JP4572486B2 - Gas sensor element and manufacturing method thereof - Google Patents

Gas sensor element and manufacturing method thereof Download PDF

Info

Publication number
JP4572486B2
JP4572486B2 JP2001148305A JP2001148305A JP4572486B2 JP 4572486 B2 JP4572486 B2 JP 4572486B2 JP 2001148305 A JP2001148305 A JP 2001148305A JP 2001148305 A JP2001148305 A JP 2001148305A JP 4572486 B2 JP4572486 B2 JP 4572486B2
Authority
JP
Japan
Prior art keywords
sensor element
reference gas
raw sheet
gas sensor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001148305A
Other languages
Japanese (ja)
Other versions
JP2002340845A (en
Inventor
昭一郎 延命
洋彦 辰本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001148305A priority Critical patent/JP4572486B2/en
Publication of JP2002340845A publication Critical patent/JP2002340845A/en
Application granted granted Critical
Publication of JP4572486B2 publication Critical patent/JP4572486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【技術分野】
本発明は,内燃機関の排気系に取付け,燃焼制御に利用される各種のガスセンサ素子及びその製造方法に関する。
【0002】
【従来技術】
自動車エンジンの排気系には燃焼制御に利用するためのガスセンサが設けてあり,ここに内蔵されるガスセンサ素子として,特開平9−26409号に示されるような構成の素子が知られている。
【0003】
図16に示すごとく,このガスセンサ素子9は,被測定ガスに接する被測定ガス側電極11と基準ガスに接する基準ガス側電極12とを備えた固体電解質板93に対し,基準ガス室をアルミナ基板95と共に構成するスペーサー板94が積層されることで形成される。同図に示すごとく,上記スペーサー板94はコ字形状で,基準ガス室形成用の窓部940を有する。
【0004】
上記ガスセンサ素子9の基準ガス室は,一端が閉塞端で,他端がガスセンサ素子の外部に対して開口した開口端として構成され,上記開口端から基準ガスとなる大気等が導入されるよう構成されている。
なお,図示を略したが,アルミナ基板95に対し,発熱体を備えたヒータ基板が積層される。
【0005】
【解決しようとする課題】
ところで,ガスセンサ素子9は中空なので機械的強度が弱く,ガスセンサ素子製造やガスセンサへの組み付け時に,衝撃による損傷が生じやすい。
また,内燃機関の排気系で使用する際には,内燃機関始動前と始動後の温度差による熱応力から損傷することもある。
【0006】
また,上記従来構成のガスセンサ素子9において,スペーサー板94とアルミナ基板95とが,製造工程中やガスセンサ素子使用中に剥離する等して,不良やトラブルが発生することがあった。
【0007】
更に,近年は従来にもまして応答性が早く早期活性に優れたガスセンサ素子に対する要求が高まっており,従来構成のガスセンサ素子では,どちらの性能についても一層の改善が望まれていた。
【0008】
本発明は,かかる従来の問題点に鑑みてなされたもので,機械的応力や熱応力による損傷や不良が生じ難く,耐久性に優れ,応答性,早期活性に優れたガスセンサ素子及びその製造方法を提供しようとするものである。
【0009】
【課題の解決手段】
請求項1に記載の発明は,被測定ガスに接する被測定ガス側電極と基準ガスに接する基準ガス側電極とを備えた固体電解質板と,
上記基準ガス側電極と対面し,一端が閉塞端で,他端がガスセンサ素子の外部に対して開口した開口端として構成された溝状であり,基準ガスを導入するよう構成された基準ガス室を備えたスペーサー板と,
通電により発熱する発熱体を備えたヒータ基板とが積層されたガスセンサ素子であって,
上記基準ガス室の閉塞端における角部は,その幅方向が曲面によって構成され,
かつ,上記基準ガス室の幅方向中心を通り,幅方向と垂直に交わる長手方向に平行な平面に沿った切断面において,上記閉塞端における長手方向の角部は曲面によって構成されていると共にその曲率半径は1mm〜20mmであることを特徴とするガスセンサ素子にある。
【0010】
本発明の作用効果につき説明する。
本発明にかかるガスセンサ素子は,溝状の基準ガス室の閉塞端における上記長手方向の角部が曲面状で曲率半径が1mm〜20mmとなるように構成されている。
仮に曲率半径が1mm未満である場合は,上記長手方向の角部が十分丸みを帯びた形状とならず,本発明にかかる効果が得難く,優れた耐久性が得がたくなるおそれがある。
また,曲率半径が20mmを越えた場合は,供給,排出酸素量が低くなり,特に本発明にかかるガスセンサ素子をA/Fセンサとして使用する場合等に,リッチ側の検出限界が低くなるおそれがある。
【0011】
なお,本発明にかかる基準ガス室はスペーサー板に設けた溝により構成されている。また,上記角部はガスセンサ素子基準ガス側電極付近,つまり基準ガス室の閉塞端側に形成される終端である(図1等参照)。
【0012】
なお,基準ガス室の幅方向,幅方向と垂直に交わる長手方向については,後述する図3等に具体的に記載した。およそ長手方向はガスセンサ素子の中心軸方向であり,幅方向はガスセンサ素子の径方向と見なすことができる。
【0013】
本発明にかかるガスセンサ素子の基準ガス室は,上記長手方向の角部の曲面が上述した範囲の曲率半径を有するため,熱的,機械的応力が生じた場合,これらの応力が角部に集中し難くなる。
そのため,熱応力による損傷が生じ難く,幅広い温度範囲の冷熱サイクルに耐えられるガスセンサ素子を得ることができる。
同様の理由から機械的応力による損傷が生じ難く,衝撃に強いガスセンサ素子を得ることができる。
【0014】
本発明においては,上記のごとく角部の幅方向も曲面によって構成されている。
また,このように,本発明においては,角部がその幅方向,長手方向ともに曲面状であることから,角部における基準ガスの淀みが生じ難くなり,ガスセンサ素子の応答性を高めることができる。
更に,角部が幅方向,長手方向ともに曲面状となった分,図1等より明らかであるが,発熱体から基準ガス側電極に至る伝熱経路がより長くスペーサー板を通ることとなる。よって,発熱体の熱が基準ガス側電極に伝導しやすくなる。
このため,ガスセンサ素子を素子活性温度に昇温する時間を短くすることができ,早期活性に優れるガスセンサ素子を得ることができる。
【0015】
以上,本発明によれば,機械的応力や熱応力による損傷や不良が生じ難く,耐久性に優れ,応答性,早期活性に優れたガスセンサ素子を提供することができる。
【0016】
また,本発明にかかる角部が曲面状である基準ガス室は,切削加工で形成する際は,ほぼ一度の切削加工で基準ガス室の加工を終えることができる。
仮に,基準ガス室が直角に近い角部を有する場合,これを作製する際は,複数回の切削加工を所望の形状となるまで繰り返す必要がある。つまり,本発明にかかる基準ガス室はより少ない工程数で作製可能である。
また,基準ガス室をプレス加工で作製する際は,角部が曲面状であることから,金型の抜き工程が容易となる。
すなわち,本発明にかかるガスセンサ素子は製造容易である。
【0017】
また,上記ガスセンサ素子はいわゆる積層型であり,通常の酸素センサ素子として用いる他,自動車エンジンの排気系に設置する空燃比センサ素子として使用することもできる。その他,電極の数を増やす等して,NOxセンサ素子,複合センサ素子等として用いることもできる。
【0018】
次に,請求項2に記載の発明は,被測定ガスに接する被測定ガス側電極と基準ガスに接する基準ガス側電極とを備えた固体電解質板と,
上記基準ガス側電極と対面し,一端が閉塞端で,他端がガスセンサ素子の外部に対して開口した開口端として構成された溝状であり,基準ガスを導入するよう構成された基準ガス室を備えたスペーサー板と,
通電により発熱する発熱体を備えたヒータ基板とが積層されてなると共に,
上記基準ガス室の閉塞端における角部はその幅方向が曲面によって構成され
かつ,上記基準ガス室の幅方向中心を通り,幅方向と垂直に交わる長手方向に平行な平面に沿った切断面において,上記閉塞端における長手方向の角部は曲面によって構成されていると共にその曲率半径は1mm〜20mmであるガスセンサ素子を製造するにあたり,
固体電解質板用生シート,スペーサー板用生シート,ヒータ基板用生シートをそれぞれ準備し,
固体電解質板用生シートに電極形成用の印刷部を,ヒータ基板用生シートに発熱体用の印刷部をそれぞれ設け,
スペーサー板用生シートに溝加工を施して,基準ガス室となる閉塞端と開放端とを備え,閉塞端の角部が曲面によって構成された溝部を形成し,
ヒータ基板用生シートにスペーサー板用生シートを積層し,これらに対し更に固体電解質板用生シートを積層し,接着剤にて貼り合わせて未焼積層体となし,
その後,未焼積層体を焼成することを特徴とするガスセンサ素子の製造方法にある。
【0019】
本発明にかかる製造方法において,スペーサー板用生シートは基準ガス室形成用の溝部が設けてある。この溝部より形成された基準ガス室の一例は後述する図2,図3,図6等に示されているが,貫通しない凹所としてスペーサー板用生シートに形成される。
前述した図16に示される従来構成と異なり,基準ガス室をスペーサー用生シートに溝部として設けてあるため,従来構成で起こりうるスペーサー板−アルミナ基板の剥離による各種の不良,トラブルをなくすことができる。
