JP2003084028A - Hot line diagnostic method for power cable - Google Patents

Hot line diagnostic method for power cable

Info

Publication number
JP2003084028A
JP2003084028A JP2001280221A JP2001280221A JP2003084028A JP 2003084028 A JP2003084028 A JP 2003084028A JP 2001280221 A JP2001280221 A JP 2001280221A JP 2001280221 A JP2001280221 A JP 2001280221A JP 2003084028 A JP2003084028 A JP 2003084028A
Authority
JP
Japan
Prior art keywords
line
current
power cable
voltage
ground line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001280221A
Other languages
Japanese (ja)
Inventor
Shin Kataoka
慎 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001280221A priority Critical patent/JP2003084028A/en
Publication of JP2003084028A publication Critical patent/JP2003084028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot line diagnostic method for a power cable, capable of decreasing a measurement error of a DC component deterioration signal due to variation of stray current in a cable line system, measuring a DC component caused by insulation deterioration of water tree with heightened detection accuracy, and improving determination accuracy of a deterioration signal. SOLUTION: In this hot line diagnostic method for the power cable, one end of a power cable line 1 having a conductor 2, a cross-linking polyethylene insulator and a shielding layer 3 is connected to a ground line 7, and the other end ground line 6 is released from grounding. A DC power supply 10 of bipolarity and a low-pass filter 11 connected in series is disposed between the shielding layer 3 and the ground line 7. Before and after positive DC voltage and negative DC voltage are respectively biased to the shielding layer 3 of the power cable line 1, a stray current flowing through the ground line is measured by the low- pass filter 11 and a DC ammeter 12, and the change rate of the stray current is calculated from the variation. Further, the variation of the stray current which is an error factor is subtracted from the ground line DC current measurement data in biasing the positive and negative DC voltage to obtain an accurate deterioration signal, and detect a water tree deterioration of the cable insulator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、商用周波数が課電
された活線状態の電力ケーブルの絶縁劣化を診断する方
法、特に、導体と架橋ポリエチレン絶縁体と遮蔽層を有
する架橋ポリエチレン絶縁ビニルシース電力ケーブル
(CVケーブル)を用いた電力ケーブル線路の活線診断
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing insulation deterioration of a power cable in a live state in which a commercial frequency is applied, and more particularly, a crosslinked polyethylene insulation vinyl sheath power having a conductor, a crosslinked polyethylene insulation and a shielding layer. The present invention relates to a live line diagnosis method for a power cable line using a cable (CV cable).

【0002】[0002]

【従来の技術】従来、CVケーブルなどの電力ケーブル
線路における絶縁劣化を活線状態の下で診断する方法と
しては、現地CVケーブルを片端接地とし、ケーブル遮
蔽層に正負それぞれの電圧をバイアスしたときに接地線
を流れる直流電流をそれぞれ測定する方法が知られてい
る。
2. Description of the Related Art Conventionally, as a method of diagnosing insulation deterioration in a power cable line such as a CV cable under a live condition, a local CV cable is grounded at one end and positive and negative voltages are biased to a cable shielding layer. There is known a method of measuring a direct current flowing through a ground wire.

【0003】ここで、CVケーブルの接地線を流れる直
流電流をみると、直流電流には、 (a)迷走電流 (b)ケーブルの絶縁劣化に起因する直流成分 (c)ケーブル遮蔽層からケーブルシース抵抗を介して
大地に漏れ出す直流電流の3つの電流が含まれている。
このため、従来は、予め迷走電流(a)を測定してお
き、その後、正負それぞれの電圧をバイアスしたときの
接地線直流電流から、迷走電流(a)分を各々差引いた
後に両者の差分を求めると、正負の電圧に線形の応答を
示す直流電流(c)分が相殺され、正負の電圧に非線形
な応答を示す直流成分(b)の極性差が差分として残る
ので、この極性差をケーブルの劣化信号として捉え、そ
の大きさ等から劣化度合を推定していた。
Here, looking at the direct current flowing through the ground wire of the CV cable, the direct current is (a) stray current (b) direct current component caused by insulation deterioration of the cable (c) cable shield layer to cable sheath It contains three direct currents that leak through the resistor to the ground.
For this reason, conventionally, the stray current (a) is measured in advance, and then the stray current (a) is subtracted from the ground line DC current when the positive and negative voltages are biased. If found, the direct current (c) component showing a linear response to the positive and negative voltages is offset, and the polarity difference of the direct current component (b) showing a non-linear response to the positive and negative voltages remains as a difference. The deterioration degree was estimated from the size of the deterioration signal.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の正負そ
れぞれの電圧をバイアスしたときの接地線を流れる直流
電流をそれぞれ測定する方法によると、迷走電流の変動
が大きな電力ケーブル線路の場合、迷走電流の変動が、
ケーブル遮蔽層に正または負の電圧をバイアスした時に
測定される接地線直流電流の誤差分として現われ、その
結果、直流成分の極性差に対しても測定誤差が生じるた
めに、絶縁体が劣化していない健全な電力ケーブルに対
しても、絶縁体が劣化しているという誤った判定をする
という問題があった。
However, according to the conventional method for measuring the DC currents flowing through the ground line when biasing the positive and negative voltages, respectively, in the case of the power cable line in which the fluctuation of the stray current is large, the stray current is Fluctuation of
It appears as an error component of the ground wire DC current measured when a positive or negative voltage is applied to the cable shielding layer, and as a result, a measurement error also occurs with respect to the polarity difference of the DC component, which deteriorates the insulator. Even for a healthy power cable that does not exist, there is a problem of making an erroneous determination that the insulator is deteriorated.

