtain the DC component current and the insulation resistance. It was.

(実施例) 以下、この発明に係る絶縁劣化関係量測定装置の第1実
施例を第8図〜第12図を参照しつつ説明する。
(Embodiment) Hereinafter, a first embodiment of the insulation deterioration related amount measuring device according to the present invention will be described with reference to FIGS. 8 to 12.

第8図、第9図において、30は絶縁劣化関係量が測定さ
れる測定対象回路である。この測定対象回路30は、ここ
ではCVケーブル1であるが、変圧器その他の電気機器で
も構わない。31はこの測定対象回路30の絶縁劣化関係量
を測定する絶縁劣化関係量測定装置である。絶縁劣化関
係量測定装置31は、測定対象回路30が活線状態である場
合にあっても測定できるもので、絶縁劣化関係量測定装
置31は低周波電圧印加部32、低周波電流検出部33、低周
波無効電流発生部34、差動回路部35、絶縁抵抗演算部3
6、絶縁抵抗記録部37、誘電正接演算部38、誘電正接記
録部39、直流電流成分検出部40、直流成分記録部41と、
超低周波電圧印加部70と、直流成分電流検出部71と、演
算部72とタイミング制御部73と、絶縁抵抗記録部74と、
直流成分電流記録部75とを有する。
In FIGS. 8 and 9, reference numeral 30 denotes a circuit to be measured whose insulation deterioration related amount is measured. The circuit 30 to be measured is the CV cable 1 here, but it may be a transformer or other electrical equipment. Reference numeral 31 is an insulation deterioration related amount measuring device for measuring the insulation deterioration related amount of the measurement target circuit 30. The insulation deterioration related amount measuring device 31 can measure even when the measurement target circuit 30 is in a live state, and the insulation deterioration related amount measuring device 31 includes a low frequency voltage applying unit 32 and a low frequency current detecting unit 33. , Low frequency reactive current generator 34, differential circuit 35, insulation resistance calculator 3
6, insulation resistance recording unit 37, dielectric loss tangent calculation unit 38, dielectric loss tangent recording unit 39, DC current component detection unit 40, DC component recording unit 41,
Ultra-low frequency voltage application unit 70, DC component current detection unit 71, operation unit 72 and timing control unit 73, insulation resistance recording unit 74,
And a DC component current recording unit 75.

低周波電圧印加部32は低周波電圧としての正弦波電圧を
測定対象回路30に印加する機能を有する。測定対象回路
30に正弦波電圧VFが印加されるとその測定対象回路30を
経由して低周波電流としての正弦波電流IFが流れる。こ
の正弦波電流IFは第10図、第11図に示すように絶縁抵抗
RS、Riに寄与する有効分電流Iuと絶縁抵抗に寄与しない
無効分電流Imとからなる。低周波電流検出部33は抵抗RP
とアンプ42とフイルター43とから概略構成され、正弦波
電流IFを検出する機能を有する。
The low frequency voltage application unit 32 has a function of applying a sine wave voltage as a low frequency voltage to the measurement target circuit 30. Target circuit
When the sine wave voltage V F is applied to 30, a sine wave current I F as a low frequency current flows through the measurement target circuit 30. This sine wave current IF is the insulation resistance as shown in Fig. 10 and Fig. 11.
It consists of an effective component current Iu that contributes to R S and R i and a reactive component current Im that does not contribute to insulation resistance. The low frequency current detector 33 has a resistance R P
Is a schematic configuration of an amplifier 42 and filter 43 has a function of detecting a sinusoidal current I F.