また,各生シートは接着剤にて貼り合わされているため,シート間が強く接合されており,他のシート間における剥離による各種の不良,トラブルも生じ難い。
【0020】
また,基準ガス室の角部は図6に示すごとく,その幅方向,長手方向ともに曲面状であるため,熱的,機械的応力が角部に集中し難い。
そのため,熱応力による損傷が生じ難く,幅広い温度範囲の冷熱サイクルに耐えられるガスセンサ素子を得ることができる。また,機械的応力による損傷が生じ難く,衝撃に強いガスセンサ素子を製造することができる。
【0021】
また,角部が幅方向,長手方向ともに曲面状であることから,該角部での基準ガスの淀みが生じ難くなり,ガスセンサ素子の応答性を高めることができる。
更に,上記角部が曲面状となった分,図1等より明らかであるが,発熱体から基準ガス側電極に至る伝熱経路がより長くスペーサー板を通ることとなる。よって,発熱体の熱が基準ガス側電極に伝導しやすくなる。
このため,ガスセンサ素子を素子活性温度に昇温する時間を短くすることができ,早期活性に優れるガスセンサ素子を製造することができる。
【0022】
以上,本発明によれば,機械的応力や熱応力による損傷や不良が生じ難く,耐久性に優れ,応答性,早期活性に優れたガスセンサ素子の製造方法を提供することができる。
【0023】
上記各生シートはガスセンサ素子を一個取り可能な大きさで作製することもできるが,製造効率の観点から,ガスセンサ素子を複数個取り可能な大きさに各生シートを構成し,各印刷部を複数個形成し,積層した後,切断等によりガスセンサ素子1個分に個片化して製造することが好ましい(詳細は実施形態例3参照)。
【0024】
次に,請求項3に記載の発明のように,上記溝加工は切削加工により行なうことが好ましい。
これにより,溝ピッチ−溝形状を精度よく加工することができる。
【0025】
次に,請求項4記載の発明のように,上記溝加工はプレス加工により行なうことが好ましい。
これにより,1度のプレス加工で多数の溝を同時に形成することができるため,加工機具類の消耗も少なくコストを安価とすることができる。
【0026】
【発明の実施の形態】
実施形態例1
参考例にかかるガスセンサ素子につき,図1〜図6を用いて説明する。
本例のガスセンサ素子1は,図1に示すごとく,被測定ガスに接する被測定ガス側電極11と基準ガスに接する基準ガス側電極12とを備えた固体電解質板13と,上記基準ガス側電極11と対面し,基準ガスを導入するよう構成された基準ガス室10を備えたスペーサー板14と,通電により発熱する発熱体150を備えたヒータ基板15とが積層されて構成される。
上記基準ガス室10は,基準ガス側電極12が設けられた一端が閉塞端102で,他端がガスセンサ素子1の外部に対して開口した開口端101として構成された溝状である。
【0027】
図1,図3に示すごとく,上記基準ガス室10の閉塞端102における角部100はその長手方向が曲面によって構成され,上記基準ガス室10の幅方向中心を通る軸方向に平行な平面で切った軸方向断面形状において(図3にかかる破線C参照),上記角部100の曲率半径は1mm〜20mmの範囲内にある。
【0028】
以下,詳細に説明する。
本例のガスセンサ素子1は,図4に示すごときガスセンサ2に内蔵され,自動車エンジンの排気系に取付け,エンジンの燃焼制御に利用される。
図1〜図3に示すごとく,本例のガスセンサ素子1は,酸素イオン導電性のジルコニア系の固体電解質板13と,アルミナ製の絶縁体よりなるスペーサー板14と,アルミナ製のヒータ基板15とが積層されている。
【0029】
上記固体電解質板13に対し,被測定ガス側電極11と基準ガス側電極12が設けてある。また,被測定ガス側電極11は電極保護層135で覆われている。
なお,図示は略したが,被測定ガス側電極11,基準ガス側電極12と電気的に導通した出力取出し用の端子部とリード部とが,上記固体電解質板13に設けてある。
また,上記ヒータ基板15には,発熱体150と電気的に導通されたリード部151が共に設けてある。
【0030】
基準ガス室10の長手方向の角部100は,ガスセンサ素子1の長手方向について湾曲した形状を有し,その曲率半径は,図3にかかる破線Cに沿って測った値が採用される。本例にかかるガスセンサ素子1の曲率半径は10mmである。
なお,上記破線Cは,ガスセンサ素子1の幅方向(図3参照)の中心Oを通り,ガスセンサ素子1の長手方向(図1及び図3参照)に平行な平面に沿った切断面である。
【0031】
本例にかかるガスセンサ素子1を内蔵したガスセンサ2について説明する。
図4に示すごとく,本例のガスセンサ2は,筒状のハウジング20と該ハウジング20の先端側に設けられた二重の被測定ガス側カバー21と,基端側に設けられた大気側カバー22とを有する。大気側カバー22の基端側には,撥水フィルタ220を介して外側カバー221が設けてある。
ハウジング20の内側には,先端側絶縁碍子241に挿通されたガスセンサ素子1が挿通配置され,またガスセンサ素子1の基端側で大気側カバーの内部には基端側絶縁碍子242が配置されている。
【0032】
基端側絶縁碍子242の内部にガスセンサ素子1の出力取出し用の端子231が配置され,この端子231は接続金具232を介して,ガスセンサ1の外部に引き出されるリード線233に接続されている。また,大気側カバー22の最も基端側の内部には弾性絶縁部材25が設けてあって,ここにリード線233が挿通される。
【0033】
本例にかかる作用効果について説明する。
本例に示した基準ガス室10は,角部100の曲面が上述した範囲の曲率半径を有するため,熱応力による損傷が生じ難く,幅広い温度範囲の冷熱サイクルに耐えられるガスセンサ素子1を得ることができる。また,機械的応力による損傷が生じ難く,衝撃に強いガスセンサ素子1を得ることができる。
【0034】
また,長手方向の角部が曲面状であることから,該角部100での基準ガスの淀みが生じ難くなる。
すなわち,開口端101から入った基準ガスは基準ガス室10の形状に沿って移動して,角部100の曲面形状により,スムーズに基準ガス側電極12に対しガイドされる。このため,応答性に優れたガスセンサ素子1を得ることができる。
更に,角部100が曲面状となった分,図1より明らかであるが,発熱体150から基準ガス電極12に至る伝熱経路がより長くスペーサー板14内部を通ることとなる。よって,発熱体150の熱が基準ガス側電極12に伝導しやすく,早期活性に優れるガスセンサ素子1を得ることができる。
【0035】
以上,本例によれば,機械的応力や熱応力による損傷や不良が生じ難く,耐久性に優れ,応答性,早期活性に優れたガスセンサ素子を提供することができる。
【0036】
なお,本例に記載したガスセンサ素子とは異なる構成の素子として,内燃機関の排気系に設置してA/Fセンサ素子として利用できるものが挙げられる。
このものは,図1に示した電極保護層135のかわりに,図5に示すごとく,被測定ガス側電極11が拡散抵抗層136と遮閉層137に覆われている。
このものについても,本例と同様に基準ガス室10の角部100を曲面状とすることで,本例と同様の効果を得ることができる。
【0037】
実施形態例
本例は上記参考例と同様の構成をもつガスセンサ素子1であって,基準ガス室100の形状が,ガスセンサ素子1の長手方向だけでなく,幅方向についても曲面状となった例である。
図5及び図6に示すごとく,本例のガスセンサ素子1は,角部100が曲面状の基準ガス室10を有する。
角部100は,図6(b)より明らかであるが,ガスセンサ素子1の長手方向だけでなく幅方向についても曲面状となっている。
その他は参考例と同様であり,同様の作用効果を有する。
また,本例においては,上記の角部がその幅方向,長手方向ともに曲面状である。そのため,角部における基準ガスの淀みが生じ難くなり,ガスセンサ素子の応答性を高めることができる。
更に,角部が幅方向,長手方向ともに曲面状となっているので,図1,図6等より明らかなように,発熱体から基準ガス側電極に至る伝熱経路がより長くスペーサー板を通ることとなる。よって,発熱体の熱が基準ガス側電極に伝導しやすくなる。
このため,ガスセンサ素子を素子活性温度に昇温する時間を短くすることができ,早期活性に優れるガスセンサ素子を得ることができる。
【0038】
実施形態例
本例においては,参考例に記載したガスセンサ素子1の製造方法について詳細に説明する。
まず,製造方法の概略について記載する。
図7に示すごとく,電極保護層用生シート535,固体電解質板用生シート53,スペーサー板用生シート54,ヒータ基板用生シート55をそれぞれ準備する。
【0039】
各生シートは,次のように加工する。
即ち,図8に示すごとく,固体電解質板用生シート53に電極形成用の印刷部530を,ヒータ基板用生シート55に発熱体用の印刷部550をそれぞれ設ける。
また,スペーサー板用生シート54に溝加工を施して,基準ガス室100となる一端が閉塞し,他端が開放された溝部540を形成する。
【0040】
その後,図9に示すごとく,ヒータ基板用生シート55にスペーサー板用生シート55を積層し,これらに対し更に固体電解質板用生シート53及び電極保護層用生シート535を積層し,図9(a)に示すごとく,接着剤にて貼り合わせて未焼積層体とする。
得られた未焼積層体をガスセンサ素子単位に,図9(b)に示すごとく,個片化し,得られた個片56を焼成して,図9(c)に示すごとく,ガスセンサ素子1を得る。
【0041】
以下,詳細に説明する。
図7に示すごとき各生シート535,53,54,55を押出成形装置(図示略)で作成する。
図7には,図面上から順に,電極保護層用生シート535(アルミナ組成厚さ0.15mm),固体電解質板用生シート53(ジルコニア組成厚さ0.2mm),スペーサー板用生シート54(アルミナ組成厚さ1.5mm),ヒータ基板用生シート55(アルミナ組成厚さ0.2mm)が記載されている。
【0042】
また,固体電解質板用生シート53,スペーサー板用生シート54,ヒータ基板用生シート55の寸法は70mm×90mmで,保護層用生シート535の寸法は70mmmm×35mmである。
なお,上記スペーサー板用生シート54は,下記に記載した溝加工を施した後に上記寸法に調整する。
【0043】
次に,スペーサー板用生シート54に対し溝加工を施して,基準ガス室100用の溝部540を形成する詳細について説明する。
まず,押出成形された直後のスペーサー板用生シート54の水分量を調整する。