【0005】図3は、従来のケーブル活線診断方法にお
いて、迷走電流変動が観測される線路の接地線直流成分
極性差に測定誤差が発生した例を示している。
FIG. 3 shows an example in which a measurement error occurs in the ground line DC component polarity difference of a line in which a stray current variation is observed in the conventional cable live line diagnosis method.

【0006】図3において、迷走電流が観測される電力
ケーブル線路の遮蔽層より架橋ポリエチレン絶縁体に、
例えば、±54Vの直流電圧をバイアスすると、±54
Vバイアス時の直流成分極性差(nA)は、曲線aに示
すように観測される。また、バイアス前の迷走電流I0
は、直線cに示すように観測される。
In FIG. 3, from the shielding layer of the power cable line where the stray current is observed, to the cross-linked polyethylene insulator,
For example, if a DC voltage of ± 54V is biased,
The DC component polarity difference (nA) at the time of V bias is observed as shown by the curve a. In addition, the stray current I 0 before biasing
Are observed as shown by the straight line c.

【0007】図3によると、±54Vバイアス時の直流
成分極性差(nA)の曲線aの平均値算出は、通常、バ
イアス開始後4分〜5分の間の1分間における平均値算
出範囲taでサンプリングし、そのサンプル数の平均値
を使用して判定しているために、迷走電流の変動が大き
な電力ケーブル線路の場合、その変動が平均値算出範囲
taに対して、バイアス時の接地線直流成分極性差(n
A)の測定誤差を生じさせる要因になっていた。
According to FIG. 3, the average value of the curve a of the DC component polarity difference (nA) at the time of ± 54 V bias is normally calculated in the average value calculation range ta in one minute from 4 minutes to 5 minutes after the start of bias. In the case of a power cable line in which the fluctuation of the stray current is large, the fluctuation is in the mean value calculation range ta, and the ground wire at the time of bias is sampled. DC component polarity difference (n
It was a factor causing the measurement error in A).

【0008】従って、本発明の目的は、ケーブル線路系
統における迷走電流の変動による直流成分劣化信号の測
定誤差を減少させて、水トリーの絶縁劣化により生じる
直流成分の検出精度を増大させて測定することができ、
劣化信号の判定精度を向上させることが可能な電力ケー
ブルの活線診断方法を提供することにある。
Therefore, an object of the present invention is to reduce the measurement error of the DC component deterioration signal due to the fluctuation of the stray current in the cable line system and to increase the detection accuracy of the DC component caused by the insulation deterioration of the water tree for the measurement. It is possible,
It is an object of the present invention to provide a method for hot-line diagnosis of a power cable, which can improve the accuracy of determining a deterioration signal.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の目的を
実現するため、導体と架橋ポリエチレン絶縁体と遮蔽層
を有する電力ケーブル線路の絶縁劣化を検出する電力ケ
ーブルの活線診断方法において、活線状態にある前記電
力ケーブル線路の一端を接地線に接続し、他端を接地か
ら解放するとともに、前記電力ケーブル線路の前記遮蔽
層に正および負の直流電圧をそれぞれバイアスできる状
態の下で、前記正の直流電圧をバイアスする前に前記接
地線を流れる迷走電流を測定する第1のステップと、前
記電力ケーブル線路の前記遮蔽層に正の直流電圧をバイ
アスして、前記接地線に流れる正の直流電圧バイアス時
の直流電流を測定する第2のステップと、前記正の直流
電圧バイアス時の直流電流の測定を終えた後で、かつ、
前記負の直流電圧をバイアスする前に、前記接地線を流
れる迷走電流を測定する第3のステップと、前記電力ケ
ーブル線路の前記遮蔽層に負の直流電圧をバイアスし
て、前記接地線に流れる負の直流電圧バイアス時の直流
電流を測定する第4のステップと、前記負の直流電圧バ
イアス時の直流電流の測定を終えた後に、前記接地線を
流れる迷走電流を測定する第5のステップと、前記測定
された各々の迷走電流の変動分から、バイアス測定中の
接地線直流電流中の迷走電流の変化率を算出する第6の
ステップと、前記接地線に流れる直流電流の極性差分か
ら前記変化率に基づく迷走電流の誤差要因を削除して劣
化信号を求める第7のステップにより、前記電力ケーブ
ル線路の前記架橋ポリエチレン絶縁体の絶縁劣化を検出
することを特徴とする電力ケーブルの活線診断方法を提
供する。
In order to achieve the above-mentioned object, the present invention provides a live cable diagnosis method for a power cable, which detects insulation deterioration of a power cable line having a conductor, a crosslinked polyethylene insulator and a shielding layer. Under a condition where one end of the power cable line in a live state is connected to a ground line and the other end is released from ground, and positive and negative DC voltages can be biased to the shielding layer of the power cable line, respectively. A first step of measuring a stray current flowing through the ground wire before biasing the positive DC voltage, and biasing the positive DC voltage on the shielding layer of the power cable line to flow to the ground wire A second step of measuring a DC current at a positive DC voltage bias, and after completing the measurement of the DC current at a positive DC voltage bias, and
A third step of measuring a stray current flowing through the ground wire before biasing the negative DC voltage, and biasing the negative DC voltage at the shielding layer of the power cable line to flow to the ground line. A fourth step of measuring a direct current at a negative DC voltage bias, and a fifth step of measuring a stray current flowing through the ground wire after the measurement of the direct current at a negative DC voltage bias is completed. A sixth step of calculating the rate of change of the stray current in the ground line DC current during bias measurement from the measured variation of each stray current, and the change from the polarity difference of the DC current flowing in the ground line. Insulation deterioration of the cross-linked polyethylene insulator of the power cable line is detected by a seventh step of obtaining a deterioration signal by eliminating an error factor of the stray current based on the rate. Providing an active ray diagnostic method of the power cable.