アンプ42には正弦波電流IFに基づいて、正弦波電流IF
対応する電圧VT′が入力され、アンプ42はその電圧VT
をβ倍に増幅してフイルター43にβVT′の電圧を出力
し、フイルター43は直流分電圧βVTを後述する差動増幅
器に向かって出力する。低周波無効電流発生部34は低周
波電圧印加部32に同期して正弦波電流IFの打ち消し無効
電流Im′を発生する機能を有する。その低周波無効電流
発生部34は抵抗rとコンデンサcとアンプ44と利得制御
回路45とから概略構成されている。アンプ44には、無効
分電流Imに基づいて検出電圧VC′が印加され、そのアン
プ44はその検出電圧をα倍してαVC′の電圧を利得制御
回路45に出力する機能を有する。差動回路35は差動増幅
器46と絶縁抵抗演算部36の一部回路36′とから構成され
ている。差動増幅器46にはフイルター43の出力電圧βVT
と利得制御回路45の電圧αVCとが入力され、その差分電
圧Vxを一部回路36′を介して絶縁抵抗演算部36と誘電正
接演算部38とに出力する機能を有する。
The amplifier 42 on the basis of the sinusoidal current I F, the voltage V T corresponding to the sinusoidal current I F 'is input, the amplifier 42 is the voltage V T'
Is amplified β times to output a voltage of βV T ′ to the filter 43, and the filter 43 outputs a DC component voltage βV T to a differential amplifier described later. Low-frequency reactive current generating section 34 has a function of generating a reactive current Im 'cancellation of sinusoidal current I F in synchronization with the low-frequency voltage applying unit 32. The low frequency reactive current generator 34 is roughly composed of a resistor r, a capacitor c, an amplifier 44 and a gain control circuit 45. The amplifier 44 'is applied, the amplifier 44 alpha] V C by multiplying the detected voltage alpha' detection voltage V C based on the reactive current Im having a function of outputting a voltage of the gain control circuit 45. The differential circuit 35 is composed of a differential amplifier 46 and a partial circuit 36 'of the insulation resistance calculator 36. The output voltage βV T of the filter 43 is applied to the differential amplifier 46.
And the voltage α V C of the gain control circuit 45 are input, and it has a function of outputting the difference voltage V x to the insulation resistance calculation unit 36 and the dielectric loss tangent calculation unit 38 via the partial circuit 36 ′.

利得制御回路45には、差分電圧Vxの一部が帰還され、差
動回路35は低周波電流と無効電流とが入力され、低周波
電流と無効分電流Imとを重畳して差分を検出し、有効分
電流Iuを取り出すためにVxが最小となるように低周波無
効電流発生部34を制御すると共に、有効分電流Iuを少な
くとも絶縁抵抗演算部36に向かって出力する機能を有す
る。この発明に係る絶縁劣化関係量測定装置によれば、 有効分電流Iuは、 無効分電流Imは、 絶縁抵抗Riは、 として求められる。
A part of the differential voltage V x is fed back to the gain control circuit 45, and the low frequency current and the reactive current are input to the differential circuit 35, and the low frequency current and the reactive current Im are superimposed to detect the difference. The low-frequency reactive current generator 34 is controlled so that V x is minimized in order to extract the active component current Iu, and the active component current Iu is output to at least the insulation resistance calculator 36. According to the insulation deterioration related quantity measuring device of the present invention, the effective component current Iu is The reactive current Im is Insulation resistance R i is Is required as.

絶縁抵抗演算部36は絶縁抵抗値を演算し、その演算結果
を絶縁抵抗記録部37に出力する機能を有し、誘電正接演
算部38は誘電正接値を演算し、その演算結果を誘電正接
演算部39に出力する機能を有する。
The insulation resistance calculation unit 36 has a function of calculating an insulation resistance value and outputting the calculation result to the insulation resistance recording unit 37. The dielectric loss tangent calculation unit 38 calculates a dielectric loss tangent value and calculates the calculation result as a dielectric loss tangent. It has a function of outputting to the unit 39.

なお、測定対象回路30には低周波電圧を印加する前にす
でに低周波が流れていることも考えられるので、低周波
電圧印加前に有効分電流をあらかじめ測定し、その次に
低周波電圧を印加して有効分電流Iuを測定してその差分
に基づいて絶縁抵抗値を決定するようにすることが正確
に絶縁抵抗を測定するうえで好ましい。また、低周波の
周波数が低ければ交流インピーダンスが大きくなるため
に、無効分電流Imが小さくなり、絶縁抵抗Riに基づく有
効分電流Iuの大きさとの差が小さくなるので、測定精度
が向上するが、低周波の周波数としては1Hz〜10Hzが望
ましい。更に、この実施例では、低周波として正弦波を
用いたが、三角波、矩形波を用いることもできる。
Since it is possible that a low frequency has already flowed in the measurement target circuit 30 before the low frequency voltage is applied, the effective current is measured in advance before the low frequency voltage is applied, and then the low frequency voltage is applied. It is preferable to measure the effective resistance current Iu by applying it and determine the insulation resistance value based on the difference between the effective resistance current Iu and the accurate measurement of the insulation resistance. Further, if the frequency of the low frequency is low, the AC impedance becomes large, so that the reactive component current Im becomes small and the difference from the size of the effective component current Iu based on the insulation resistance R i becomes small, so that the measurement accuracy is improved. However, the low frequency is preferably 1 Hz to 10 Hz. Further, although the sine wave is used as the low frequency in this embodiment, a triangular wave or a rectangular wave may be used.

以下に、この発明に係る低周波を用いてのCVケーブル1
のシース抵抗の測定結果と従来の絶縁抵抗測定器による
測定結果とを表として示す。
Below, the CV cable 1 using the low frequency according to the present invention
The results of the sheath resistance measurement and the results of the conventional insulation resistance measurement device are shown in the table.