上記生シート54を,図10に示すごとく,パンチングメタルからなる足つきトレイ549の上に載置して,最大でトレイ549を10段重ねとして,温度を50度に維持したオーブン内に置いて乾燥する。
この乾燥により,生シート54の水分量を11±0.5%に設定する。なお,水分量が少なすぎると生シート54に割れが発生するおそれがあり,水分量が多いと形が安定しないおそれがある。
乾燥終了後,生シート54を所定の寸法に切断する。
【0044】
次に,溝加工のプレス加工に用いる金型について説明する。
図11に示すごとく,金型は上型61と下型62とよりなり,上型61の型面610に溝形成用の凸部611が設けてある。
下型62の周囲には下補助具629が配置され,上型61の型面610と反対側には上補助具619が取付けてある。また,下型62の型面620の周囲には,パッキン628が配置される。
【0045】
このような状態にある金型の下型62の型面620に対し,離型シート545をはさんで,上記生シート54をセットする。
続いて,上型61を下型62に対してセットし,プレス成形を行なう。この時,金型温度は80℃,成形圧力は77MPa,成形時間は15秒とした。成形終了後,型開きし,溝が形成された生シート54を取り出し,離型シート545をはがす。
【0046】
再び,生シート54をパンチングメタルからなる足つきトレイ(図10と同様のトレイ549を使用する)に載置して,最大でトレイを10段重ねとした。これを温度95℃に保持したオーブン内に2時間おいて乾燥させる。
乾燥終了後の生シート54は全体にうねりが生じ,その表面は凹凸が形成されている。上記うねりと凹凸を除去するために,次の手順で平滑化プレスを生シート54に施す。
【0047】
図12に示すごとく,上記生シート54の上下の両面を離型シート545で挟み,平プレス型にセットする。この平プレス型は,上型63,下型64の型面630,640がそれぞれ平面に構成されている。
そして,下型64の型面640に離型シート545で挟んだ生シート54を配置し,上型63をセットして,平プレスを施す。この時,金型温度は80℃,圧力は8.5MPa,時間は15秒とした。
平プレス終了後,型開きし,離型シート545をはがして,スペーサー用生シート54を取り出す。
その後,溝ピッチ,溝形状,シート反り(1mm以下とする必要がある),シート表面荒さ(5μm以下とする必要がある),外観検査を行って,不良品を除去する。
【0048】
次に,上記固体電解質板用生シート53に対し,被測定ガス側電極及び基準ガス側電極用,また各端子部用,端子部と電極とを結ぶリード部用等の印刷部530を設ける。この印刷部は導電性ペーストであるPtペーストを生シート53に対しスクリーン印刷することにより形成した。
また,同様に,上記ヒータ基板用生シート55に対し,発熱体用,発熱体に通電する際に利用されるリード部用,端子部用の印刷部550を,導電性ペーストであるPtペーストを生シート55に対しスクリーン印刷することにより形成した。
【0049】
以上により加工された各生シート535,53,54,55に対し接着剤を全面塗布して,図9(a)に示すごとく積層する。これにより得られた未焼積層体を切断し,図9(b)に示すごとく,ガスセンサ素子1個分に個片化する。
得られた個片56を1470℃,2時間で焼成し,ガスセンサ素子1を得る。
【0050】
本例の作用効果について説明する。
上述した製造方法において,スペーサー板用生シート54は基準ガス室形成用の溝部が設けてある。この溝部は貫通しない凹所としてスペーサー板用生シート54に形成される。前述した図16に示される従来構成と異なり,基準ガス室をスペーサー用生シート54に設けた溝より構成してあるため,スペーサー板−アルミナ基板の剥離による各種の不良,トラブルをなくすことができる。
また,各生シート535,53,54,55は接着剤にて貼り合わされているため,シート間が強く接合されており,シート間剥離による各種の不良,トラブルも生じ難い。
【0051】
実施形態例
本例は,実施形態例に記載したガスセンサ素子の製造方法において,生シート54に対する溝加工の方法として切削加工を選択した場合について説明する。
図13に本例において使用する切削加工用の切削刃7を示す。
切削刃7は,12角形の本体部70と,該本体部70の周方向側面に設けた4箇所の突起部71と,該突起部71に対し設けたダイヤモンド刃711とよりなる。
図14はダイヤモンド刃711を図13に示す方向Sからみた形状を示した図面である。
【0052】
この切削刃7を用いて,図15に示すごとく,生シート54の一端から,他端に向けて,切削刃7を矢線T1方向に回転させながら,T2の方向へと移動させる。そして,所望の位置,すなわち,基準ガス室として必要な長さの溝を切削形成した時点で切削刃7を停止,生シート54上方へ切削刃7を引上げる。
【0053】
この時,前述の実施形態例3に示すごとく,ガスセンサ素子を複数個取り可能な大きさに生シートを作成した場合は,各溝を作製するに当り,1つの切削刃7を何度か用いて,所望の個数の溝加工を施すこともできるが,図示は略したが,連動して稼働可能に構成した所望の個数の切削刃7を用いて,複数の溝加工を同時に行なうほうがよい。
生シート54の溝加工以外は実施形態例と同様である。
【0054】
本例にかかる製造方法では,溝加工を切削刃7を用いた切削加工で行なっているため,溝ピッチ,溝形状を精度よく加工することができる。
その他は実施形態例と同様の作用効果を有する。
【図面の簡単な説明】
【図1】 参考例における,ガスセンサ素子の断面説明図(図2にかかるB−B矢視断面図)。
【図2】 参考例における,ガスセンサ素子の断面説明図(図1にかかるA−A矢視断面図)。
【図3】 参考例における,基準ガス室の角部の要部説明図。
【図4】 参考例における,ガスセンサの断面説明図。
【図5】 参考例における,A/Fセンサ素子として利用可能なガスセンサ素子の説明図。
【図6】 実施形態例における,(a)基準ガス室の角部の要部説明図,(b)ガスセンサ素子の断面説明図。
【図7】 実施形態例における,各生シートの斜視図。
【図8】 実施形態例における,印刷部及び溝部を設けた各生シートの斜視図。
【図9】 実施形態例における,各生シートを積層,個片化,焼成し,ガスセンサ素子を作製した際の説明図。
【図10】 実施形態例における,生シートの乾燥を行なう際の説明図。
【図11】 実施形態例における,生シートに溝部を設ける際の説明図。
【図12】 実施形態例における,溝部を設けた生シートを平プレスする際の説明図。
【図13】 実施形態例における,溝部を設ける際に用いる切削刃を示す説明図。
【図14】 実施形態例における,切削刃のダイヤモンド刃について示す説明図。
【図15】 実施形態例における,切削刃を用いた溝部の加工について示す説明図。
【図16】 従来にかかる,ガスセンサ素子の斜視展開図。
【符号の説明】
1...ガスセンサ素子,
10...基準ガス室,
100...角部,
101...開口端,
102...閉塞端,
11...被測定ガス側電極,
12...基準ガス側電極,
13...固体電解質板,
14...スペーサー板,
15...ヒータ基板,
150...発熱体,
[0001]
【Technical field】
The present invention relates to various gas sensor elements that are attached to an exhaust system of an internal combustion engine and used for combustion control, and a method for manufacturing the same.
[0002]
[Prior art]
An exhaust system of an automobile engine is provided with a gas sensor for use in combustion control. As a gas sensor element incorporated therein, an element having a configuration as disclosed in Japanese Patent Laid-Open No. 9-26409 is known.
[0003]
As shown in FIG. 16, this gas sensor element 9 has a reference gas chamber made of an alumina substrate with respect to a solid electrolyte plate 93 having a measured gas side electrode 11 in contact with the measured gas and a reference gas side electrode 12 in contact with the reference gas. It is formed by laminating spacer plates 94 configured together with 95. As shown in the figure, the spacer plate 94 is U-shaped and has a window portion 940 for forming a reference gas chamber.
[0004]
The reference gas chamber of the gas sensor element 9 is configured as an open end whose one end is a closed end and the other end is opened to the outside of the gas sensor element, so that the atmosphere or the like serving as a reference gas is introduced from the open end. Has been.
Although not shown, a heater substrate having a heating element is laminated on the alumina substrate 95.
[0005]
[Problems to be solved]