【0010】また、本発明は、上記の目的を実現するた
め、前記第2のステップ及び第4のステップは、前記接
地線に挿入された両極性の直流バイアス電源によって、
前記正の直流電圧および負の直流電圧を発生するステッ
プを含むことを特徴とし、前記第2のステップ及び第4
のステップは、前記接地線に挿入されたローパスフィル
タによって、前記正の直流電圧バイアス時の直流電流及
び前記負の直流電圧バイアス時の直流電流を検出するス
テップを含むことを特徴とする電力ケーブルの活線診断
方法を提供する。
In order to achieve the above object, the present invention is characterized in that the second step and the fourth step are performed by a bipolar DC bias power source inserted in the ground line.
The step of generating the positive DC voltage and the negative DC voltage, and the second step and the fourth step.
The step of includes a step of detecting a direct current at the time of the positive direct current voltage bias and a direct current at the time of the negative direct current voltage bias by a low-pass filter inserted in the ground line. A live line diagnosis method is provided.

【0011】また、本発明は、上記の目的を実現するた
め、前記第1のステップ、前記第3のステップ及び第5
のステップは、前記接地線に挿入されたローパスフィル
タによって、前記接地線を流れる迷走電流をそれぞれ測
定するステップを含むことを特徴とし、前記第6のステ
ップは、前記第1のステップ、第3のステップ及び第5
のステップによってそれぞれ測定された前記各々の迷走
電流の変動分から、バイアス測定中の接地線直流電流中
の迷走電流の変化率を算出するステップを含むことを特
徴とする電力ケーブルの活線診断方法を提供する。
In order to achieve the above object, the present invention provides the first step, the third step and the fifth step.
The step of includes a step of measuring a stray current flowing through the ground line by a low-pass filter inserted in the ground line, and the sixth step includes the first step and the third step. Step and fifth
From the variation of each of the stray currents measured by the step, a method of diagnosing the change in the stray current in the ground line DC current during bias measurement is included. provide.

【0012】さらに、本発明は、上記の目的を実現する
ため、前記第7のステップは、ローパスフィルタによっ
てそれぞれ検出された前記正の直流電圧バイアス時の直
流電流及び前記負の直流電圧バイアス時の直流電流か
ら、前記第1のステップ、第3のステップ及び第5のス
テップによってそれぞれ測定された前記接地線を流れる
迷走電流の変動分を差引くことにより、前記接地線に流
れる直流電流の極性差分から劣化信号を求めるステップ
を含むことを特徴とする電力ケーブルの活線診断方法を
提供する。
Further, in order to realize the above-mentioned object, the present invention is characterized in that the seventh step includes a DC current at the time of the positive DC voltage bias and a DC current at the time of the negative DC voltage bias respectively detected by a low pass filter. By subtracting the variation of the stray current flowing through the ground line measured in the first step, the third step, and the fifth step from the direct current, the polarity difference of the direct current flowing in the ground line is subtracted. A method for diagnosing a live line of a power cable, the method including the step of obtaining a deterioration signal from

【0013】[0013]

【発明の実施の形態】(実施の形態による測定回路)図
1は、本発明の実施の形態による電力ケーブルの活線診
断方法を示す測定回路の説明図である。図1において、
交流3.8kVが課電された活線状態にある電力ケーブ
ル線路1は、導体2と架橋ポリエチレン絶縁体(図示省
略)と遮蔽層3を有するCVケーブルが用いられてい
る。導体2は、接地用変圧器8(GPT)の中性点がG
PT用アース9により接地されている電源側4に接続さ
れており、さらに、電源側4の遮蔽層3の接地線6と、
受電側5の遮蔽層3の接地線7を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Measurement Circuit According to Embodiment) FIG. 1 is an explanatory diagram of a measurement circuit showing a method for diagnosing a live line of a power cable according to an embodiment of the present invention. In FIG.
A CV cable having a conductor 2, a cross-linked polyethylene insulator (not shown), and a shield layer 3 is used as a power cable line 1 in a live state in which an alternating current of 3.8 kV is applied. The conductor 2 has a neutral point G of the grounding transformer 8 (GPT).
It is connected to the power source side 4 which is grounded by the PT earth 9, and further, the ground wire 6 of the shielding layer 3 on the power source side 4 and
The ground wire 7 of the shield layer 3 on the power receiving side 5 is provided.

