JPH0510918A - Oxygen-concentration detecting element and manufacture thereof - Google Patents

Oxygen-concentration detecting element and manufacture thereof

Info

Publication number
JPH0510918A
JPH0510918A JP3259283A JP25928391A JPH0510918A JP H0510918 A JPH0510918 A JP H0510918A JP 3259283 A JP3259283 A JP 3259283A JP 25928391 A JP25928391 A JP 25928391A JP H0510918 A JPH0510918 A JP H0510918A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen concentration
detecting element
exposed
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3259283A
Other languages
Japanese (ja)
Other versions
JP2591383B2 (en
Inventor
Hiroshi Furuhashi
洋 古橋
Shozo Tanida
祥三 谷田
Toshitaka Saito
利孝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3259283A priority Critical patent/JP2591383B2/en
Publication of JPH0510918A publication Critical patent/JPH0510918A/en
Application granted granted Critical
Publication of JP2591383B2 publication Critical patent/JP2591383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To improve the durability and the mechanical strength of a detecting element by coating the surface of a measuring electrode with an insulating layer made of a porous, partially stabilized sintered body which has the specific surface area within a specified range and comprises the sintered material of zirconia and metal oxide. CONSTITUTION:In a detecting part 3 of a detecting element 1, a measuring electrode 15, which is exposed to gas to be measured, is provided on one surface of a solid electrolyte 14, and a reference electrode 16, which is exposed to reference gas, is provided on the other surface. The surface of the measuring electrode 15 which is exposed to the gas to be measured is covered with an insulating layer 12. The insulating layer 12 is a porous, partially stabilized sintered body comprising a sintered material whose main raw materials are zirconia and bivalent or trivalent metal oxide such as, e.g. yttria. The specific surface area of the sintered body is more than 3m<2>/g and less than 7m<2>/g. Thus, the transformation temperature between monoclinic system and a tetragonal system can be increased. The occurrences of micro-cracks caused by the transformation are decreased. The same thermal expansion coefficient as that of solid electrolyte can be obtained at the same time. Therefore, cold and hot durability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素濃度検出素子、特
に酸素濃度検出素子の測定電極上に形成される絶縁層に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen concentration detecting element, and more particularly to an insulating layer formed on a measuring electrode of the oxygen concentration detecting element.

【0002】[0002]

【従来技術】酸素濃度検出素子は、固体電解質と、この
固体電解質を挟む一対の電極と、排気ガスと接触する一
方の電極を覆う絶縁層とから形成されている。
2. Description of the Related Art An oxygen concentration detecting element comprises a solid electrolyte, a pair of electrodes sandwiching the solid electrolyte, and an insulating layer covering one of the electrodes in contact with exhaust gas.

【0003】従来、この酸素濃度検出素子を得るため
に、製造方法が容易であり、かつ高付着力が得られるこ
とから、固体電解質、電極および絶縁層を積層した後
に、同時に焼成することが行われてきた。
Conventionally, in order to obtain this oxygen concentration detecting element, a manufacturing method is easy and a high adhesive force can be obtained. Therefore, after the solid electrolyte, the electrode and the insulating layer are laminated, they are simultaneously fired. I've been told.

【0004】しかし、従来の方法では、高付着力を得る
ために、単斜晶および正方晶を含む部分安定化ジルコニ
アよりなる固体電解質と同一の材料よりなる絶縁層を設
けていたが、このような方法であると、固体電解質より
も絶縁層が密度の低い粗な多孔質であるために、ジルコ
ニア特有の単斜晶と正方晶との変態時の体積変化によっ
て、絶縁層にマイクロクラックが生じてしまい、最高温
度1000℃の冷熱耐久試験において数十〜数百サイク
ルにて剥離してしまうという機械的強度の著しい低下を
招いてしまうという問題が生じていた。
However, in the conventional method, an insulating layer made of the same material as the solid electrolyte made of partially stabilized zirconia containing monoclinic and tetragonal crystals is provided in order to obtain high adhesion. Method, since the insulating layer is a coarse porous with a lower density than the solid electrolyte, microcracking occurs in the insulating layer due to the volume change during the transformation of monoclinic and tetragonal peculiar to zirconia. Therefore, there is a problem that the mechanical strength such as peeling occurs in several tens to several hundred cycles in the cold heat durability test at the maximum temperature of 1000 ° C., which causes a remarkable decrease in mechanical strength.