By the way, since the gas sensor element 9 is hollow, its mechanical strength is weak, and damage due to impact is likely to occur when the gas sensor element 9 is manufactured or assembled to the gas sensor.
Further, when used in an exhaust system of an internal combustion engine, it may be damaged by thermal stress due to a temperature difference before and after the internal combustion engine is started.
[0006]
Further, in the gas sensor element 9 having the above-described conventional configuration, the spacer plate 94 and the alumina substrate 95 may be defective or troubled due to separation during the manufacturing process or use of the gas sensor element.
[0007]
Furthermore, in recent years, there has been a growing demand for gas sensor elements that are faster in response and faster in activity than ever before, and the conventional gas sensor elements have been desired to be further improved in both performances.
[0008]
The present invention has been made in view of such conventional problems, and is a gas sensor element that is less likely to be damaged or defective due to mechanical stress or thermal stress, has excellent durability, responsiveness, and early activation, and a method for manufacturing the same. Is to provide.
[0009]
[Means for solving problems]
The invention according to claim 1 comprises a solid electrolyte plate comprising a measured gas side electrode in contact with the measured gas and a reference gas side electrode in contact with the reference gas;
A reference gas chamber facing the reference gas side electrode, having one end as a closed end and the other end as an open end opened to the outside of the gas sensor element, and configured to introduce a reference gas A spacer plate with
A gas sensor element in which a heater substrate having a heating element that generates heat when energized is laminated,
The corner portion at the closed end of the reference gas chamber is formed by a curved surface in the width direction .
Further, in the cut surface along the plane parallel to the longitudinal direction passing through the center in the width direction of the reference gas chamber and perpendicular to the width direction, the corner in the longitudinal direction at the closed end is constituted by a curved surface and The gas sensor element is characterized in that the radius of curvature is 1 mm to 20 mm.
[0010]
The function and effect of the present invention will be described.
The gas sensor element according to the present invention is configured such that the corner portion in the longitudinal direction at the closed end of the groove-shaped reference gas chamber has a curved surface and a radius of curvature of 1 mm to 20 mm.
If the radius of curvature is less than 1 mm, the corners in the longitudinal direction are not sufficiently rounded, and it is difficult to obtain the effects of the present invention and it may be difficult to obtain excellent durability.
In addition, when the radius of curvature exceeds 20 mm, the amount of oxygen supplied and exhausted is low, and the detection limit on the rich side may be lowered particularly when the gas sensor element according to the present invention is used as an A / F sensor. is there.
[0011]
The reference gas chamber according to the present invention is constituted by a groove provided in the spacer plate. The corner is a terminal formed near the gas sensor element reference gas side electrode, that is, on the closed end side of the reference gas chamber (see FIG. 1 and the like).
[0012]
The width direction of the reference gas chamber and the longitudinal direction perpendicular to the width direction are specifically described in FIG. The longitudinal direction is approximately the central axis direction of the gas sensor element, and the width direction can be regarded as the radial direction of the gas sensor element.
[0013]
In the reference gas chamber of the gas sensor element according to the present invention, since the curved surface of the corner in the longitudinal direction has a radius of curvature in the above-described range, when thermal and mechanical stresses are generated, these stresses are concentrated on the corners. It becomes difficult to do.
Therefore, it is possible to obtain a gas sensor element that is not easily damaged by thermal stress and can withstand a cooling cycle in a wide temperature range.
For the same reason, it is difficult to cause damage due to mechanical stress, and a gas sensor element that is resistant to impact can be obtained.