なお、CVケーブル1の全長は40メートル、断面積は22mm
2であり、絶縁抵抗測定器には1000ボルト印加用のもの
を用い、シース抵抗を人為的に変化させながら測定し
た。また、単位はメグオームである。
The CV cable 1 has a total length of 40 meters and a cross-sectional area of 22 mm.
2 was used, and the insulation resistance measuring instrument used was one for applying 1000 V, and the sheath resistance was measured while artificially changing. The unit is megohm.

超低周波電圧印加部70は超低周波電圧としての矩形波電
圧Vを測定対象回路30に印加する機能を有する。ここ
で、矩形波電圧Vの周波数としては測定対象回路30の交
流インピーダンス成分への影響が無視できる程度とし、
たとえば、0.02Hz程度以下の周波数の矩形波電圧を用い
る。測定対象回路30に矩形波電圧Vが印加されるとその
測定対象回路30を経由して直流成分電流が流れる。直流
成分電流検出部71は、測定対象回路30を経由して流れる
直流成分電流を検出する機能を有し、演算部72は直流成
分電流検出部71の検出出力に基づいて、直流成分電流と
絶縁抵抗とを演算する機能を有し、タイミング制御部73
はその超低周波電圧印加部70と直流成分電流検出部71と
演算部72を制御する機能を有する。
The ultra low frequency voltage application unit 70 has a function of applying the rectangular wave voltage V as the ultra low frequency voltage to the measurement target circuit 30. Here, the frequency of the rectangular wave voltage V is set so that the influence on the AC impedance component of the measurement target circuit 30 can be ignored.
For example, a rectangular wave voltage having a frequency of about 0.02 Hz or less is used. When the rectangular wave voltage V is applied to the measurement target circuit 30, a DC component current flows through the measurement target circuit 30. The DC component current detection unit 71 has a function of detecting a DC component current flowing through the measurement target circuit 30, and the calculation unit 72 isolates the DC component current from the DC component current based on the detection output of the DC component current detection unit 71. It has a function to calculate the resistance and the timing control unit 73
Has a function of controlling the ultra low frequency voltage application unit 70, the DC component current detection unit 71, and the calculation unit 72.

次に、この発明に係る超低周波を用いての測定を第12図
を参照しつつ説明する。
Next, measurement using ultralow frequencies according to the present invention will be described with reference to FIG.

測定対象回路30には活線状態ではもともと直流成分電流
が流れているもので、まず、区間Iにおいて矩形波電圧
Vを印加する前の状態で、測定対象回路30に流れている
直流成分電流I1を測定する。次に、区間IIにおいて正の
矩形波電圧V2を印加する。このとき、測定対象回路30に
流れた直流成分電流をI2とし、この区間IIの測定によっ
て得られる抵抗、たとえば、シース抵抗をRS2とする。
このとき、シース抵抗RS2と直流成分電流I1、I2、矩形
波電圧V2とは、以下に示す関係式が成り立つ。
The DC component current originally flows in the measurement target circuit 30 in the live line state. First, in the section I before the rectangular wave voltage V is applied, the DC component current I flowing in the measurement target circuit 30 is measured. Measure 1 . Next, in section II, a positive rectangular wave voltage V 2 is applied. At this time, the DC component current flowing in the measurement target circuit 30 is I 2, and the resistance obtained by the measurement in this section II, for example, the sheath resistance is R S2 .
At this time, the sheath resistance R S2 , the DC component currents I 1 and I 2 , and the rectangular wave voltage V 2 satisfy the following relational expression.

その次に、区間IIIにおいて矩形波電圧Vの印加を停止
して区間IIIにおける直流成分電流I3を測定し、その後
区間IVにおいて負の矩形波電圧V4を印加する。このとき
測定対象回路30に流れた直流成分電流をI4し、この区間
IVの測定によって得られる抵抗、たとえば、シース抵抗
をRS4とする。このときシース抵抗RS4と直流成分電流
I3、I4、矩形波電圧V4とは、以下に示す関係式が成り立
つ。
Then, the application of the rectangular wave voltage V is stopped in the section III, the DC component current I 3 in the section III is measured, and then the negative rectangular wave voltage V 4 is applied in the section IV. At this time, the DC component current flowing in the circuit under measurement 30 is I 4 , and this section
Let R S4 be the resistance obtained by the measurement of IV, for example, the sheath resistance. At this time, sheath resistance R S4 and DC component current
The following relational expressions hold for I 3 , I 4 , and the rectangular wave voltage V 4 .

したがって、平均のシース抵抗RSは、 として求められる。 Therefore, the average sheath resistance R S is Is required as.