【0005】そのため、特開昭60−259952号公
報に開示されるように、絶縁層の原料を固体電解質と同
一のものではなく、立方晶のみからなる完全安定化ジル
コニアを用いることが提案されていた。
Therefore, as disclosed in Japanese Patent Laid-Open No. 60-259952, it has been proposed to use a fully stabilized zirconia composed of only cubic crystals as the raw material of the insulating layer, not the same as the solid electrolyte. It was

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
60−259952号公報の絶縁層の原料を採用したの
では、固体電解質の熱膨張係数が単斜晶を含む部分安定
化ジルコニアが一般的に7〜9×10-6/℃であるのに
対して、絶縁層の材料である完全安定化ジルコニアの熱
膨張係数が10×10-6/℃以上であるため、熱膨張係
数の差による剥離が生じてしまい、耐久性に問題が生じ
てしまうことを見出した。
However, when the raw material for the insulating layer of JP-A-60-259952 is adopted, a partially stabilized zirconia having a thermal expansion coefficient of a solid electrolyte containing a monoclinic crystal is generally used. 7 to 9 × 10 −6 / ° C., whereas the coefficient of thermal expansion of fully stabilized zirconia, which is the material of the insulating layer, is 10 × 10 −6 / ° C. or more, so peeling due to the difference in thermal expansion coefficient It has been found that this causes a problem in durability.

【0007】本発明は、上記問題点に鑑みてなされたも
のであり、耐久性、機械的強度に優れる酸素濃度検出素
子を提供するとともに、耐久性が優れるとともに、製法
が容易な酸素濃度検出素子の製造方法を提供するもので
ある。
The present invention has been made in view of the above problems, and provides an oxygen concentration detecting element which is excellent in durability and mechanical strength, and has excellent durability and an easy manufacturing method. The present invention provides a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】そこで、我々は鋭意研究
の結果、絶縁層の原料であるジルコニアの比表面積を変
化させることに注目することによって、絶縁層が部分安
定化でありながらも、変態による体積変化を防止し、固
体電解質とほぼ同一の熱膨張係数を得ることができるこ
とを見出した。
[Means for Solving the Problems] Therefore, as a result of earnest research, we have noticed that the specific surface area of zirconia, which is a raw material of the insulating layer, is changed. It has been found that it is possible to prevent the volume change due to, and obtain a thermal expansion coefficient almost the same as that of the solid electrolyte.

【0009】これは、絶縁層を単斜晶と立方晶からなる
部分安定化ジルコニアで構成しながらも、ジルコニアの
比表面積を変化させることによって単斜晶から正方晶へ
の変態温度を高温化して、使用温度である室温〜100
0℃での変態量を低減することができるので、熱膨張係
数を所望の値とし、さらに体積変化によるクラックを防
止することができるのである。
This is because the insulating layer is composed of partially stabilized zirconia composed of monoclinic and cubic crystals, but the transformation temperature from monoclinic to tetragonal is raised by changing the specific surface area of zirconia. , The operating temperature of room temperature to 100
Since the transformation amount at 0 ° C. can be reduced, the coefficient of thermal expansion can be set to a desired value, and cracks due to volume change can be prevented.

【0010】以上より、本発明は、第1の発明として、
部分安定化ジルコニアよりなり、一方の面が測定ガスに
曝され、他方の面が基準ガスに曝されてなる固体電解質
と、固体電解質の一方の面に形成されるとともに測定ガ
スに曝される測定電極と、固体電解質の他方の面に形成
され基準ガスに曝されるとともに、固体電解質を介して
測定電極と対を成す基準電極と、比表面積が3m2 /g
以上、7m2 /g未満のジルコニア、および例えばイッ
トリアのような2価または3価の金属酸化物を主原料と
する焼結材料からなる多孔質な部分安定化焼結体であっ
て、測定電極の前記測定ガスに曝された面を覆う絶縁層
とからなる酸素濃度検出素子を得るものである。
From the above, the present invention is, as the first invention,
A solid electrolyte consisting of partially stabilized zirconia, one surface of which is exposed to the measurement gas and the other surface of which is exposed to the reference gas, and a measurement that is formed on one surface of the solid electrolyte and exposed to the measurement gas The electrode and the reference electrode that is formed on the other surface of the solid electrolyte and is exposed to the reference gas, and that forms a pair with the measurement electrode through the solid electrolyte have a specific surface area of 3 m 2 / g.
A porous partially stabilized sintered body composed of a zirconia of less than 7 m 2 / g and a sintered material containing a divalent or trivalent metal oxide such as yttria as a main raw material, which is a measuring electrode. And an insulating layer covering the surface exposed to the measurement gas.