【0014】図1のCVケーブルの活線診断に当たって
は、電源側4の遮蔽層3の接地線6は接地を解放し、受
電側5の遮蔽層3の接地線7の間に、直列に接続された
ローパスフィルタ11と両極性のDC電源10を配置し
て、電力ケーブル線路1の遮蔽層3に、正の直流電圧お
よび負の直流電圧を、それぞれバイアスできるように構
成されている。さらに、遮蔽層3に、正の直流電圧およ
び負の直流電圧を、それぞれバイアスした時のそれぞれ
接地線直流電流、ならびに接地線を流れる迷走電流を捉
えるために、ローパスフィルタ11に接続された直流電
流計12を備えている。
In the live line diagnosis of the CV cable shown in FIG. 1, the ground wire 6 of the shield layer 3 on the power supply side 4 releases the ground, and is connected in series between the ground wire 7 of the shield layer 3 on the power receiving side 5. The low-pass filter 11 and the DC power source 10 having both polarities are arranged so that the shield layer 3 of the power cable line 1 can be biased with a positive DC voltage and a negative DC voltage, respectively. Further, a DC current connected to the low-pass filter 11 in order to capture a ground line DC current and a stray current flowing through the ground line when the positive DC voltage and the negative DC voltage are biased in the shielding layer 3, respectively. It has a total of 12.

【0015】電力ケーブル線路の架橋ポリエチレン絶縁
体に絶縁劣化部があると、その絶縁劣化部に蓄積された
電荷が放電したときに直流電流が流れ、この直流成分電
流は、遮蔽層3〜接地線7〜大地〜接地用変圧器8(G
PT)〜導体2を伝播する(図1の実線参照)ことにな
り、接地線7の間に設置した商用波を除去するローパス
フィルタ11を経て直流電流計12によって検出され
る。また、正の直流電圧バイアスおよび負の直流電圧バ
イアス測定時の迷走電流と、シース漏電流の直流成分
は、電力ケーブル線路1の遮蔽層3〜接地線7〜大地を
伝播する(図1の点線参照)ので、接地線7の間に設置
したローパスフィルタ11を経て直流電流計12によっ
て測定される。
If the cross-linked polyethylene insulator of the power cable line has an insulation deteriorated portion, a DC current flows when the charge accumulated in the insulation deteriorated portion is discharged, and this DC component current is generated by the shield layer 3 to the ground wire. 7 ~ Earth ~ Grounding transformer 8 (G
PT) to the conductor 2 (see the solid line in FIG. 1), and is detected by the DC ammeter 12 through the low-pass filter 11 installed between the ground lines 7 and removing the commercial wave. Further, the stray current at the time of measuring the positive DC voltage bias and the negative DC voltage bias, and the DC component of the sheath leakage current propagate through the shield layer 3 of the power cable line 1 to the ground wire 7 to the ground (dotted line in FIG. 1). Therefore, it is measured by the DC ammeter 12 through the low-pass filter 11 installed between the ground wires 7.

【0016】(実施の形態によるバイアス時の接地線直
流電流の測定・迷走電流の測定)本発明の測定方法で
は、正の直流電圧および負の直流電圧の両極性を有する
DC電源10によって、遮蔽層3に、正の直流電圧およ
び負の直流電圧をそれぞれバイアスして、正の直流電圧
バイアス時の接地線直流電流、および負の直流電圧バイ
アス時の接地線直流電流を検出する前後において、接地
線を流れる迷走電流をそれぞれ測定する。
(Measurement of DC Current of Ground Line and Measurement of Stray Current when Biased According to Embodiment) In the measuring method of the present invention, shielding is performed by the DC power supply 10 having both positive DC voltage and negative DC voltage. The layer 3 is biased with a positive DC voltage and a negative DC voltage, respectively, and grounded before and after detecting a ground line DC current at the time of positive DC voltage bias and a ground line DC current at the time of negative DC voltage bias. Each of the stray currents flowing in the line is measured.

【0017】実施の形態の迷走電流の測定、ならびに正
および負の直流電圧バイアス時の接地線直流電流の検出
は、それぞれ、次の(a)〜(e)の手順により行われ
る。 (a)迷走電流A (b)正電圧バイアス時接地線直流電流(+IdcY)
=正バイアス時漏れ電流+正バイアス時直流成分+迷走
電流B (c)迷走電流C (d)負電圧バイアス時接地線直流電流(−IdcZ)
=負バイアス時漏れ電流+負バイアス時直流成分+迷走
電流D (e)迷走電流E
The measurement of the stray current and the detection of the ground line DC current at the time of positive and negative DC voltage bias of the embodiment are performed by the following procedures (a) to (e), respectively. (A) Stray current A (b) Ground line DC current (+ IdcY) at positive voltage bias
= Leakage current at positive bias + DC component at positive bias + Stray current B (c) Stray current C (d) Ground line DC current at negative voltage bias (-IdcZ)
= Leakage current at negative bias + DC component at negative bias + Stray current D (e) Stray current E