なお、区間Vは区間I、区間IIIと同様に超低周波電圧
を印加しない区間であり、符号15は超低周波電圧を印加
しない場合のこの区間における直流成分電流を示し、区
間VIは、区間II、区間IVと同様に超低周波電圧を印加す
る場合を示し、符号V6は正を矩形波電圧を示す。ここ
で、区間V、VI以降については、区間Iから区間IVまで
測定の繰り返しを行うにすぎないので、その詳細な説明
は省略する。この繰り返し回数が増えれば増えるほどよ
り正確に平均のシース抵抗RSを求めることができる。
In addition, the section V is a section in which no ultra low frequency voltage is applied as in the sections I and III, the reference numeral 15 indicates a DC component current in this section when no ultra low frequency voltage is applied, and the section VI is a section. A case where an ultralow frequency voltage is applied is shown in the same manner as in II and section IV, and the symbol V6 indicates a positive rectangular wave voltage. Here, for the sections V and VI and thereafter, since the measurement is repeated only from the section I to the section IV, the detailed description thereof will be omitted. As the number of repetitions increases, the average sheath resistance R S can be calculated more accurately.

タイミング制御部73は直流成分電流I1、I2、I3、I4、各
区間におけるシース抵抗RS2、RS4、平均のシース抵抗RS
を得るために、超低周波電圧印加部70、直流成分電流検
出部71、演算部72を制御する。このようにして求められ
たシース抵抗RSは以下に説明するように用いられる。た
とえば、シース抵抗RSを人為的に変化させ、そのシース
抵抗RSとそれに対応する直流成分電流Iとを少なくとも
3組求め、この求められた直流成分電流Iとシース抵抗
RSとの組合せから第13図に示す関係曲線を求め、シース
抵抗RSの増大側の極限の直流成分電流Iを推定すること
にすると、迷走電流ISが含まれたままの状態でも水トリ
ー電流Iiを測定できる。
The timing controller 73 controls the DC component currents I 1 , I 2 , I 3 , I 4 , the sheath resistances R S2 , R S4 in each section, and the average sheath resistance R S.
In order to obtain the above, the ultra low frequency voltage applying unit 70, the DC component current detecting unit 71, and the calculating unit 72 are controlled. The sheath resistance R S thus obtained is used as described below. For example, the sheath resistance R S is artificially changed, at least three sets of the sheath resistance R S and the corresponding DC component current I are obtained, and the obtained DC component current I and the sheath resistance are obtained.
Obtained relation curve shown in Figure 13 of a combination of R S, when to estimate the DC component current I of extreme increasing side of the sheath resistor R S, water is also in a state that includes the stray currents I S The tree current I i can be measured.

また、この発明に係る絶縁劣化関係量測定装置31は、水
トリー電流Ii、ケーブル絶縁抵抗Ri、シース抵抗RSを同
時に連続的に測定することができるもので、第14図はこ
の発明に係る絶縁劣化関係量測定装置31を用いてCVケー
ブル1の接地線11に流れる水トリー電流Iiと絶縁抵抗Ri
とシース抵抗RSとを連続的に測定する場合の接続回路図
を示しており、絶縁劣化関係量測定装置31の一方側を接
地線11に接続し、他方側を接地線17に接続すると共に、
交流的には数十Ω以下のインピーダンス特性を有しかつ
直流的には200MΩ程度以上の高インピーダンス特性を有
するコンデンサCを接地線17の途中に介在させ、正弦波
電流IFを高圧配電線17と大地とを経由して絶縁劣化関係
量測定装置31に還流させ、超低周波に基づいて流れる電
流I′も高圧配電線10及び大地を経由して還流させる構
成としたものであり、このように絶縁劣化関係量測定装
置31を接続する構成とすると、超低周波に基づいて測定
された測定対象回路30の全抵抗をRa、低周波によって測
定された全抵抗をRbとすると、シース抵抗RS、絶縁抵抗
Riは以下に示す式を解くことによって求められる。
Further, the insulation deterioration related amount measuring device 31 according to the present invention can simultaneously and continuously measure the water tree current I i , the cable insulation resistance R i , and the sheath resistance R S. FIG. water flows to the ground line 11 of the CV cable 1 with insulation degradation related quantity measuring device 31 according to the tree current I i and the insulation resistance R i
FIG. 11 shows a connection circuit diagram in the case where the sheath resistance R S and the sheath resistance R S are continuously measured. One side of the insulation deterioration related amount measuring device 31 is connected to the ground line 11, and the other side is connected to the ground line 17. ,
AC in the have and DC impedance characteristics of less than several tens of Ω is interposed a capacitor C having a high impedance characteristic of more than about 200MΩ in the middle of the ground line 17, the high-pressure distribution line sine wave current I F 17 And the earth, and the current is returned to the insulation deterioration related quantity measuring device 31, and the current I ′ flowing based on the ultra-low frequency is also circulated via the high-voltage distribution line 10 and the earth. If the insulation deterioration related amount measuring device 31 is connected to, the total resistance of the measurement target circuit 30 measured based on the ultra-low frequency is R a , and the total resistance measured by the low frequency is R b. Resistance R S , insulation resistance
R i is obtained by solving the following equation.