【0011】また、第2の発明として、部分安定化ジル
コニアよりなる焼結前の固体電解質の一方の面に、測定
ガスに曝されるように測定電極を、又固体電解質の他方
の面において測定ガスに曝されるように基準電極をそれ
ぞれ形成する第1工程と、比表面積が3m2 /g以上、
7m2 /g未満のジルコニア、および例えはイットリア
のような2価または3価の金属酸化物を主原料とする焼
結材料からなり、測定電極上に形成することによって、
測定電極が直接測定ガスに曝されないように多孔質な絶
縁層を形成する第2工程と、固体電解質に測定電極、基
準電極および絶縁層を同時焼成することによって、一体
焼成させ、酸素濃度検出素子を得る第3工程とからなる
酸素濃度検出素子の製造方法を提供するものである。
As a second aspect of the present invention, a measurement electrode is exposed on one surface of a solid electrolyte of partially stabilized zirconia before sintering so as to be exposed to a measurement gas, and another surface of the solid electrolyte is measured. A first step of forming each reference electrode so as to be exposed to a gas, and a specific surface area of 3 m 2 / g or more,
A zirconia of less than 7 m 2 / g, and a sintered material mainly composed of a divalent or trivalent metal oxide such as yttria, which is formed on the measurement electrode,
The second step of forming a porous insulating layer so that the measuring electrode is not directly exposed to the measuring gas, and the solid electrolyte is co-fired with the measuring electrode, the reference electrode and the insulating layer to integrally fire the oxygen concentration detecting element. And a third step of obtaining the oxygen concentration detecting element.

【0012】[0012]

【作用】第1の発明を採用することによって、絶縁層の
主原料であるジルコニアの比表面積を3m2 /g以上、
7m2 /g未満としたので、2価または3価の金属酸化
物のジルコニア結晶間への混入を適量とすることができ
たので、絶縁層を単斜晶と立方晶とからなる部分安定化
ジルコニアとしながらも、金属酸化物のジルコニア結晶
間への混入により、ジルコニアの物性を変化させること
によって、単斜晶と正方晶間の変態温度をあげることが
できた。そのため、この変態によって生じるマイクロク
ラック発生を大幅に減少させるとともに、1000℃に
おける熱膨張係数を7〜9×10-6/℃とすることがで
き、固体電解質とほぼ同一の熱膨張係数を得ることがで
きるので、冷熱耐久性を向上させることができた。
By adopting the first invention, the specific surface area of zirconia, which is the main raw material of the insulating layer, is 3 m 2 / g or more,
Since the amount was less than 7 m 2 / g, it was possible to mix the divalent or trivalent metal oxide between the zirconia crystals in an appropriate amount, so that the insulating layer was partially stabilized with monoclinic and cubic crystals. Although zirconia was used, the transformation temperature between the monoclinic crystal and the tetragonal crystal could be raised by changing the physical properties of zirconia by mixing the metal oxide between the zirconia crystals. Therefore, the generation of microcracks caused by this transformation can be significantly reduced, and the thermal expansion coefficient at 1000 ° C. can be set to 7 to 9 × 10 −6 / ° C., and a thermal expansion coefficient almost the same as that of the solid electrolyte can be obtained. Therefore, it was possible to improve the cold heat durability.

【0013】また、第2の発明を採用することによっ
て、固体電解質、測定電極、基準電極および絶縁層を同
時に焼成したとしても、絶縁層の主原料をジルコニアの
比表面積を3m2 /g以上、7m2 /g未満としたの
で、固体電解質と絶縁層との熱膨張係数の差をほとんど
なくすことができ、容易に且つ耐久性の優れた酸素濃度
検出素子を提供することができた。
By adopting the second invention, even if the solid electrolyte, the measuring electrode, the reference electrode and the insulating layer are simultaneously fired, the main raw material of the insulating layer has a specific surface area of zirconia of 3 m 2 / g or more, Since it is less than 7 m 2 / g, the difference in thermal expansion coefficient between the solid electrolyte and the insulating layer can be almost eliminated, and an oxygen concentration detection element having excellent durability can be provided easily.

【0014】[0014]

【発明の効果】本発明を採用することによって、耐久
性、機械的強度に優れる酸素濃度検出素子を得ることが
てきたとともに、耐久性が優れ、かつ製法が容易な酸素
濃度検出素子の製造方法を提供することができた。
By adopting the present invention, an oxygen concentration detecting element having excellent durability and mechanical strength can be obtained, and at the same time, a method of manufacturing an oxygen concentration detecting element having excellent durability and easy manufacturing method. Could be provided.