[0014]
In the present invention, as described above, the width direction of the corner is also constituted by a curved surface.
In this way, in the present invention, since the corner is curved in both the width direction and the longitudinal direction, it is difficult for the reference gas to stagnate in the corner, and the responsiveness of the gas sensor element can be improved. .
Further, since the corner portion is curved in both the width direction and the longitudinal direction , as is apparent from FIG. 1 and the like, the heat transfer path from the heating element to the reference gas side electrode passes through the spacer plate longer. Therefore, the heat of the heating element is easily conducted to the reference gas side electrode.
For this reason, the time for raising the temperature of the gas sensor element to the element activation temperature can be shortened, and a gas sensor element excellent in early activation can be obtained.
[0015]
As described above, according to the present invention, it is possible to provide a gas sensor element that is hardly damaged or defective due to mechanical stress or thermal stress, has excellent durability, and has excellent responsiveness and early activation.
[0016]
In addition, when the reference gas chamber having a curved corner according to the present invention is formed by cutting, the processing of the reference gas chamber can be completed by cutting once.
If the reference gas chamber has a corner portion close to a right angle, it is necessary to repeat a plurality of times of cutting until a desired shape is obtained. That is, the reference gas chamber according to the present invention can be manufactured with a smaller number of steps.
In addition, when the reference gas chamber is manufactured by pressing, the corners are curved, so that the die removal process is facilitated.
That is, the gas sensor element according to the present invention is easy to manufacture.
[0017]
The gas sensor element is a so-called laminated type, and can be used as an air-fuel ratio sensor element installed in an exhaust system of an automobile engine in addition to being used as a normal oxygen sensor element. In addition, it can be used as a NOx sensor element, a composite sensor element, etc. by increasing the number of electrodes.
[0018]
Next, the invention according to claim 2 is a solid electrolyte plate comprising a measured gas side electrode in contact with the measured gas and a reference gas side electrode in contact with the reference gas;
A reference gas chamber facing the reference gas side electrode, having one end as a closed end and the other end as an open end opened to the outside of the gas sensor element, and configured to introduce a reference gas A spacer plate with
A heater substrate with a heating element that generates heat when energized is laminated,
The corner at the closed end of the reference gas chamber has a curved surface in the width direction ,
In addition, in the cut surface along the plane parallel to the longitudinal direction passing through the center in the width direction of the reference gas chamber and perpendicular to the width direction, the corner in the longitudinal direction at the closed end is formed by a curved surface. In manufacturing a gas sensor element having a curvature radius of 1 mm to 20 mm ,
Prepare a raw sheet for the solid electrolyte plate, a raw sheet for the spacer plate, and a raw sheet for the heater substrate,
A printing section for electrode formation is provided on the raw sheet for the solid electrolyte plate, and a printing section for the heating element is provided on the raw sheet for the heater substrate.
Groove processing is performed on the raw sheet for the spacer plate to form a groove portion having a closed end and an open end that serve as a reference gas chamber, and a corner portion of the closed end is formed by a curved surface.
A raw sheet for a spacer plate is laminated on a raw sheet for a heater substrate, and further, a raw sheet for a solid electrolyte plate is laminated on the raw sheet and bonded together with an adhesive to form an unfired laminate.
Then, it is in the manufacturing method of the gas sensor element characterized by baking an unbaked laminated body.
[0019]
In the manufacturing method according to the present invention, the spacer sheet raw sheet is provided with a groove for forming a reference gas chamber. An example of the reference gas chamber formed from the groove is shown in FIGS. 2, 3 , and 6 to be described later , but is formed in the raw sheet for the spacer plate as a recess that does not penetrate.
Unlike the conventional configuration shown in FIG. 16 described above, since the reference gas chamber is provided as a groove in the spacer raw sheet, various defects and troubles due to the separation of the spacer plate-alumina substrate that may occur in the conventional configuration can be eliminated. it can.
In addition, since each raw sheet is bonded with an adhesive, the sheets are strongly bonded to each other, and various defects and troubles due to peeling between other sheets are unlikely to occur.
[0020]
Further, as shown in FIG. 6, the corner portion of the reference gas chamber is curved in both the width direction and the longitudinal direction , so that thermal and mechanical stresses are unlikely to concentrate on the corner portion.
Therefore, it is possible to obtain a gas sensor element that is not easily damaged by thermal stress and can withstand a cooling cycle in a wide temperature range. Further, it is possible to manufacture a gas sensor element that is not easily damaged by mechanical stress and is resistant to impact.
[0021]
Further, since the corner portion is curved in both the width direction and the longitudinal direction, it is difficult for the reference gas to stagnate at the corner portion, and the responsiveness of the gas sensor element can be improved.
Moreover, amount that the corner portion becomes curved, but it is apparent from FIG. 1 and the like, the heat transfer path to the reference gas-side electrode from the heating element is to pass through the longer spacer plate. Therefore, the heat of the heating element is easily conducted to the reference gas side electrode.
For this reason, it is possible to shorten the time for raising the temperature of the gas sensor element to the element activation temperature, and it is possible to manufacture a gas sensor element excellent in early activation.
[0022]
As described above, according to the present invention, it is possible to provide a method for manufacturing a gas sensor element that is less likely to be damaged or defective due to mechanical stress or thermal stress, has excellent durability, responsiveness, and early activation.
[0023]
Each raw sheet can be made in a size that allows one gas sensor element to be taken, but from the viewpoint of manufacturing efficiency, each raw sheet is configured to a size that allows a plurality of gas sensor elements to be taken, It is preferable that a plurality of gas sensor elements are formed by stacking and then being separated into one gas sensor element by cutting or the like (refer to Embodiment 3 for details).
[0024]
Next, as in the invention described in claim 3, the groove processing is preferably performed by cutting.
Thereby, the groove pitch-groove shape can be processed with high accuracy.
[0025]
Next, as in a fourth aspect of the invention, the groove processing is preferably performed by press processing.
As a result, a large number of grooves can be formed at the same time by a single press process, so that the consumption of processing tools is reduced and the cost can be reduced.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A gas sensor element according to a reference example will be described with reference to FIGS.
As shown in FIG. 1, the gas sensor element 1 of this example includes a solid electrolyte plate 13 having a measured gas side electrode 11 in contact with a measured gas and a reference gas side electrode 12 in contact with a reference gas, and the reference gas side electrode. 11, a spacer plate 14 having a reference gas chamber 10 configured to introduce a reference gas and a heater substrate 15 having a heating element 150 that generates heat when energized are laminated.
The reference gas chamber 10 has a groove shape in which one end provided with the reference gas side electrode 12 is a closed end 102 and the other end is an open end 101 opened to the outside of the gas sensor element 1.
[0027]
As shown in FIGS. 1 and 3, the corner portion 100 at the closed end 102 of the reference gas chamber 10 is formed of a curved surface in the longitudinal direction, and is a plane parallel to the axial direction passing through the center in the width direction of the reference gas chamber 10. In the cut axial sectional shape (see broken line C in FIG. 3), the radius of curvature of the corner 100 is in the range of 1 mm to 20 mm.
[0028]
This will be described in detail below.
The gas sensor element 1 of this example is built in a gas sensor 2 as shown in FIG. 4, is attached to an exhaust system of an automobile engine, and is used for engine combustion control.
As shown in FIGS. 1 to 3, the gas sensor element 1 of this example includes an oxygen ion conductive zirconia solid electrolyte plate 13, a spacer plate 14 made of an alumina insulator, an alumina heater substrate 15, and the like. Are stacked.
[0029]
A measured gas side electrode 11 and a reference gas side electrode 12 are provided for the solid electrolyte plate 13. The measured gas side electrode 11 is covered with an electrode protective layer 135.
Although not shown in the figure, the solid electrolyte plate 13 is provided with an output extraction terminal portion and a lead portion that are electrically connected to the measured gas side electrode 11 and the reference gas side electrode 12.