【0018】(迷走電流の変化率の算出・バイアス時の
接地線直流電流の算出)正の直流電圧および負の直流電
圧バイアス時の接地線直流電流を検出する前後に、それ
ぞれ測定された接地線を流れる迷走電流の変動分(迷走
電流A+迷走電流C+迷走電流E)から迷走電流の変化
率が算出される。つぎに、検出された正および負の直流
電圧バイアス時の接地線直流電流から、接地線を流れる
迷走電流の変動分を差引いて、接地線に流れる直流電流
の極性差分から劣化信号を求めることにより、誤差要因
となる迷走電流の変動分を接地線直流電流から除去す
る。これにより、正及び負の直流電圧のバイアス時の接
地線に流れる直流電流の極性差分から誤差要因となる迷
走電流を削除した正確な劣化信号が求められ、この劣化
信号をもとに架橋ポリエチレン絶縁体の水トリー劣化な
どを検出することができる。
(Calculation of change rate of stray current / calculation of grounding wire DC current at bias) Grounding wire at positive DC voltage and negative DC voltage bias Grounding wire measured before and after detection of DC current respectively The rate of change of the stray current is calculated from the variation of the stray current flowing through (stray current A + stray current C + stray current E). Next, by subtracting the fluctuation component of the stray current flowing through the ground line from the detected ground line DC current at the time of positive and negative DC voltage bias, and obtaining the deterioration signal from the polarity difference of the DC current flowing through the ground line. , The fluctuation of the stray current, which causes an error, is removed from the ground line DC current. As a result, an accurate deterioration signal is obtained by eliminating the stray current that causes an error from the polarity difference of the DC current flowing through the ground line when biasing the positive and negative DC voltages, and based on this deterioration signal, cross-linked polyethylene insulation is obtained. It is possible to detect water tree deterioration of the body.

【0019】(迷走電流の変化率の算出例・バイアス時
の接地線直流電流の算出例)迷走電流の変化率の算出式
と、直流電流の極性差の算出式を例示すると、つぎの通
りである。 t1=正電圧バイアス開始後からの経過時間(s) t2=負電圧バイアス開始後からの経過時間(s) T=バイアス測定時間(s) Mia=迷走電流A平均値 Mib=迷走電流B平均値 Mic=迷走電流C平均値 Ipx(t1)=正電圧バイアス時接地線直流電流(迷
走電流除去前) Imx(t2)=負電圧バイアス時接地線直流電流(迷
走電流除去前) Ipy(t1)=正電圧バイアス時接地線直流電流(迷
走電流除去後) Imy(t2)=負電圧バイアス時接地線直流電流(迷
走電流除去後) 但し、Ipx(t1),Imx(t2),Ipy(t
1),Imy(t2)は、時間t1及びt2の関数と
し、正電圧及び負電圧バイアス時の直流成分測定に要す
る時間はどちらもTとする。 Ipy(t1)=Ipx(t1)−{Mia+(Mib
−Mia)×t1/T} Imy(t2)=Imx(t2)−{Mib+(Mic
−Mib)×t2/T}
(Example of calculation of rate of change of stray current, example of calculation of ground line DC current when biased) An example of the equation for calculating the rate of change of the stray current and the equation for calculating the polarity difference of the DC current is as follows. is there. t1 = Elapsed time after start of positive voltage bias (s) t2 = Elapsed time after start of negative voltage bias (s) T = Bias measurement time (s) Mia = Stray current A average value Mib = Stray current B average value Mic = stray current C average value Ipx (t1) = ground line DC current at positive voltage bias (before elimination of stray current) Imx (t2) = ground line DC current at negative voltage bias (before elimination of stray current) Ipy (t1) = Ground line DC current during positive voltage bias (after elimination of stray current) Imy (t2) = Ground line DC current during negative voltage bias (after elimination of stray current) where Ipx (t1), Imx (t2), Ipy (t
1) and Imy (t2) are functions of the times t1 and t2, and the time required to measure the DC component at the positive voltage and the negative voltage bias is T. Ipy (t1) = Ipx (t1)-{Mia + (Mib
−Mia) × t1 / T} Imy (t2) = Imx (t2) − {Mib + (Mic
-Mib) x t2 / T}

【数1】 [Equation 1]

【0020】(実施の形態による測定例)図2は、本発
明の実施の形態の電力ケーブルの活線診断方法におい
て、迷走電流変動が観測される線路の接地線直流成分極
性差による測定誤差の補正例を示す説明図である。
(Measurement example according to the embodiment) FIG. 2 shows the measurement error due to the ground line DC component polarity difference of the line in which the stray current fluctuation is observed in the power cable live line diagnosis method of the embodiment of the present invention. It is explanatory drawing which shows the correction example.

【0021】図2において、迷走電流変動が観測される
電力ケーブル線路に、±54Vの直流電圧をバイアスす
ると、±54Vバイアス時の直流成分極性差(nA)
は、曲線aに示すように観測される。直流電圧バイアス
前の迷走電流I0 は、直線cに示すように観測される。
また、±54Vバイアス開始時の迷走電流I1 と、±5
4Vバイアス終了時の迷走電流I2 を結んだ迷走電流模
擬直線bは、図2に示すようになる。図2の平均値算出
範囲taは、バイアス開始後4分〜5分の間の1分間
で、5回/secサンプリングし、300のサンプルの
平均値を算出し、それを判定用に使用する。
In FIG. 2, when a DC voltage of ± 54 V is biased on the power cable line in which the fluctuation of the stray current is observed, the polarity difference (nA) of the DC component at the time of ± 54 V bias is applied.
Are observed as shown by the curve a. The stray current I 0 before the DC voltage bias is observed as shown by the straight line c.
Also, the stray current I 1 at the start of ± 54 V bias is ± 5
A stray current simulated line b connecting the stray current I 2 at the end of the 4V bias is as shown in FIG. The average value calculation range ta in FIG. 2 is sampled 5 times / sec for 1 minute from 4 minutes to 5 minutes after the start of bias, and the average value of 300 samples is calculated and used for determination.