【0015】[0015]

【実施例】第1図は、本実施例に適用される酸素濃度検
出器の一部断面図を示す。第1図において、1は酸素濃
度検出素子、2はこの酸素濃度検出素子1の検出部3が
直接排ガスに曝されることを防ぐための保護カバー4を
有するハウジングであり、このハウジング2の中にタル
ク等の粉体5を介して熱カシメ等の方法により酸素濃度
検出素子1がハウジング4に組付け固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partial sectional view of an oxygen concentration detector applied to this embodiment. In FIG. 1, 1 is an oxygen concentration detecting element, 2 is a housing having a protective cover 4 for preventing the detecting portion 3 of the oxygen concentration detecting element 1 from being directly exposed to exhaust gas. The oxygen concentration detecting element 1 is assembled and fixed to the housing 4 by a method such as thermal caulking through a powder 5 such as talc.

【0016】また、一端が酸素濃度検出素子1の端子電
極部6にロー付け等により接続されたリード線7が酸素
濃度検出器本体の外部に取り出されている。第2図は、
本実施例の酸素濃度検出素子1の一実施例を示す展開図
である。
A lead wire 7 whose one end is connected to the terminal electrode portion 6 of the oxygen concentration detecting element 1 by brazing or the like is taken out to the outside of the oxygen concentration detector main body. Figure 2 shows
It is a development view showing one example of the oxygen concentration detection element 1 of the present example.

【0017】第2図において、10は、アルミナ磁器よ
りなり、両端を開放した貫通孔を有する角筒状の支持体
である。この支持体10の排ガスに露出され曝される側
の貫通孔の開口端面10aは、側面のうちの一面から連
続した傾斜面となっており、横からみた場合、この先端
部は楔型の形状になっている。また、貫通孔の他端には
大気を導入する大気導入孔10bが設けられている。
In FIG. 2, reference numeral 10 denotes a rectangular cylindrical support body made of alumina porcelain and having through holes with both ends open. The opening end surface 10a of the through hole on the side of the support body 10 that is exposed and exposed to the exhaust gas is an inclined surface that is continuous from one of the side surfaces, and when viewed from the side, this tip portion has a wedge shape. It has become. At the other end of the through hole, an air introduction hole 10b for introducing the atmosphere is provided.

【0018】11は、主に白金属材料よりなる発熱体で
あり、アルミナ等からなる絶縁層12を介して支持体1
0の傾斜面と対向する面、つまり、開口部10aを発熱
体11の発熱部11aが投影図的に見て完全に覆うよう
に積層されている。そして、さらに、発熱体11は、端
子電極部11b、11cを除いた部分に絶縁層12と同
材質の絶縁層13が積層されている。
Reference numeral 11 is a heating element mainly made of a white metal material, and a support 1 is provided with an insulating layer 12 made of alumina or the like interposed therebetween.
The heat generating portion 11a of the heat generating element 11 is laminated so as to completely cover the surface facing the inclined surface of 0, that is, the opening 10a as seen in a projection view. Further, in the heating element 11, the insulating layer 13 made of the same material as the insulating layer 12 is laminated on the portion excluding the terminal electrode portions 11b and 11c.

【0019】14は、例えば、金属酸化物の1種である
イットリアが添加されたジルコニアを焼結してなる部分
安定化ジルコニアよりなる固体電解質であり、一方の面
には、測定電極15を介して、測定ガスに曝され、他方
の面は、基準電極16を介して、基準ガスに曝されてい
る。また、この固体電解質14は、支持体10の貫通孔
の開口端部10aを基準電極16を介して、密封するよ
うに積層されている。
Reference numeral 14 is, for example, a solid electrolyte made of partially stabilized zirconia obtained by sintering zirconia to which yttria, which is one kind of metal oxide, is added. And is exposed to the measurement gas, and the other surface is exposed to the reference gas via the reference electrode 16. Further, the solid electrolyte 14 is laminated so as to seal the open end portion 10 a of the through hole of the support body 10 via the reference electrode 16.

【0020】また、基準電極16は固体電解質14の端
部に形成されたスルーホール14aを介して基準電極端
子17に接続され、測定電極15は、測定電極端子18
にそれぞれ接続されている。
The reference electrode 16 is connected to the reference electrode terminal 17 through a through hole 14a formed at the end of the solid electrolyte 14, and the measuring electrode 15 is connected to the measuring electrode terminal 18
Respectively connected to.

【0021】19は、測定電極15が測定ガスに直接曝
されることを防ぐ絶縁層である保護層である。この保護
層19は、比表面積が4.1m2 /g、粒径0.93μ
m、金属酸化物の1種であるイットリアの添加量5mo
l%よりなるセラミック材料を焼成してなる部分安定化
ジルコニアより形成されている。
Reference numeral 19 is a protective layer which is an insulating layer which prevents the measurement electrode 15 from being directly exposed to the measurement gas. The protective layer 19 has a specific surface area of 4.1 m 2 / g and a particle size of 0.93 μm.
m, the amount of yttria added, which is one of the metal oxides, is 5mo
It is formed of partially stabilized zirconia obtained by firing a ceramic material of 1%.