なお、ここで、抵抗RはコンデンサCの直流抵抗成分で
ある。
Here, the resistance R is a DC resistance component of the capacitor C.

さらに、この発明に係る絶縁劣化関係量測定装置31は、
CVケーブル1の接地線11に流れる水トリー電流Ii、絶縁
抵抗Riを2種類の周波数で同時に測定するのにも用いる
ことができるもので、第15図に示すように低周波電圧印
加部32、超低周波電圧印加部70のみを測定対象回路30の
GPT16の接地線17に設け、残余の回路部33、34等を含む
絶縁劣化関係量測定装置31を接地線11にそのまま接続し
ておき、すなわち、CVケーブル1の遮蔽銅テープ6に接
続しておき、しかも商用周波をバイパスさせかつ迷走電
流ISをカットするためのコンデンサC′を接地線17に介
装する構成とし、このコンデンサC′を介装することに
よって迷走電流ISをカットするようにしたものである。
なお、絶縁抵抗Riのみの測定であれば、コンデンサC′
は不要である。
Further, the insulation deterioration related amount measuring device 31 according to the present invention,
It can also be used to simultaneously measure the water tree current I i and the insulation resistance R i flowing in the ground wire 11 of the CV cable 1 at two different frequencies, as shown in FIG. 32, only the ultra low frequency voltage applying unit 70 of the measurement target circuit 30
It is provided on the ground wire 17 of the GPT16, and the insulation deterioration related quantity measuring device 31 including the remaining circuit parts 33, 34, etc. is connected to the ground wire 11 as it is, that is, it is connected to the shielding copper tape 6 of the CV cable 1. Place, yet so that the capacitor C for cutting bypassed allowed and stray current I S of the commercial frequency 'were configured interposing the ground line 17, the capacitor C' for cutting the stray current I S by interposing a It is the one.
If only the insulation resistance R i is measured, the capacitor C '
Is unnecessary.

さらに、この発明に係る絶縁劣化関係量測定装置31はCV
ケーブル1の絶縁抵抗Riと静電容量Ciとを同時に連続的
に測定することもできるもので、第16図に示すように、
GPT16の接地線17にスイッチ51を設け、スイッチ51の高
電位側から接続線52を引き出すと共にスイッチ51の低電
位側から接続線53を引き出し、そのスイッチ51と並列に
コンデンサC4、可変抵抗器R4、を設け、接続線52の途中
には抵抗R1と低周波電圧印加部32とを接続し、その抵抗
R1を接地線11を介して遮蔽銅テープ6に接続し、低周波
電圧印加部32と抵抗R1との接続線52の途中と接続線53の
との間に可変抵抗器R2を接続し、低周波電流検出部33を
接地線11と接続線53とに接続して、第17図に等価回路で
示すブリッジ回路を構成し、低周波電流検出部33の正弦
波電流IFがゼロとなるように調整する構成としたもの
で、ブリッジの平行条件により以下の式が成立する。
Further, the insulation deterioration related quantity measuring device 31 according to the present invention is CV
It is also possible to continuously measure the insulation resistance R i and the capacitance C i of the cable 1 continuously, as shown in FIG.
A switch 51 is provided on the ground line 17 of the GPT 16, a connection line 52 is drawn from the high potential side of the switch 51, a connection line 53 is drawn from the low potential side of the switch 51, and a capacitor C 4 and a variable resistor are connected in parallel with the switch 51. R 4 is provided, and the resistor R 1 and the low frequency voltage applying unit 32 are connected in the middle of the connecting line 52, and the resistor
R 1 is connected to the shielding copper tape 6 via the ground wire 11, and a variable resistor R 2 is connected between the connection wire 53 and the middle of the connection wire 52 connecting the low frequency voltage applying section 32 and the resistor R 1. and, by connecting the low-frequency current detector 33 in the connecting line 53 and the ground line 11, the bridge circuit shown in the equivalent circuit in FIG. 17 constitute a sinusoidal current I F of the low-frequency current detector 33 is zero The following formula is established depending on the parallel condition of the bridge.

この式において、実部と虚部とが等しいとおくと、CVケ
ーブル1の絶縁抵抗Ri、静電容量Ciはそれぞれ以下の式
によって求められる。
In this equation, assuming that the real part and the imaginary part are equal, the insulation resistance R i and the electrostatic capacitance C i of the CV cable 1 are respectively calculated by the following formulas.

なお、可変抵抗器R2、可変抵抗器R4はたとえば抵抗R1
1MΩ、コンデンサC4を500μFとし、R2の変更範囲を2
〜1000Ω、R4の変更範囲を200Ω〜200MΩとすると、絶
縁抵抗Riは100MΩから100000MΩ、静電容量Ciは0.001μ
F〜1μFの範囲で測定できる。
The variable resistor R 2 and the variable resistor R 4 are, for example, the resistor R 1
1MΩ, Capacitor C 4 is 500μF, and the change range of R 2 is 2
~1000Omu, When 200Ω~200MΩ range of change in R 4, the insulation resistance R i is 100000MΩ from 100 M.OMEGA, the electrostatic capacitance C i 0.001μ
It can be measured in the range of F to 1 μF.

また、絶縁破壊電圧を測定する場合には、直流電圧を段
階的に変化させて絶縁抵抗を測定し、その絶縁抵抗が急
激に変化する時点の電圧を求めればよい。
When measuring the dielectric breakdown voltage, the DC voltage may be changed stepwise to measure the insulation resistance, and the voltage at the time when the insulation resistance changes rapidly may be obtained.

発明の効果 この発明に係る絶縁劣化関係量測定装置は、以上説明し
たように低周波用いるものであるから、測定対象回路に
直流成分電流が流れている場合にも絶縁劣化に関係する
絶縁劣化関係量を精度良く測定できるという効果を奏す
る。
EFFECTS OF THE INVENTION Since the insulation deterioration related quantity measuring device according to the present invention uses the low frequency as described above, the insulation deterioration relationship relating to the insulation deterioration even when the DC component current flows in the circuit to be measured. This has the effect that the amount can be measured accurately.

また、無課電の測定対象回路であっても、低周波を印加
した状態で超低周波により絶縁抵抗を測定できるから、
交流課電状態での直流電圧印加による絶縁抵抗測定と略
同等の状態で絶縁抵抗値を測定できる効果がある。
In addition, even in the case of a circuit to be measured that is not energized, the insulation resistance can be measured at a very low frequency with a low frequency applied,
There is an effect that the insulation resistance value can be measured in a state substantially equivalent to the insulation resistance measurement by applying a DC voltage in the AC applied state.

異なる異質の交流電圧を同時に印加して絶縁劣化関係量
を測定することができるから、低周波における不具合と
超低周波における不具合とを互いに相殺することがで
き、たとえば、測定対象回路の回路特性によっては、超
低周波電圧を印加した際にその印加に基づく超低周波電
流が安定するまでに時間がかかる問題点があるものの、
超低周波の印加の場合には、測定対象回路の静電容量等
に起因する交流インピーダンス成分の影響を受けにくい
ので、低周波印加に較べて絶縁劣化関係量を精度良く測
定できる効果がある。
Since different kinds of AC voltages can be simultaneously applied to measure the amount of insulation deterioration, it is possible to cancel out the defect at low frequency and the defect at very low frequency. For example, depending on the circuit characteristics of the measurement target circuit, Has a problem that it takes time to stabilize the ultra low frequency current based on the application of the ultra low frequency voltage,
In the case of applying an extremely low frequency, it is less likely to be affected by the AC impedance component due to the capacitance of the circuit to be measured, etc., and therefore, there is an effect that the insulation deterioration related amount can be measured more accurately than in the case of applying a low frequency.

反対に、低周波印加による場合には、測定対象回路の静
電容量の大きさ等が測定精度に影響を与えることがある
ものの超低周波によるよりも、CVケーブル等の絶縁破壊
電圧に関してより信頼のおける絶縁劣化関係量を得るこ
とができる。
On the other hand, when applying a low frequency, the magnitude of the capacitance of the measurement target circuit may affect the measurement accuracy, but it is more reliable with respect to the breakdown voltage of the CV cable, etc. It is possible to obtain the insulation deterioration related amount.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に係るCVケーブルの断面図、第2図は
その側面図、第3図はこの発明に係るCVケーブルの断面
図、第4図はこの発明に係る水トリー電流の発生機構の
説明図、第5図は従来の測定器のCVケーブルへの接続
図、第6図、第7図はその第5図に示す接続図の等価回
路、第8図はこの発明に係る絶縁劣化関係量測定装置の
ブロック回路図、第9図はその低周波測定側の回路の要
部構成図、第10図はその低周波による測定の場合の出力
波形図、第11図はその低周波測定の場合の有効分電流、
無効分電流、打ち消し無効分電流の関係を示すベクトル
図、第12図はその超低周波による測定の場合の出力波形
図、第13図はこの発明に係る絶縁劣化関係量測定装置を
用いてシース抵抗と直流成分電流とを同時に測定し、水
トリー電流を推定して求める例を説明するための関係曲
線図、第14図はこの発明に係る絶縁劣化関係量測定装置
を用いての絶縁抵抗と水トリー電流とシース抵抗とを同
時に測定する場合の回路接続図、第15図はこの発明に係
る絶縁劣化関係量測定装置を用いての他の測定例を説明
するための接続図、第16図この発明に係る絶縁劣化関係
量測定装置を用いての絶縁抵抗と静電容量とを同時に測
定する場合の接続図、第17図はその第16図に示す回路接
続図の等価回路である。 32……低周波印加部 33……低周波電流検出部 34……無効電流発生部 35……差動回路部 36……絶縁抵抗演算部 37……絶縁抵抗記録部 40……直流成分電流検出部 70……超低周波電圧印加部 71……直流成分電流検出部 72……演算部 73……タイミング制御部
1 is a sectional view of a CV cable according to the present invention, FIG. 2 is a side view thereof, FIG. 3 is a sectional view of a CV cable according to the present invention, and FIG. 4 is a water tree current generating mechanism according to the present invention. FIG. 5 is a connection diagram of a conventional measuring instrument to a CV cable, FIGS. 6 and 7 are equivalent circuits of the connection diagram shown in FIG. 5, and FIG. 8 is insulation deterioration according to the present invention. FIG. 9 is a block circuit diagram of the relational quantity measuring device, FIG. 9 is a main part configuration diagram of a circuit on the low frequency measurement side, FIG. 10 is an output waveform diagram in the case of measurement at the low frequency, and FIG. 11 is the low frequency measurement. Effective current in the case of
A vector diagram showing the relationship between the reactive current and the reactive current that cancels out, FIG. 12 is an output waveform diagram in the case of measurement at an ultralow frequency, and FIG. 13 is a sheath using the insulation deterioration related quantity measuring device according to the present invention. Simultaneously measuring resistance and DC component current, a relationship curve diagram for explaining an example of estimating and obtaining a water tree current, FIG. 14 is an insulation resistance using the insulation deterioration related amount measuring device according to the present invention. Circuit connection diagram for simultaneously measuring water tree current and sheath resistance, FIG. 15 is a connection diagram for explaining another measurement example using the insulation deterioration related amount measuring device according to the present invention, FIG. 16 FIG. 17 is a connection diagram when the insulation resistance and the capacitance are simultaneously measured using the insulation deterioration related amount measuring device according to the present invention, and FIG. 17 is an equivalent circuit of the circuit connection diagram shown in FIG. 32 …… Low frequency application section 33 …… Low frequency current detection section 34 …… Reactive current generation section 35 …… Differential circuit section 36 …… Insulation resistance calculation section 37 …… Insulation resistance recording section 40 …… DC component current detection Unit 70 …… Ultra low frequency voltage application unit 71 …… DC component current detection unit 72 …… Calculation unit 73 …… Timing control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁劣化関係量が測定される測定対象回路
に低周波電圧を印加する低周波電圧印加部と、該低周波
電圧に基づいて前記測定対象回路を経由して流れる低周
波電流を検出する低周波電流検出部と、前記低周波電圧
印加部に同期して絶縁抵抗に寄与しない低周波無効電流
を発生する低周波無効電流発生部と、前記低周波電流と
前記無効電流とが入力され、該低周波電流と前記無効電
流とを重畳して差分を検出し、絶縁抵抗に寄与する有効
分電流を取り出すために前記低周波電流が最小となるよ
うに前記低周波無効電流発生部を制御すると共に、前記
有効分電流を絶縁抵抗演算部に向かって出力する差動回
路部と、前記絶縁抵抗演算部の出力に基づいて絶縁抵抗
を記録する記録部と、前記測定対象回路に該測定対象回
路の交流インピーダンス成分への影響が無視できる程度
の超低周波電圧を印加する超低周波電圧印加部と、該超
低周波電圧に基づいて前記測定対象回路を経由して流れ
る直流成分電流を検出する直流成分電流検出部と、該直
流成分電流検出部の検出出力に基づいて絶縁抵抗と直流
成分電流とを演算する演算部と、前記直流成分電流と前
記絶縁抵抗とを得るために該演算部と前記超低周波電圧
印加部と前記直流成分電流検出部とをタイミング制御す
るタイミング制御部とを有することを特徴とする絶縁劣
化関係量測定装置。
1. A low-frequency voltage applying section for applying a low-frequency voltage to a measurement target circuit whose insulation deterioration related amount is measured, and a low-frequency current flowing through the measurement target circuit based on the low frequency voltage. A low-frequency current detection unit for detecting, a low-frequency reactive current generation unit for generating a low-frequency reactive current that does not contribute to insulation resistance in synchronization with the low-frequency voltage application unit, and the low-frequency current and the reactive current are input. The low-frequency current is generated by superimposing the low-frequency current and the reactive current to detect a difference, and the low-frequency reactive current generating unit is minimized so that the low-frequency current is minimized in order to extract an effective component current that contributes to insulation resistance. A differential circuit unit that controls and outputs the effective component current to an insulation resistance calculation unit, a recording unit that records insulation resistance based on the output of the insulation resistance calculation unit, and the measurement target circuit that performs the measurement. AC impedance of target circuit And a DC component for detecting a DC component current flowing through the measurement target circuit based on the ultra-low frequency voltage applying unit for applying an ultra-low frequency voltage having an effect that can be ignored. A current detection unit, a calculation unit that calculates an insulation resistance and a DC component current based on the detection output of the DC component current detection unit, and the calculation unit and the super unit for obtaining the DC component current and the insulation resistance. An insulation deterioration related quantity measuring device, comprising: a low frequency voltage application section and a timing control section for timing control of the DC component current detection section.
JP62115826A 1987-05-14 1987-05-14 Insulation deterioration related quantity measuring device Expired - Lifetime JPH0690245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115826A JPH0690245B2 (en) 1987-05-14 1987-05-14 Insulation deterioration related quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115826A JPH0690245B2 (en) 1987-05-14 1987-05-14 Insulation deterioration related quantity measuring device