Further, the heater substrate 15 is provided with a lead portion 151 that is electrically connected to the heating element 150.
[0030]
The corner portion 100 in the longitudinal direction of the reference gas chamber 10 has a shape curved in the longitudinal direction of the gas sensor element 1, and the value measured along the broken line C in FIG. The radius of curvature of the gas sensor element 1 according to this example is 10 mm.
The broken line C is a cut surface along a plane passing through the center O in the width direction (see FIG. 3) of the gas sensor element 1 and parallel to the longitudinal direction of the gas sensor element 1 (see FIGS. 1 and 3).
[0031]
The gas sensor 2 incorporating the gas sensor element 1 according to this example will be described.
As shown in FIG. 4, the gas sensor 2 of this example includes a cylindrical housing 20, a double measured gas side cover 21 provided on the distal end side of the housing 20, and an air side cover provided on the proximal end side. 22. An outer cover 221 is provided on the base end side of the atmosphere side cover 22 via a water repellent filter 220.
The gas sensor element 1 inserted through the distal end side insulator 241 is inserted inside the housing 20, and the proximal end side insulator 242 is disposed inside the atmosphere side cover on the proximal end side of the gas sensor element 1. Yes.
[0032]
An output extraction terminal 231 of the gas sensor element 1 is disposed inside the proximal insulator 242, and this terminal 231 is connected to a lead wire 233 drawn out of the gas sensor 1 through a connection fitting 232. Further, an elastic insulating member 25 is provided inside the most proximal side of the atmosphere side cover 22, and a lead wire 233 is inserted therethrough.
[0033]
The effect concerning this example is demonstrated.
In the reference gas chamber 10 shown in this example, since the curved surface of the corner portion 100 has a radius of curvature in the above-described range, it is difficult to cause damage due to thermal stress, and the gas sensor element 1 that can withstand a cooling cycle in a wide temperature range is obtained. Can do. Further, it is possible to obtain a gas sensor element 1 that is not easily damaged by mechanical stress and is resistant to impact.
[0034]
Further, since the corners in the longitudinal direction are curved, it is difficult for stagnation of the reference gas at the corners 100.
That is, the reference gas entering from the opening end 101 moves along the shape of the reference gas chamber 10 and is smoothly guided to the reference gas side electrode 12 by the curved surface shape of the corner portion 100. For this reason, the gas sensor element 1 excellent in responsiveness can be obtained.
Furthermore, since the corner portion 100 has a curved surface, as is apparent from FIG. 1, the heat transfer path from the heating element 150 to the reference gas electrode 12 passes through the spacer plate 14 longer. Therefore, the heat of the heating element 150 can be easily conducted to the reference gas side electrode 12, and the gas sensor element 1 having excellent early activity can be obtained.
[0035]
As described above, according to this example, it is possible to provide a gas sensor element that is hardly damaged or defective due to mechanical stress or thermal stress, has excellent durability, and has excellent responsiveness and early activation.
[0036]
In addition, as an element having a configuration different from the gas sensor element described in this example, an element that can be used as an A / F sensor element by being installed in an exhaust system of an internal combustion engine can be used.
In this device, instead of the electrode protection layer 135 shown in FIG. 1, the measured gas side electrode 11 is covered with a diffusion resistance layer 136 and a shielding layer 137 as shown in FIG.
Also in this case, the same effect as in this example can be obtained by making the corner portion 100 of the reference gas chamber 10 into a curved surface as in this example.
[0037]
Embodiment 1
This example is a gas sensor element 1 having a configuration similar to that of the above reference example, and the reference gas chamber 100 has a curved shape not only in the longitudinal direction but also in the width direction of the gas sensor element 1.
As shown in FIGS. 5 and 6, the gas sensor element 1 of the present example includes a reference gas chamber 10 having a curved corner portion 100.
As is apparent from FIG. 6B, the corner portion 100 is curved not only in the longitudinal direction of the gas sensor element 1 but also in the width direction.
Others are the same as the reference example and have the same effects.
In this example, the corner is curved in both the width direction and the longitudinal direction. Therefore, it is difficult for the reference gas to stagnate at the corners, and the responsiveness of the gas sensor element can be improved.
Further, since the corners are curved in both the width direction and the longitudinal direction, the heat transfer path from the heating element to the reference gas side electrode is longer and passes through the spacer plate, as is apparent from FIGS. It will be. Therefore, the heat of the heating element is easily conducted to the reference gas side electrode.
For this reason, the time for raising the temperature of the gas sensor element to the element activation temperature can be shortened, and a gas sensor element excellent in early activation can be obtained.
[0038]
Embodiment 2
In this example, the manufacturing method of the gas sensor element 1 described in the reference example will be described in detail.
First, the outline of the manufacturing method is described.
As shown in FIG. 7, an electrode protective layer green sheet 535, a solid electrolyte plate green sheet 53, a spacer plate green sheet 54, and a heater substrate green sheet 55 are prepared.
[0039]
Each raw sheet is processed as follows.
That is, as shown in FIG. 8, the electrode forming printing section 530 is provided on the solid electrolyte plate raw sheet 53, and the heating element printing section 550 is provided on the heater substrate raw sheet 55, respectively.
Further, the raw sheet 54 for spacer plate is grooved to form a groove portion 540 in which one end serving as the reference gas chamber 100 is closed and the other end is opened.
[0040]
Thereafter, as shown in FIG. 9, the raw sheet 55 for the spacer plate is laminated on the raw sheet 55 for the heater substrate, and further, the raw sheet 53 for the solid electrolyte plate and the raw sheet 535 for the electrode protection layer are further laminated. As shown in (a), it is bonded with an adhesive to form an unfired laminate.
The obtained unfired laminate is divided into gas sensor element units as shown in FIG. 9B, and the obtained individual pieces 56 are fired to obtain the gas sensor element 1 as shown in FIG. 9C. obtain.
[0041]
This will be described in detail below.
Each raw sheet 535, 53, 54, 55 as shown in FIG. 7 is prepared by an extrusion molding apparatus (not shown).
In FIG. 7, in order from the top of the drawing, an electrode protective layer raw sheet 535 (alumina composition thickness 0.15 mm), a solid electrolyte plate raw sheet 53 (zirconia composition thickness 0.2 mm), a spacer plate raw sheet 54. (Alumina composition thickness 1.5 mm) and raw sheet 55 for heater substrate (alumina composition thickness 0.2 mm) are described.
[0042]
The dimensions of the raw sheet 53 for the solid electrolyte plate, the raw sheet 54 for the spacer plate, and the raw sheet 55 for the heater substrate are 70 mm × 90 mm, and the dimension of the raw sheet 535 for the protective layer is 70 mm × 35 mm.
The spacer plate raw sheet 54 is adjusted to the above dimensions after the groove processing described below is performed.
[0043]
Next, details of forming a groove 540 for the reference gas chamber 100 by performing groove processing on the raw spacer plate sheet 54 will be described.
First, the water content of the spacer plate raw sheet 54 immediately after extrusion is adjusted.
As shown in FIG. 10, the raw sheet 54 is placed on a legged tray 549 made of punching metal, placed in an oven maintained at a temperature of 50 degrees with a maximum of 10 trays 549, and dried. To do.
By this drying, the moisture content of the raw sheet 54 is set to 11 ± 0.5%. If the amount of water is too small, the raw sheet 54 may be cracked, and if the amount of water is large, the shape may not be stable.
After the drying is finished, the raw sheet 54 is cut into a predetermined size.
[0044]
Next, the metal mold | die used for the grooving press work is demonstrated.
As shown in FIG. 11, the mold includes an upper mold 61 and a lower mold 62, and a groove-forming convex portion 611 is provided on the mold surface 610 of the upper mold 61.
A lower auxiliary tool 629 is disposed around the lower mold 62, and an upper auxiliary tool 619 is attached to the side opposite to the mold surface 610 of the upper mold 61. A packing 628 is disposed around the mold surface 620 of the lower mold 62.