【0022】次に、本発明の酸素濃度検出素子の製造方
法を以下に述べる。支持体10は射出成形等により、形
状が決定される。この支持体10の側面に、絶縁層1
2、13および発熱体11が印刷法によって、形成され
る。
Next, a method of manufacturing the oxygen concentration detecting element of the present invention will be described below. The shape of the support 10 is determined by injection molding or the like. The insulating layer 1 is formed on the side surface of the support 10.
2, 13 and the heating element 11 are formed by a printing method.

【0023】また、固体電解質14は、その両面に、電
極15、16および保護層19が印刷法によって形成さ
れた後、支持体10に積層される。その後、同時焼成に
よって、本実施例の酸素濃度検出素子を得ることができ
る。
The solid electrolyte 14 is laminated on the support 10 after the electrodes 15 and 16 and the protective layer 19 are formed on both sides of the solid electrolyte 14 by a printing method. After that, the oxygen concentration detection element of this embodiment can be obtained by simultaneous firing.

【0024】ここで、本実施例では、イットリアの添加
量を5mol%としたが、イットリアの添加量は5〜7
mol%が好ましい。これは、イットリアが5mol%
より少ない場合には、ジルコニアの結晶間へのイットリ
アの混入量が少なすぎてしまい、従来のジルコニア原料
と同様、単斜晶と正方晶との間の変態温度の変化が殆ど
なく、固体電解質との熱膨張係数の差が大きくなってし
まう。また、イットリアが7mol%より大きい場合に
は、ジルコニアの結晶間の混入が多くなりすぎるため、
変態温度が上昇しすぎてしまい、固体電解質との熱膨張
係数の差がやはり大きくなってしまう。よって、イット
リアの添加量は5〜7mol%が最も良好である。
In this embodiment, the amount of yttria added is 5 mol%, but the amount of yttria added is 5 to 7%.
mol% is preferred. This is 5 mol% yttria
If it is less, the amount of yttria mixed between the crystals of zirconia is too small, and like the conventional zirconia raw material, there is almost no change in the transformation temperature between the monoclinic crystal and the tetragonal crystal, and the solid electrolyte and The difference in thermal expansion coefficient between the two becomes large. Further, when yttria is larger than 7 mol%, the intermixing between zirconia crystals becomes too much,
The transformation temperature rises too much, and the difference in coefficient of thermal expansion with the solid electrolyte also becomes large. Therefore, the best amount of yttria added is 5 to 7 mol%.

【0025】得られた酸素濃度検出素子1を冷熱耐久試
験を行ったところ保護層の剥離のない良好な結果を得る
ことができた。本発明の酸素濃度検出素子に使用される
保護層の組成を変化させることにより、得られた酸素濃
度検出素子の冷熱耐久性の評価を行った。
When the obtained oxygen concentration detecting element 1 was subjected to a thermal durability test, good results could be obtained without peeling of the protective layer. By changing the composition of the protective layer used in the oxygen concentration detecting element of the present invention, the cold heat durability of the obtained oxygen concentration detecting element was evaluated.

【0026】その結果を第1表および第2表に示す。こ
こで、保護層の主原料であるジルコニアの比表面積は、
フローソーブ2300型(島津製)を用いて、BET法
で測定を行った。
The results are shown in Tables 1 and 2. Here, the specific surface area of zirconia, which is the main raw material of the protective layer,
The measurement was carried out by the BET method using a Flowsorb 2300 type (manufactured by Shimadzu).

【0027】また、粒径は、マイクロトラック(日機装
製)によって測定して得られた値である。焼成された部
分安定化ジルコニアの気孔率は、水銀圧入法によって測
定した。
The particle size is a value obtained by measurement with Microtrac (manufactured by Nikkiso Co., Ltd.). The porosity of the calcined partially stabilized zirconia was measured by mercury porosimetry.

【0028】結晶組成は、X線回析ピークの積分強度か
ら、 M/C=〔IM(111)+IM(11 1)〕/〔IM(111)
M(111)+IC(111)〕(M:単斜晶、C:立方晶、I:
積分強度)によって算出した。
The crystalline composition from the integrated intensity of X-ray diffraction peak, M / C = [I M (111) + I M (11 1) ] / [I M (111) +
I M (111) + I C (111) ] (M: monoclinic, C: cubic, I:
It was calculated by the integrated intensity).