Publications (2)

Publication Number Publication Date
JPS63281063A JPS63281063A (en) 1988-11-17
JPH0690245B2 true JPH0690245B2 (en) 1994-11-14

Family

ID=14672072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115826A Expired - Lifetime JPH0690245B2 (en) 1987-05-14 1987-05-14 Insulation deterioration related quantity measuring device

Country Status (1)

Country Link
JP (1) JPH0690245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102532247B1 (en) * 2022-10-12 2023-05-15 (사)힘찬장애인복지회 Apparatus and method for monitoring insulation deterioration of electric power equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362984A (en) * 2018-04-26 2018-08-03 徐爱花 The positive and negative straight resistance ratio gauge of middle pressure crosslinking polyethylene-insulated cable insulation high-precision

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036970A (en) * 1983-08-08 1985-02-26 Toyo Commun Equip Co Ltd Method for measuring insulation resistance
JPS61155869A (en) * 1984-12-28 1986-07-15 Toyo Commun Equip Co Ltd Measuring method of phase-compensated insulation resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036970A (en) * 1983-08-08 1985-02-26 Toyo Commun Equip Co Ltd Method for measuring insulation resistance
JPS61155869A (en) * 1984-12-28 1986-07-15 Toyo Commun Equip Co Ltd Measuring method of phase-compensated insulation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102532247B1 (en) * 2022-10-12 2023-05-15 (사)힘찬장애인복지회 Apparatus and method for monitoring insulation deterioration of electric power equipment

Also Published As

Publication number Publication date
JPS63281063A (en) 1988-11-17

Similar Documents

Publication Publication Date Title
JP3158063B2 (en) Non-contact voltage measurement method and device
JPH09184866A (en) Diagnostic method for degradation of cable under electrification
JP3430627B2 (en) Insulation monitoring method and apparatus for monitoring the insulation state of a power cable under a live line
JP4256967B2 (en) Non-grounded circuit insulation monitoring method and insulation monitoring device
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JP3009323B2 (en) Power cable insulation diagnostic device
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
JPH0525308B2 (en)
JPH07294588A (en) Method for locating insulation failure section of live cable
JP3301627B2 (en) Apparatus and method for measuring insulation resistance of load equipment
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
KR102220329B1 (en) Apparatus for measuring leakage current in low voltage electric power lines and method thereof
JP2000009788A (en) Deterioration diagnosis method of cables
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JPS63281074A (en) Detecting method for water tree current of cv cable
JP2802651B2 (en) Hot wire insulation resistance measurement method
JPH0553230B2 (en)
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPH0783973A (en) Insulation resistance measuring apparatus
JP2547796B2 (en) Cable live-line deterioration diagnostic device
JPH0862264A (en) Insulation resistance measuring device for power cable
JP2593668B2 (en) Insulation fault detection method for electric circuit
JPS62170857A (en) Method and device for measuring insulation resistance of cable of electric equipment