【0022】図2によると、観測されたバイアス前の迷
走電流I0 (直線c)、およびバイアス開始時の迷走電
流I1 とバイアス終了時の迷走電流I2 から、迷走電流
の変動分が判明し、±54Vバイアス時の直流成分極性
差(曲線aの平均値)と迷走電流変動分の差によって、
差引後の平均値より正確な劣化信号を求め、この劣化信
号をもとに架橋ポリエチレン絶縁体の水トリー劣化など
を検出することができる。
According to FIG. 2, the variation of the stray current was found from the observed stray current I 0 (straight line c) before bias, stray current I 1 at the start of bias and stray current I 2 at the end of bias. Then, by the difference between the DC component polarities (average value of the curve a) at the time of ± 54 V bias and the stray current variation,
An accurate deterioration signal can be obtained from the average value after subtraction, and water tree deterioration of the crosslinked polyethylene insulator can be detected based on this deterioration signal.

【0023】本発明の実施の形態においては、直流電圧
±54Vに代えて、例えば、±27Vの直流電圧をバイ
アスしても絶縁体の水トリー劣化を検出することができ
る。また、ケーブル遮蔽層へのバイアスに代えて、ケー
ブルの外部導電層、あるいは外部半導電層に対して直流
電圧をバイアスしても、同様に絶縁体の水トリー劣化を
などを検出することができる。
In the embodiment of the present invention, the water tree deterioration of the insulator can be detected even when a DC voltage of ± 27 V is biased instead of the DC voltage of ± 54 V. Further, instead of biasing the cable shielding layer, even if a DC voltage is applied to the outer conductive layer or the outer semiconductive layer of the cable, the water tree deterioration of the insulator can be similarly detected. .

【0024】[0024]

【発明の効果】本発明の電力ケーブルの活線診断方法に
よると、活線状態の電力ケーブル線路のケーブル遮蔽層
に対し、正及び負の直流電圧をバイアスして接地線直流
電流を測定する前後に、それぞれ接地線に流れる迷走電
流を測定して、その変動分からバイアス測定時の接地線
直流電流中の迷走電流の変化率を求め、正及び負の直流
電圧バイアス時の接地線直流電流測定データから、迷走
電流の変動分を差引いているから、迷走電流の変動によ
る測定誤差の要因を排除し、劣化信号の誤差を減少させ
た直流成分極性差を得ることができる。この結果、迷走
電流が観測されるケーブル線路系統においても、水トリ
ーなどの絶縁劣化により生じる直流成分の検出精度を増
大させて測定することが可能となり、絶縁劣化により生
じる直流成分の劣化信号の判定精度を向上させた電力ケ
ーブルの活線診断方法を提供できるという効果がある。
According to the method for diagnosing a live line of a power cable of the present invention, positive and negative DC voltages are biased to a cable shielding layer of a power cable line in a live state before and after a ground line DC current is measured. In addition, the stray current flowing in each ground line is measured, and the change rate of the stray current in the ground line DC current during bias measurement is obtained from the fluctuations, and the ground line DC current measurement data during positive and negative DC voltage bias is measured. Therefore, since the fluctuation component of the stray current is subtracted, the factor of the measurement error due to the fluctuation of the stray current can be eliminated, and the DC component polarity difference in which the error of the deterioration signal is reduced can be obtained. As a result, even in a cable line system where a stray current is observed, it is possible to increase the accuracy of detection of the DC component caused by insulation deterioration of water trees, etc., and to determine the deterioration signal of the DC component caused by insulation deterioration. There is an effect that it is possible to provide a live cable diagnosis method of a power cable with improved accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態による電力ケーブルの活線
診断方法を示す測定回路の説明図である。
FIG. 1 is an explanatory diagram of a measuring circuit showing a live cable diagnosing method for a power cable according to an embodiment of the present invention.

【図2】本発明の実施の形態による電力ケーブルの活線
診断方法において、迷走電流の変動と、直流電圧バイア
ス時の接地線直流成分極性差による測定誤差の補正例を
示す説明図である。
FIG. 2 is an explanatory diagram showing a variation example of a stray current and a correction error of a measurement error due to a ground line DC component polarity difference when a DC voltage is biased, in a method of diagnosing a live line of a power cable according to an embodiment of the present invention.

【図3】従来のケーブル活線診断方法において、迷走電
流変動が観測される線路の接地線直流成分極性差に誤差
が発生した例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example in which an error occurs in a ground line DC component polarity difference of a line in which a stray current variation is observed in a conventional cable hot line diagnosis method.