【0029】冷熱耐久試験は、1000℃×12分(燃
焼ガス中)および200℃×8分(大気中放置)の環境
変化として1サイクル20分の条件で行った。そして、
1000サイクルにおいても剥離のないものを良好と判
断した。
The cold heat durability test was carried out under the condition of one cycle of 20 minutes as an environmental change of 1000 ° C. × 12 minutes (in combustion gas) and 200 ° C. × 8 minutes (left in the atmosphere). And
A sample without peeling even after 1000 cycles was judged to be good.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】第1表および第2表より、明らかな如く、
ジルコニアの比表面積が7m2 /g以上の場合(試料N
o.14、15、16)においては、いずれもクラック
が進展し、保護膜の剥離が生じてしまった。
As is clear from Tables 1 and 2,
When the specific surface area of zirconia is 7 m 2 / g or more (Sample N
o. 14), 15) and 16), the cracks developed and the protective film peeled off.

【0033】それに対して、ジルコニアの比表面積が6
2 /g以上、7m2 /g未満の場合(試料No.1
2、13)においては、1000サイクルまで保護層の
割れ、剥離が生じず、特に、比表面積が6m2 /g以下
の場合(試料No.1〜11)には、3000サイクル
を越えても保護層の割れ等が生じることがなく、極めて
良好な保護膜を有する酸素濃度検出器を得ることができ
ることが分かった。
On the other hand, the specific surface area of zirconia is 6
m 2 / g or more and less than 7 m 2 / g (Sample No. 1
2, 13), the protective layer was not cracked or peeled up to 1000 cycles, and in particular, when the specific surface area was 6 m 2 / g or less (Sample Nos. 1 to 11), protection was performed even after 3000 cycles. It has been found that an oxygen concentration detector having an extremely good protective film can be obtained without causing layer breakage or the like.

【0034】また、ジルコニアの比表面積が3.0m2
/gより小さくなると、焼結性が著しく低下し、保護層
を形成することが非常に困難であった。第3図は、各ジ
ルコニアの比表面積を変えて得られた保護層の温度に対
する熱膨張冷却曲線を示す。
The specific surface area of zirconia is 3.0 m 2
If it is less than / g, the sinterability is significantly reduced, and it is very difficult to form a protective layer. FIG. 3 shows the thermal expansion cooling curve with respect to the temperature of the protective layer obtained by changing the specific surface area of each zirconia.

【0035】ここで、Aは比表面積が7m2 /g、Bは
比表面積が5.5m2 /g、Cは比表面積が4.1m2
/g、Dは比表面積が3.0m2 /gの場合を示す。第
3図より明らかなように、ジルコニアの比表面積が小さ
くなるに従い、単斜晶と正方晶間の変態温度が高温側に
移るので、500〜1000℃の変態量を減少させるこ
とができ、昇温、冷却時の体積変化によるヒステリシス
も小さくすることができた。
Here, A has a specific surface area of 7 m 2 / g, B has a specific surface area of 5.5 m 2 / g, and C has a specific surface area of 4.1 m 2.
/ G, D shows the case where the specific surface area is 3.0 m 2 / g. As is clear from FIG. 3, as the specific surface area of zirconia decreases, the transformation temperature between the monoclinic crystal and the tetragonal crystal shifts to the high temperature side, so that the transformation amount of 500 to 1000 ° C. can be reduced and Hysteresis due to volume changes during temperature and cooling could also be reduced.

【0036】前記実施例においては、本発明より得られ
た保護層を検出部3が楔型形状を成す酸素濃度検出素子
に適用したが、本発明は楔型形状に限ることなく例え
ば、検出部が筒型形状、四角柱形状等特に限定されるも
のではない。
In the above embodiment, the protective layer obtained according to the present invention was applied to the oxygen concentration detecting element in which the detecting portion 3 has a wedge shape. However, the present invention is not limited to the wedge shape, and for example, the detecting portion may be used. However, it is not particularly limited to a cylindrical shape, a quadrangular prism shape, or the like.

【0037】さらに、前記実施例では、積層型の酸素濃
度検出素子に適用したが、支持体の有しないカップ型の
酸素濃度検出素子にも適用可能である。また、前記実施
例では、本発明の絶縁層を酸素濃淡電池式酸素濃度検出
素子の保護層に使用したが、限界電流式酸素濃度検出素
子の拡散層にも適用することができる。
Further, in the above-mentioned embodiment, the present invention is applied to the laminated type oxygen concentration detecting element, but it is also applicable to the cup type oxygen concentration detecting element having no support. In addition, although the insulating layer of the present invention is used as the protective layer of the oxygen concentration battery type oxygen concentration detecting element in the above-mentioned embodiments, it can be applied to the diffusion layer of the limiting current type oxygen concentration detecting element.