[0045]
The raw sheet 54 is set with the release sheet 545 sandwiched between the mold surface 620 of the lower mold 62 of the mold in such a state.
Subsequently, the upper die 61 is set on the lower die 62 and press molding is performed. At this time, the mold temperature was 80 ° C., the molding pressure was 77 MPa, and the molding time was 15 seconds. After the completion of molding, the mold is opened, the raw sheet 54 with grooves formed is taken out, and the release sheet 545 is peeled off.
[0046]
Again, the raw sheet 54 was placed on a tray with legs made of punching metal (using the same tray 549 as in FIG. 10), and the trays were stacked up to 10 levels at maximum. This is dried in an oven maintained at 95 ° C. for 2 hours.
The green sheet 54 after the drying is wavy, and the surface is uneven. In order to remove the waviness and unevenness, a smoothing press is applied to the raw sheet 54 by the following procedure.
[0047]
As shown in FIG. 12, the upper and lower surfaces of the raw sheet 54 are sandwiched between release sheets 545 and set in a flat press mold. In this flat press mold, the mold surfaces 630 and 640 of the upper mold 63 and the lower mold 64 are respectively configured to be flat.
Then, the raw sheet 54 sandwiched between the release sheets 545 is disposed on the mold surface 640 of the lower mold 64, the upper mold 63 is set, and flat pressing is performed. At this time, the mold temperature was 80 ° C., the pressure was 8.5 MPa, and the time was 15 seconds.
After flat pressing, the mold is opened, the release sheet 545 is peeled off, and the spacer raw sheet 54 is taken out.
Thereafter, the groove pitch, groove shape, sheet warpage (need to be 1 mm or less), sheet surface roughness (need to be 5 μm or less), and appearance inspection are performed to remove defective products.
[0048]
Next, a printing unit 530 for the gas side electrode to be measured and the reference gas side electrode, for each terminal portion, and for a lead portion connecting the terminal portion and the electrode is provided on the solid electrolyte plate raw sheet 53. This printing part was formed by screen-printing a Pt paste, which is a conductive paste, on the raw sheet 53.
Similarly, for the heater substrate raw sheet 55, the lead portion and the terminal portion printing portion 550 used when the heater is energized and the Pt paste, which is a conductive paste, are used. The green sheet 55 was formed by screen printing.
[0049]
An adhesive is applied to the entire surface of each of the green sheets 535, 53, 54, and 55 processed as described above and laminated as shown in FIG. The unfired laminated body thus obtained is cut and separated into one gas sensor element as shown in FIG. 9B.
The obtained piece 56 is fired at 1470 ° C. for 2 hours to obtain the gas sensor element 1.
[0050]
The effect of this example will be described.
In the manufacturing method described above, the spacer plate raw sheet 54 is provided with a groove for forming a reference gas chamber. The groove is formed in the spacer plate raw sheet 54 as a recess that does not penetrate. Unlike the conventional configuration shown in FIG. 16 described above, the reference gas chamber is constituted by a groove provided in the raw sheet 54 for spacers, so that various defects and troubles due to separation of the spacer plate and the alumina substrate can be eliminated. .
Further, since the raw sheets 535, 53, 54, and 55 are bonded with an adhesive, the sheets are strongly bonded to each other, and various defects and troubles due to peeling between the sheets are hardly caused.
[0051]
Embodiment 3
This example describes a case where cutting is selected as the groove processing method for the raw sheet 54 in the method for manufacturing the gas sensor element described in the second embodiment.
FIG. 13 shows a cutting blade 7 for cutting used in this example.
The cutting blade 7 includes a dodecagonal main body 70, four protrusions 71 provided on the circumferential side surface of the main body 70, and a diamond blade 711 provided for the protrusion 71.
FIG. 14 shows the shape of the diamond blade 711 viewed from the direction S shown in FIG.
[0052]
As shown in FIG. 15, the cutting blade 7 is moved in the direction T2 while rotating the cutting blade 7 in the arrow T1 direction from one end of the raw sheet 54 to the other end as shown in FIG. The cutting blade 7 is stopped at a desired position, that is, when a groove having a length necessary for the reference gas chamber is formed by cutting, and the cutting blade 7 is pulled up above the green sheet 54.
[0053]
At this time, as shown in the above-described third embodiment, when a raw sheet is prepared in a size that allows a plurality of gas sensor elements to be taken, one cutting blade 7 is used several times in forming each groove. Although a desired number of grooves can be formed, although not shown in the figure, it is better to simultaneously perform a plurality of grooves using a desired number of cutting blades 7 configured to be operable in conjunction with each other.
Except the groove processing of the raw sheet 54, it is the same as the second embodiment.
[0054]
In the manufacturing method according to this example, since the groove processing is performed by cutting using the cutting blade 7, the groove pitch and the groove shape can be processed with high accuracy.
The other operations and effects are the same as those of the second embodiment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of a gas sensor element in a reference example (a cross-sectional view taken along line BB in FIG. 2).
FIG. 2 is a cross-sectional explanatory view of the gas sensor element in the reference example (a cross-sectional view taken along the line AA in FIG. 1).
FIG. 3 is an explanatory diagram of main parts of a corner portion of a reference gas chamber in a reference example .
FIG. 4 is a cross-sectional explanatory view of a gas sensor in a reference example .
FIG. 5 is an explanatory diagram of a gas sensor element that can be used as an A / F sensor element in a reference example .
[6] implementation in embodiments 1, (a) a main portion explanatory view of a corner portion of the reference gas chamber, cross-sectional view of (b) a gas sensor element.
7 is a perspective view of each raw sheet in Embodiment 2. FIG.
FIG. 8 is a perspective view of each raw sheet provided with a printing portion and a groove portion in Embodiment 2 ;
FIG. 9 is an explanatory diagram when a gas sensor element is manufactured by laminating, dividing, and baking each raw sheet in the second embodiment.
10 is an explanatory diagram when drying a raw sheet in Embodiment 2 ; FIG.
FIG. 11 is an explanatory diagram when a groove is provided in a raw sheet in Embodiment 2 ;
FIG. 12 is an explanatory diagram when flat pressing a raw sheet provided with a groove in Embodiment 2 ;
FIG. 13 is an explanatory diagram showing a cutting blade used when providing a groove in Embodiment 3 .
14 is an explanatory view showing a diamond blade as a cutting blade in Embodiment 3. FIG.
FIG. 15 is an explanatory view showing the processing of the groove portion using the cutting blade in the third embodiment.
FIG. 16 is a perspective development view of a conventional gas sensor element.
[Explanation of symbols]
1. . . Gas sensor element,
10. . . Reference gas chamber,
100. . . Corner,
101. . . Open end,
102. . . Closed end,
11. . . Measured gas side electrode,
12 . . Reference gas side electrode,
13. . . Solid electrolyte plate,
14 . . Spacer plate,
15. . . Heater substrate,
150. . . Heating element,

Claims (4)

被測定ガスに接する被測定ガス側電極と基準ガスに接する基準ガス側電極とを備えた固体電解質板と,
上記基準ガス側電極と対面し,一端が閉塞端で,他端がガスセンサ素子の外部に対して開口した開口端として構成された溝状であり,基準ガスを導入するよう構成された基準ガス室を備えたスペーサー板と,
通電により発熱する発熱体を備えたヒータ基板とが積層されたガスセンサ素子であって,
上記基準ガス室の閉塞端における角部は,その幅方向が曲面によって構成され,
かつ,上記基準ガス室の幅方向中心を通り,幅方向と垂直に交わる長手方向に平行な平面に沿った切断面において,上記閉塞端における長手方向の角部は曲面によって構成されていると共にその曲率半径は1mm〜20mmであることを特徴とするガスセンサ素子。
A solid electrolyte plate having a measured gas side electrode in contact with the measured gas and a reference gas side electrode in contact with the reference gas;
A reference gas chamber facing the reference gas side electrode, having one end as a closed end and the other end as an open end opened to the outside of the gas sensor element, and configured to introduce a reference gas A spacer plate with
A gas sensor element in which a heater substrate having a heating element that generates heat when energized is laminated,
The corner portion at the closed end of the reference gas chamber is formed by a curved surface in the width direction .