【符号の説明】[Explanation of symbols]

1 電力ケーブル線路(CVケーブル) 2 導体 3 遮蔽層 4 電源側 5 受電側 6 接地線(電源側) 7 接地線(受電側) 8 接地用変圧器(GPT) 9 アース(GPT用) 10 DC電源(両極性) 11 ローパスフィルタ 12 直流電流計 I0 迷走電流(バイアス前) I1 迷走電流(バイアス開始時) I2 迷走電流(バイアス終了時) a 直流成分極性差曲線(±54Vバイアス) b 迷走電流模擬直線(I1 とI2 を結ぶ線) c 迷走電流I0直線(バイアス前) ta 平均値算出範囲1 Power cable line (CV cable) 2 Conductor 3 Shielding layer 4 Power supply side 5 Power receiving side 6 Ground wire (power supply side) 7 Ground wire (power receiving side) 8 Grounding transformer (GPT) 9 Ground (for GPT) 10 DC power supply (Bipolar) 11 Low-pass filter 12 DC ammeter I 0 Stray current (before bias) I 1 Stray current (at bias start) I 2 Stray current (at bias end) a DC component polarity difference curve (± 54V bias) b Stray Current simulation straight line (line connecting I 1 and I 2 ) c Stray current I 0 straight line (before bias) ta Average value calculation range

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】導体と架橋ポリエチレン絶縁体と遮蔽層を
有する電力ケーブル線路の絶縁劣化を検出する電力ケー
ブルの活線診断方法において、 活線状態にある前記電力ケーブル線路の一端を接地線に
接続し、他端を接地から解放するとともに、前記電力ケ
ーブル線路の前記遮蔽層に正および負の直流電圧をそれ
ぞれバイアスできる状態の下で、前記正の直流電圧をバ
イアスする前に前記接地線を流れる迷走電流を測定する
第1のステップと、 前記電力ケーブル線路の前記遮蔽層に正の直流電圧をバ
イアスして、前記接地線に流れる正の直流電圧バイアス
時の直流電流を測定する第2のステップと、 前記正の直流電圧バイアス時の直流電流の測定を終えた
後で、かつ、前記負の直流電圧をバイアスする前に、前
記接地線を流れる迷走電流を測定する第3のステップ
と、 前記電力ケーブル線路の前記遮蔽層に負の直流電圧をバ
イアスして、前記接地線に流れる負の直流電圧バイアス
時の直流電流を測定する第4のステップと、 前記負の直流電圧バイアス時の直流電流の測定を終えた
後に、前記接地線を流れる迷走電流を測定する第5のス
テップと、 前記測定された各々の迷走電流の変動分から、バイアス
測定中の接地線直流電流中の迷走電流の変化率を算出す
る第6のステップと、 前記接地線に流れる直流電流の極性差分から前記変化率
に基づく迷走電流の誤差要因を削除して劣化信号を求め
る第7のステップにより、 前記電力ケーブル線路の前記架橋ポリエチレン絶縁体の
絶縁劣化を検出することを特徴とする電力ケーブルの活
線診断方法。
1. A method of hot-line diagnosis of a power cable, which detects insulation deterioration of a power cable line having a conductor, a cross-linked polyethylene insulator, and a shielding layer, wherein one end of the power cable line in a live state is connected to a ground line. Then, while the other end is released from the ground and the shielding layer of the power cable line can be biased with a positive and a negative DC voltage, respectively, the current flows through the ground line before the positive DC voltage is biased. A first step of measuring a stray current, and a second step of biasing a positive DC voltage on the shielding layer of the power cable line to measure a DC current at a positive DC voltage bias flowing through the ground line. And measuring the stray current flowing through the ground line after the measurement of the direct current at the positive DC voltage bias is finished and before the negative DC voltage is biased. And a fourth step of biasing a negative DC voltage to the shielding layer of the power cable line to measure a DC current when a negative DC voltage bias flows in the ground line, the negative step After the measurement of the DC current at the time of the DC voltage bias is finished, the fifth step of measuring the stray current flowing through the ground line, and the variation of the measured stray current, the ground line DC during the bias measurement. A sixth step of calculating the rate of change of the stray current in the current, and a seventh step of obtaining the deterioration signal by deleting the error factor of the stray current based on the rate of change from the polarity difference of the DC current flowing through the ground line. The method for diagnosing the live line of a power cable is characterized by detecting insulation deterioration of the crosslinked polyethylene insulator of the power cable line.
【請求項2】前記第2のステップ及び第4のステップ
は、前記接地線に挿入された両極性の直流バイアス電源
によって、前記正の直流電圧および負の直流電圧を発生
するステップを含むことを特徴とする請求項1に記載の
電力ケーブルの活線診断方法。
2. The second step and the fourth step include a step of generating the positive DC voltage and the negative DC voltage by a bipolar DC bias power source inserted in the ground line. The method for diagnosing a live line of a power cable according to claim 1, which is characterized in that.
【請求項3】前記第2のステップ及び第4のステップ
は、前記接地線に挿入されたローパスフィルタによっ
て、前記正の直流電圧バイアス時の直流電流及び前記負
の直流電圧バイアス時の直流電流を検出するステップを
含むことを特徴とする請求項1に記載の電力ケーブルの
活線診断方法。
3. In the second step and the fourth step, a DC current when the positive DC voltage bias and a DC current when the negative DC voltage bias are applied are controlled by a low-pass filter inserted in the ground line. The method of diagnosing a live line of a power cable according to claim 1, further comprising a detecting step.
【請求項4】前記第1のステップ、前記第3のステップ
及び第5のステップは、前記接地線に挿入されたローパ
スフィルタによって、前記接地線を流れる迷走電流をそ
れぞれ測定するステップを含むことを特徴とする請求項
1に記載の電力ケーブルの活線診断方法。
4. The first step, the third step and the fifth step each include a step of measuring a stray current flowing through the ground line by a low-pass filter inserted in the ground line. The method for diagnosing a live line of a power cable according to claim 1, which is characterized in that.
【請求項5】前記第6のステップは、前記第1のステッ
プ、第3のステップ及び第5のステップによってそれぞ
れ測定された前記各々の迷走電流の変動分から、バイア
ス測定中の接地線直流電流中の迷走電流の変化率を算出
するステップを含むことを特徴とする請求項1に記載の
電力ケーブルの活線診断方法。
5. The sixth step is based on the fluctuation of the stray currents measured in the first step, the third step and the fifth step, respectively. The method for diagnosing a live line of a power cable according to claim 1, further comprising the step of calculating a change rate of the stray current.
【請求項6】前記第7のステップは、ローパスフィルタ
によってそれぞれ検出された前記正の直流電圧バイアス
時の直流電流及び前記負の直流電圧バイアス時の直流電
流から、前記第1のステップ、第3のステップ及び第5
のステップによってそれぞれ測定された前記接地線を流
れる迷走電流の変動分を差引くことにより、前記接地線
に流れる直流電流の極性差分から劣化信号を求めるステ
ップを含むことを特徴とする請求項1に記載の電力ケー
ブルの活線診断方法。
6. The seventh step is based on the direct current when the positive DC voltage bias is detected and the direct current when the negative DC voltage bias is detected by a low-pass filter. Step and fifth
2. The step of obtaining a deterioration signal from the polarity difference of the DC current flowing in the ground line by subtracting the fluctuation amount of the stray current flowing in the ground line measured in each step of Method for diagnosing live line of the described power cable.
JP2001280221A 2001-09-14 2001-09-14 Hot line diagnostic method for power cable Pending JP2003084028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280221A JP2003084028A (en) 2001-09-14 2001-09-14 Hot line diagnostic method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280221A JP2003084028A (en) 2001-09-14 2001-09-14 Hot line diagnostic method for power cable

Publications (1)

Publication Number Publication Date
JP2003084028A true JP2003084028A (en) 2003-03-19

Family

ID=19104259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280221A Pending JP2003084028A (en) 2001-09-14 2001-09-14 Hot line diagnostic method for power cable

Country Status (1)

Country Link
JP (1) JP2003084028A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327450A1 (en) * 2016-11-24 2018-05-30 Design Composite GmbH Device and method for investigating insulating wire coatings
CN110988454A (en) * 2019-12-31 2020-04-10 山东计保电气有限公司 Method for monitoring small current by apparent power and real-time disposal
CN117783659A (en) * 2024-02-28 2024-03-29 雷玺智能科技(上海)有限公司 Current sampling method, system and storage medium for cable sheath

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327450A1 (en) * 2016-11-24 2018-05-30 Design Composite GmbH Device and method for investigating insulating wire coatings
CN110988454A (en) * 2019-12-31 2020-04-10 山东计保电气有限公司 Method for monitoring small current by apparent power and real-time disposal
CN117783659A (en) * 2024-02-28 2024-03-29 雷玺智能科技(上海)有限公司 Current sampling method, system and storage medium for cable sheath
CN117783659B (en) * 2024-02-28 2024-04-26 雷玺智能科技(上海)有限公司 Current sampling method, system and storage medium for cable sheath

Similar Documents

Publication Publication Date Title
JPH0726985B2 (en) Insulation deterioration diagnosis method for power cables
JP7132319B2 (en) Method and test apparatus for measuring partial discharge impulses in screened cables
CA2312509C (en) Open cable locating for sheathed cables
US9389265B2 (en) Method and apparatus for reducing interference in electrical locating of a buried cable sheathing fault
JP2003084028A (en) Hot line diagnostic method for power cable
JP5559638B2 (en) Degradation judgment method for power cables
CA2490472A1 (en) Electric power line on-line diagnostic method
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JP4057182B2 (en) Partial discharge judgment method
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JPH10160778A (en) Method and device for diagnosing insulation deferioration of live, power cable
JPS59202076A (en) Detection of insulation deterioration of cable
JP3010371B2 (en) Diagnosis method for cable insulation deterioration
JP2929047B2 (en) Diagnosis method for insulation deterioration of power cable
JP2003035743A (en) Method for diagnosing hot-line in power cable
JP2893055B2 (en) Diagnosis method for insulation deterioration of CV cable
JP2742636B2 (en) Diagnosis method for insulation deterioration of power cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JP2003035742A (en) Method for diagnosing live wire in cv cable
JP2006194840A (en) Measuring method and device of electronic system
JP2000009788A (en) Deterioration diagnosis method of cables
JP2832737B2 (en) Method and apparatus for diagnosing insulation deterioration of CV cable
JPH07306241A (en) Insulation deterioration judging method for power cable
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JPH1048282A (en) Method and instrument for measuring stray direct current of cable grounding conductor