【0038】また、前記実施例では、2価または3価の
金属酸化物として、イットリアを採用したが、金属酸化
物は、イットリアに限られるものではなく、マグネシア
及びカルシア等でもよい。
Although yttria is used as the divalent or trivalent metal oxide in the above embodiment, the metal oxide is not limited to yttria, and may be magnesia, calcia or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に採用される酸素濃度検出器の
断面図である。
FIG. 1 is a cross-sectional view of an oxygen concentration detector used in an embodiment of the present invention.

【図2】本発明の酸素濃度検出素子の展開図である。FIG. 2 is a development view of an oxygen concentration detection element of the present invention.

【図3】各比表面積における保護層の温度に対する熱膨
張冷却曲線を示す特性図である。
FIG. 3 is a characteristic diagram showing a thermal expansion cooling curve with respect to the temperature of the protective layer at each specific surface area.

【符号の説明】[Explanation of symbols]

14 固体電解質 15 測定電極 16 基準電極 19 保護層 14 Solid electrolyte 15 Measuring electrode 16 Reference electrode 19 Protective layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 部分安定化ジルコニアよりなり、一方の
面が測定ガスに曝されてなる固体電解質と、 該固体電解質の一方の面に形成されるとともに測定ガス
に曝される測定電極と、 前記固体電解質の他方の面に形成され、前記固体電解質
を介して前記測定電極と対を成す基準電極と、 比表面積が3m2 /g以上、7m2 /g未満のジルコニ
ア、および2価または3価の金属酸化物を主原料とする
焼結材料からなる多孔質な部分安定化焼結体であって、
前記測定電極の前記測定ガスに曝された面を覆う絶縁層
とからなることを特徴とする酸素濃度検出素子。
1. A solid electrolyte composed of partially stabilized zirconia, one surface of which is exposed to a measurement gas, and a measurement electrode which is formed on one surface of the solid electrolyte and exposed to the measurement gas, A reference electrode formed on the other surface of the solid electrolyte and forming a pair with the measurement electrode through the solid electrolyte, zirconia having a specific surface area of 3 m 2 / g or more and less than 7 m 2 / g, and divalent or trivalent A porous partially stabilized sintered body made of a sintered material mainly composed of the metal oxide of
An oxygen concentration detecting element comprising an insulating layer covering a surface of the measuring electrode exposed to the measuring gas.
【請求項2】 前記固体電解質の熱膨張係数が7〜9×
10-6/℃であることを特徴とする請求項1記載の酸素
濃度検出素子。
2. The coefficient of thermal expansion of the solid electrolyte is 7 to 9 ×.
The oxygen concentration detecting element according to claim 1, wherein the oxygen concentration detecting element is 10 -6 / ° C.
【請求項3】 2価または3価の前記金属酸化物は、5
〜7mol%のイットリアであることを特徴とする請求
項1記載の酸素濃度検出素子。
3. The divalent or trivalent metal oxide is 5
The oxygen concentration detection element according to claim 1, wherein the oxygen concentration detection element is -7 mol% yttria.
【請求項4】 前記ジルコニアの比表面積が3m2 /g
以上、6m2 /g以下であることを特徴とする酸素濃度
検出素子。
4. The specific surface area of the zirconia is 3 m 2 / g.
The oxygen concentration detecting element is 6 m 2 / g or less.
【請求項5】 部分安定化ジルコニアよりなる焼結前の
固体電解質の一方の面に、測定ガスに曝されるように測
定電極を、又前記固体電解質の他方の面において前記測
定電極と対向するように基準電極を形成する第1工程
と、 比表面積が3m2 /g以上、7m2 /g以下のジルコニ
ア、および2価または3価の金属酸化物を主原料とする
焼結材料を、前記測定電極が直接前記測定ガスに曝され
ないように、前記測定電極上に形成することによって、
多孔質な絶縁層を形成する第2工程と、 前記固体電解質に前記測定電極、前記基準電極および絶
縁層を同時焼成することによって、一体焼成させ、酸素
濃度検出素子を得る第3工程とからなることを特徴とす
る酸素濃度検出素子の製造方法。
5. A measuring electrode is exposed on one surface of a solid electrolyte made of partially stabilized zirconia before sintering so as to be exposed to a measuring gas, and is opposed to the measuring electrode on the other surface of the solid electrolyte. As described above, the first step of forming the reference electrode, the zirconia having a specific surface area of 3 m 2 / g or more and 7 m 2 / g or less, and the sintering material containing a divalent or trivalent metal oxide as a main material are By forming on the measurement electrode so that the measurement electrode is not directly exposed to the measurement gas,
It comprises a second step of forming a porous insulating layer, and a third step of co-firing the measuring electrode, the reference electrode and the insulating layer with the solid electrolyte to integrally fire them to obtain an oxygen concentration detecting element. A method for manufacturing an oxygen concentration detecting element, comprising:
JP3259283A 1990-10-11 1991-10-07 Oxygen concentration detecting element and method of manufacturing the same Expired - Lifetime JP2591383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3259283A JP2591383B2 (en) 1990-10-11 1991-10-07 Oxygen concentration detecting element and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-274295 1990-10-11
JP27429590 1990-10-11
JP3259283A JP2591383B2 (en) 1990-10-11 1991-10-07 Oxygen concentration detecting element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0510918A true JPH0510918A (en) 1993-01-19
JP2591383B2 JP2591383B2 (en) 1997-03-19

Family

ID=26544049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259283A Expired - Lifetime JP2591383B2 (en) 1990-10-11 1991-10-07 Oxygen concentration detecting element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2591383B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522979A (en) * 1994-04-19 1996-06-04 Nippondenso Co., Ltd. Stratified ceramic body, oxygen sensor using the same and fabrication method thereof
JP2002340845A (en) * 2001-05-17 2002-11-27 Denso Corp Gas sensor element and manufacturing method thereof
JP2007108094A (en) * 2005-10-17 2007-04-26 Ngk Spark Plug Co Ltd Gas sensor element, gas sensor, and manufacturing methods therefor
JP2009222703A (en) * 2008-02-22 2009-10-01 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2010169655A (en) * 2008-12-22 2010-08-05 Nippon Soken Inc Gas sensor element and gas sensor equipped with it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522979A (en) * 1994-04-19 1996-06-04 Nippondenso Co., Ltd. Stratified ceramic body, oxygen sensor using the same and fabrication method thereof
JP2002340845A (en) * 2001-05-17 2002-11-27 Denso Corp Gas sensor element and manufacturing method thereof
JP4572486B2 (en) * 2001-05-17 2010-11-04 株式会社デンソー Gas sensor element and manufacturing method thereof
JP2007108094A (en) * 2005-10-17 2007-04-26 Ngk Spark Plug Co Ltd Gas sensor element, gas sensor, and manufacturing methods therefor
JP2009222703A (en) * 2008-02-22 2009-10-01 Ngk Spark Plug Co Ltd Ammonia gas sensor
US8465636B2 (en) 2008-02-22 2013-06-18 Ngk Spark Plug Co., Ltd. Ammonium gas sensor
JP2010169655A (en) * 2008-12-22 2010-08-05 Nippon Soken Inc Gas sensor element and gas sensor equipped with it

Also Published As

Publication number Publication date
JP2591383B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
EP0115148B1 (en) Oxygen sensor
JP4050593B2 (en) Gas sensor element and gas sensor using the same
US5518603A (en) Oxygen sensor and a process for production thereof
JP2007033464A (en) Gas sensor element and gas sensor using the same
JP2617204B2 (en) Method for producing solid electrolyte
JPH0510918A (en) Oxygen-concentration detecting element and manufacture thereof
JP2000292406A (en) Ceramic lamination body and its manufacture
JP3572241B2 (en) Air-fuel ratio sensor element
JP2002286680A (en) Lamination type gas sensor element and its manufacturing method
JP2003279528A (en) Oxygen sensor electrode
EP0166445B1 (en) Reinforced zirconia-base sintered body, process for producing the same, and plate-like zirconia-base electrolyte function element
JP2000338078A (en) Heater one-piece type oxygen sensor and manufacture thereof
JP4062768B2 (en) Method for manufacturing oxygen sensor element
JP4084505B2 (en) Heater integrated oxygen sensor element
JP2003279531A (en) Oxygen sensor element
KR20070084271A (en) Ceramic insulating material and sensor element containing this material
JPS61241658A (en) Oxygen sensor element and its production
JP2003089576A (en) Zirconia sintered compact, and oxygen sensor
EP0345824B1 (en) Method for producing ceramics
JP2002228622A (en) Oxygen sensor and its manufacturing method
JP4698041B2 (en) Air-fuel ratio sensor element
JP3694625B2 (en) Heater integrated oxygen sensor element
JP3668077B2 (en) Heater integrated oxygen sensor element
JP2003149196A (en) Oxygen sensor
JPH0390851A (en) Oxygen sensor with heater and production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

EXPY Cancellation because of completion of term