Further, in the cut surface along the plane parallel to the longitudinal direction passing through the center in the width direction of the reference gas chamber and perpendicular to the width direction, the corner in the longitudinal direction at the closed end is constituted by a curved surface and The radius of curvature of the gas sensor element is 1 mm to 20 mm.
被測定ガスに接する被測定ガス側電極と基準ガスに接する基準ガス側電極とを備えた固体電解質板と,
上記基準ガス側電極と対面し,一端が閉塞端で,他端がガスセンサ素子の外部に対して開口した開口端として構成された溝状であり,基準ガスを導入するよう構成された基準ガス室を備えたスペーサー板と,
通電により発熱する発熱体を備えたヒータ基板とが積層されてなると共に,
上記基準ガス室の閉塞端における角部はその幅方向が曲面によって構成され
かつ,上記基準ガス室の幅方向中心を通り,幅方向と垂直に交わる長手方向に平行な平面に沿った切断面において,上記閉塞端における長手方向の角部は曲面によって構成されていると共にその曲率半径は1mm〜20mmであるガスセンサ素子を製造するにあたり,
固体電解質板用生シート,スペーサー板用生シート,ヒータ基板用生シートをそれぞれ準備し,
固体電解質板用生シートに電極形成用の印刷部を,ヒータ基板用生シートに発熱体用の印刷部をそれぞれ設け,
スペーサー板用生シートに溝加工を施して,基準ガス室となる閉塞端と開放端とを備え,閉塞端の角部が曲面によって構成された溝部を形成し,
ヒータ基板用生シートにスペーサー板用生シートを積層し,これらに対し更に固体電解質板用生シートを積層し,接着剤にて貼り合わせて未焼積層体となし,
その後,未焼積層体を焼成することを特徴とするガスセンサ素子の製造方法。
A solid electrolyte plate having a measured gas side electrode in contact with the measured gas and a reference gas side electrode in contact with the reference gas;
A reference gas chamber facing the reference gas side electrode, having one end as a closed end and the other end as an open end opened to the outside of the gas sensor element, and configured to introduce a reference gas A spacer plate with
A heater substrate with a heating element that generates heat when energized is laminated,
The corner at the closed end of the reference gas chamber has a curved surface in the width direction ,
In addition, in the cut surface along the plane parallel to the longitudinal direction passing through the center in the width direction of the reference gas chamber and perpendicular to the width direction, the corner in the longitudinal direction at the closed end is formed by a curved surface. In manufacturing a gas sensor element having a curvature radius of 1 mm to 20 mm ,
Prepare a raw sheet for the solid electrolyte plate, a raw sheet for the spacer plate, and a raw sheet for the heater substrate,
A printing section for electrode formation is provided on the raw sheet for the solid electrolyte plate, and a printing section for the heating element is provided on the raw sheet for the heater substrate.
Groove processing is performed on the raw sheet for the spacer plate to form a groove portion having a closed end and an open end that serve as a reference gas chamber, and a corner portion of the closed end is formed by a curved surface.
A raw sheet for a spacer plate is laminated on a raw sheet for a heater substrate, and further, a raw sheet for a solid electrolyte plate is laminated on the raw sheet and bonded together with an adhesive to form an unfired laminate.
Thereafter, the unfired laminated body is fired, and the method for producing a gas sensor element.
請求項2において,上記溝加工は切削加工により行なうことを特徴とするガスセンサ素子の製造方法。  3. The method of manufacturing a gas sensor element according to claim 2, wherein the groove processing is performed by cutting. 請求項2において,上記溝加工はプレス加工により行なうことを特徴とするガスセンサ素子の製造方法。Oite to claim 2, the groove processing method of manufacturing a gas sensing element and performing the press working.
JP2001148305A 2001-05-17 2001-05-17 Gas sensor element and manufacturing method thereof Expired - Fee Related JP4572486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148305A JP4572486B2 (en) 2001-05-17 2001-05-17 Gas sensor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148305A JP4572486B2 (en) 2001-05-17 2001-05-17 Gas sensor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002340845A JP2002340845A (en) 2002-11-27
JP4572486B2 true JP4572486B2 (en) 2010-11-04

Family

ID=18993651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148305A Expired - Fee Related JP4572486B2 (en) 2001-05-17 2001-05-17 Gas sensor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4572486B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887684B2 (en) 2005-07-06 2011-02-15 Ngk Spark Plug Co., Ltd. Lamination-type gas sensor element and gas sensor
JP6105507B2 (en) * 2013-05-28 2017-03-29 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP6640665B2 (en) * 2016-06-29 2020-02-05 株式会社Soken Gas sensor
JP7089949B2 (en) * 2018-06-08 2022-06-23 株式会社Soken Gas sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158357U (en) * 1986-03-31 1987-10-07
JPH0510918A (en) * 1990-10-11 1993-01-19 Nippondenso Co Ltd Oxygen-concentration detecting element and manufacture thereof
JPH06235713A (en) * 1993-02-09 1994-08-23 Toyota Motor Corp Oxygen concentration sensor equipped with heater
JPH06300731A (en) * 1993-04-13 1994-10-28 Nippondenso Co Ltd Manufacture of oxygen sensor
JPH0985894A (en) * 1995-07-18 1997-03-31 Denso Corp Manufacture of ceramic laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158357U (en) * 1986-03-31 1987-10-07
JPH0510918A (en) * 1990-10-11 1993-01-19 Nippondenso Co Ltd Oxygen-concentration detecting element and manufacture thereof
JPH06235713A (en) * 1993-02-09 1994-08-23 Toyota Motor Corp Oxygen concentration sensor equipped with heater
JPH06300731A (en) * 1993-04-13 1994-10-28 Nippondenso Co Ltd Manufacture of oxygen sensor
JPH0985894A (en) * 1995-07-18 1997-03-31 Denso Corp Manufacture of ceramic laminate

Also Published As

Publication number Publication date
JP2002340845A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3324195B2 (en) Manufacturing method of oxygen sensor
JP2005331489A (en) Method for manufacturing ceramic laminate
JP3401648B2 (en) Bar-shaped ceramic heater for oxygen sensor and method of manufacturing the same
JPH09304321A (en) Ceramic stack and its manufacture
JP2000206080A (en) Oxygen sensor fitted with heater and its production
JP3114538B2 (en) Piezoelectric element and method of manufacturing the same
JP4572486B2 (en) Gas sensor element and manufacturing method thereof
JPH07335478A (en) Manufacture of layered ceramic electronic component
JP4565563B2 (en) Method for manufacturing gas sensor element
JP5508338B2 (en) Method for manufacturing gas sensor element
JP4189260B2 (en) Manufacturing method of ceramic heater structure and ceramic heater structure
JP7000221B2 (en) Gas sensor and its manufacturing method
JP2000511644A (en) Method for manufacturing a sensor element
CN105784812A (en) Gas sensor element, method for manufacturing gas sensor element and gas sensor
JP3931783B2 (en) Gas sensor element
JPS60196659A (en) Resistance measuring electrode for sensor
JP4061125B2 (en) Method for manufacturing oxygen sensor element
JP3679609B2 (en) Gas sensor and manufacturing method thereof
JPS61237413A (en) Manufacture of laminate ceramic capacitor
JP3752452B2 (en) Flat plate oxygen sensor and manufacturing method thereof
JP2002340842A (en) Manufacturing method for gas sensor element
JP2002340843A (en) Manufacturing method for gas sensor element
JP2647894B2 (en) Oxygen detection element
JPS62567B2 (en)
JP2003083930A (en) Detecting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R151 Written notification of patent or utility model registration

Ref document number: 4572486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees