JPS60196659A - Resistance measuring electrode for sensor - Google Patents

Resistance measuring electrode for sensor

Info

Publication number
JPS60196659A
JPS60196659A JP5218284A JP5218284A JPS60196659A JP S60196659 A JPS60196659 A JP S60196659A JP 5218284 A JP5218284 A JP 5218284A JP 5218284 A JP5218284 A JP 5218284A JP S60196659 A JPS60196659 A JP S60196659A
Authority
JP
Japan
Prior art keywords
sensor
measuring electrode
conductor layers
resistance measuring
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5218284A
Other languages
Japanese (ja)
Inventor
Shigeki Tsuchiya
茂樹 土谷
Hiroji Kawakami
寛児 川上
Toru Sugawara
徹 菅原
Tokuyuki Kaneshiro
徳幸 金城
Shuichi Ohara
大原 周一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5218284A priority Critical patent/JPS60196659A/en
Publication of JPS60196659A publication Critical patent/JPS60196659A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To obtain an electrode excellent in mass productivity, by alternately laminating insulating layers and conductor layers and utilizing the cross-sectional area of the laminate to use the conductor layers as a resistance measuring electrode for a sensor. CONSTITUTION:A large number of conductor layers 5 and insulating layers 4 are alternately stacked. This process can be performed by utilizing a green sheet and thick film printing technique. Because the gaps between electrodes are determined by the thickness of each insulating layer 4, each gap can be reduced to about 10mum. Thereafter, right and left parts are cut and the cross-sectional area exposed by cutting is metallized to connect the conductor layers and a pair of comb shaped electrodes are formed while leads are attached to the metallized parts 6. Because of a structure only cutting the laminate of conductors and insulators as mentioned above, mass productivity is excellent.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセンサ用抵抗測定電極に係り、特に固有抵抗の
高い感応材料を用いたセンサに好適な電極の構造と製法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a resistance measuring electrode for a sensor, and particularly to the structure and manufacturing method of an electrode suitable for a sensor using a sensitive material with high specific resistance.

〔発明の背景〕[Background of the invention]

従来、固有抵抗の高い感応材料を用いたセンサにおける
抵抗測定では、多くの場合図1に示すようにアルミナな
どのようなセラミック板1の上に、厚膜印刷によりくし
形電極2を形成した基板を用い、その上に感応材料の層
を設けていた。(例えば、特開58−55847..5
8−73854.58−86447など)この場合印刷
の寸法精度上の問題から、電極間の間隙は50μm程度
が最小であるとされており、例えばくし形電極の対向長
さが50mmの時には測定すべき材料のシート抵抗が1
010Ω/口より大きい時には測定が困難であった。
Conventionally, in resistance measurement using a sensor using a sensitive material with high specific resistance, in many cases, as shown in FIG. was used, and a layer of sensitive material was provided on top of it. (For example, JP 58-55847..5
8-73854.58-86447, etc.) In this case, due to printing dimensional accuracy issues, it is said that the minimum gap between electrodes is about 50 μm. For example, when the opposing length of comb-shaped electrodes is 50 mm, the measurement The sheet resistance of the material should be 1
It was difficult to measure when the resistance was larger than 0.010Ω/mouth.

〔発明の目的〕[Purpose of the invention]

本発明の目的は固有抵抗の高いセンサ用の感応材料でも
低抵抗値が得られ、かつ量産性に優れたセンサ用抵抗測
定電極を提供することにある。
An object of the present invention is to provide a resistance measuring electrode for a sensor which can obtain a low resistance value even with a sensitive material for a sensor having a high specific resistance and is excellent in mass production.

〔発明の概要〕[Summary of the invention]

高固有抵抗の材料の抵抗測定を行うには、2つの電極間
の対向面積(又は対向長さ)を大きクシ。
To measure the resistance of materials with high resistivity, increase the opposing area (or opposing length) between the two electrodes.

それらの間隙を小さくすればよい。そこで図1のように
厚膜を平面的に利用する場合よりもさらに電極間の距離
を小さくすることが可能な厚み方向の寸法を利用するこ
とを考案した。
All you have to do is make the gap between them smaller. Therefore, we devised a method of using a dimension in the thickness direction that allows the distance between electrodes to be further reduced than when a thick film is used in a planar manner as shown in FIG.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は絶縁層4と導体層5を交互に積層し、その断面
を利用したセンサ用抵抗測定電極で゛ある。
FIG. 2 shows a resistance measuring electrode for a sensor in which insulating layers 4 and conductor layers 5 are alternately laminated and a cross section thereof is used.

導体層5は一層おきに同じメタライーズ部6にっながり
、これが2つ組合わさって断面が一対のくし形電極を形
成している。材料は導体層5がアルミニウム、金、酸化
ルテニウムなど、また絶縁層4はアルミナ、ガラスなど
から成る。メタライズ部6からははんだ(=Iけなどに
よりリードを取出す。
Every other conductor layer 5 is connected to the same metallized portion 6, and two of these are combined to form a pair of electrodes having a comb-shaped cross section. The conductive layer 5 is made of aluminum, gold, ruthenium oxide, etc., and the insulating layer 4 is made of alumina, glass, etc. Leads are taken out from the metallized portion 6 by means of solder (=I) or the like.

3は電極の上に形成された抵抗を測定すべき材料である
3 is a material formed on the electrode whose resistance is to be measured.

第3図は第2図の積層型のセンサ用抵抗測定電極の製造
工程を示している。各工程は次のようになる。
FIG. 3 shows the manufacturing process of the laminated type sensor resistance measuring electrode shown in FIG. Each process is as follows.

(1)導体層5と絶縁層4を交互に何層も積み重ねる。(1) Conductor layers 5 and insulating layers 4 are stacked alternately in many layers.

この工程はグリーンシートと厚膜印刷の技術を利用して
行うことができ、次の2つの方法が考えられる。
This process can be performed using green sheet and thick film printing techniques, and the following two methods are possible.

(1)絶縁体のグリーンシートの上に導体と絶縁体の各
層を厚膜印刷、乾燥をくり返して積層し、最後に焼成す
る。
(1) Each layer of conductor and insulator is laminated by thick film printing and drying on the insulator green sheet, and finally fired.

(11)導体のグリーンシート上に絶縁層を一層厚膜印
刷したものを何枚も積み重ね、圧着し、焼成する。
(11) A number of thick insulating layers are printed on conductor green sheets, stacked, pressed together, and fired.

電極間の間隙は絶縁N4の厚みによって決まるので、こ
の場合約10μmまで小さくすることができる。
Since the gap between the electrodes is determined by the thickness of the insulation N4, it can be reduced to about 10 μm in this case.

(2)左右の部分を切断し、その後メタライズして各導
体層をつなぐ。
(2) Cut the left and right parts, then metalize to connect each conductor layer.

(3)最後に1チツプずつ切り離す。(3) Finally, separate each chip.

第2図ではメタライズ部は左右の2つの面に設けられて
いる。一方第4図の実施例では、メタライズ部は一方の
面にだけ形成されるので、リード付けを行う作業が簡単
になる。
In FIG. 2, the metallized portions are provided on the left and right surfaces. On the other hand, in the embodiment shown in FIG. 4, the metallized portion is formed only on one surface, which simplifies the work of attaching leads.

第5図の実施例では、抵抗測定用電極以外にヒーター7
が設けられている。SnO,やZnO2を用いたガスセ
ンサは高温で動作させるため、これらを抵抗材料として
用いればガスセンサとすることができる。ヒーター用材
料としてはタングステンP t 、 NiCrなどを用
いるが、この構造ではヒーターを直接空気中に露出しな
いので、酸化されることもなく信頼性が向上する。また
図中に示した電極とヒーターとの距離dも小さくできる
の°で、少ない電力で加熱することができる。
In the embodiment shown in FIG. 5, a heater 7 is used in addition to the resistance measuring electrode.
is provided. Since gas sensors using SnO and ZnO2 operate at high temperatures, they can be used as resistive materials to form gas sensors. Tungsten P t , NiCr, or the like is used as the material for the heater, but in this structure, the heater is not directly exposed to the air, so it is not oxidized and reliability is improved. Furthermore, since the distance d between the electrode and the heater shown in the figure can be made small, heating can be achieved with less electric power.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、センサの大きさが同じ場合、従来のセ
ンサ用抵抗測定電極を用いた場合よりも約115抵抗値
を低く測定することができる。また厚膜印刷やグリーン
シートの技術を用い、導体と絶縁体を積層して切り離す
だけの構造であるので量産に適している。
According to the present invention, when the size of the sensor is the same, it is possible to measure a resistance value approximately 115 lower than when using a conventional resistance measuring electrode for a sensor. In addition, it uses thick film printing and green sheet technology to create a structure where conductors and insulators are simply layered and separated, making it suitable for mass production.

また、第4図に示す構造は、センサ材料を一括堆積した
後に切断分離できるためセンサの製造工程を削減できる
だけでなく、リードレスチップ化が容易であり、混成集
積回路への実装が容易となる。
In addition, the structure shown in Figure 4 not only reduces the manufacturing process of the sensor because the sensor material can be cut and separated after being deposited all at once, but it is also easy to make a leadless chip, making it easy to implement into a hybrid integrated circuit. .

さらに層構造となっているため電極の対向面積が大きい
ので静電容量も大きく、センサ抵抗と組合わせて低い周
波数で出力が得られるCR発振型センサが得られる。
Furthermore, since it has a layered structure, the facing area of the electrodes is large, so the capacitance is also large, and in combination with the sensor resistance, a CR oscillation type sensor that can obtain an output at a low frequency can be obtained.

またヒーター用抵抗の一部を使って温度検知も可能であ
る。
It is also possible to detect temperature using part of the heater resistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)は従来のセンサ用抵抗測定電
極の平面図およびA−A’部説明図、第2図は積層型の
センサ用抵抗測定電極の斜視図、第3図は第2図に示し
た電極の製造工程図、第4図、第5図は他の実施例の斜
視図である。 1・・・セラミック板、2・・・くし形電極、3・・・
抵抗を測定すべき材料、4・・・絶縁層、5・・・導体
層、6・・・第 2 囚 第 3 l 第1頁の続き ■発明者 大原 周− 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内
Figures 1 (a) and (b) are a plan view and an explanatory view of the A-A' section of a conventional resistance measuring electrode for a sensor, Figure 2 is a perspective view of a laminated resistance measuring electrode for a sensor, and Figure 3 is a perspective view of a laminated resistance measuring electrode for a sensor. The manufacturing process diagram of the electrode shown in FIG. 2, and FIGS. 4 and 5 are perspective views of other embodiments. 1... Ceramic plate, 2... Comb-shaped electrode, 3...
Material whose resistance is to be measured, 4... Insulating layer, 5... Conductor layer, 6... 2nd prisoner 3 l Continued from page 1 ■ Inventor Shu Ohara - 3-1 Saiwaimachi, Hitachi City No. 1 Hitachi Research Institute, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] ■、厚膜印刷及びグリーンシートにより導体層と絶縁層
とを交互に積み重ねて積層構造とし、この断面を用い導
体層を電極とすることを特徴とするセンサ用抵抗測定電
極。
(2) A resistance measuring electrode for a sensor, characterized in that conductive layers and insulating layers are alternately stacked by thick film printing and green sheets to form a laminated structure, and the conductive layer is used as an electrode using a cross section of the laminated structure.
JP5218284A 1984-03-21 1984-03-21 Resistance measuring electrode for sensor Pending JPS60196659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5218284A JPS60196659A (en) 1984-03-21 1984-03-21 Resistance measuring electrode for sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5218284A JPS60196659A (en) 1984-03-21 1984-03-21 Resistance measuring electrode for sensor

Publications (1)

Publication Number Publication Date
JPS60196659A true JPS60196659A (en) 1985-10-05

Family

ID=12907662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5218284A Pending JPS60196659A (en) 1984-03-21 1984-03-21 Resistance measuring electrode for sensor

Country Status (1)

Country Link
JP (1) JPS60196659A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006825A1 (en) * 1997-07-31 1999-02-11 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
JP2012078130A (en) * 2010-09-30 2012-04-19 Denso Corp Particulate substance detection sensor and manufacturing method thereof
JP2012220257A (en) * 2011-04-05 2012-11-12 Denso Corp Particulate matter detection sensor and manufacturing method of the same
JP2013231627A (en) * 2012-04-27 2013-11-14 Nippon Soken Inc Particle matter detection element, manufacturing method thereof, and particle matter detection sensor
JP2014032063A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Method of manufacturing particulate matter detection element, and particulate matter detection sensor
WO2015105182A1 (en) 2014-01-10 2015-07-16 株式会社デンソー Particulate substance detection element, particulate substance detection sensor, and method for manufacturing particulate substance detection element
US10337974B2 (en) 2015-04-28 2019-07-02 Denso Corporation Particulate matter detection sensor
US10557815B2 (en) 2015-09-15 2020-02-11 Denso Corporation Particulate matter detection sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006825A1 (en) * 1997-07-31 1999-02-11 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
JP2012078130A (en) * 2010-09-30 2012-04-19 Denso Corp Particulate substance detection sensor and manufacturing method thereof
JP2012220257A (en) * 2011-04-05 2012-11-12 Denso Corp Particulate matter detection sensor and manufacturing method of the same
JP2013231627A (en) * 2012-04-27 2013-11-14 Nippon Soken Inc Particle matter detection element, manufacturing method thereof, and particle matter detection sensor
US9528971B2 (en) 2012-04-27 2016-12-27 Denso Corporation Particulate matter detection element and method of manufacturing same
JP2014032063A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Method of manufacturing particulate matter detection element, and particulate matter detection sensor
WO2015105182A1 (en) 2014-01-10 2015-07-16 株式会社デンソー Particulate substance detection element, particulate substance detection sensor, and method for manufacturing particulate substance detection element
US10520415B2 (en) 2014-01-10 2019-12-31 Denso Corporation Particulate matter detection element, particulate matter detection sensor, and method of manufacturing particulate matter detection element
US11231354B2 (en) 2014-01-10 2022-01-25 Denso Corporation Method of manufacturing particulate matter detection element
US10337974B2 (en) 2015-04-28 2019-07-02 Denso Corporation Particulate matter detection sensor
US10557815B2 (en) 2015-09-15 2020-02-11 Denso Corporation Particulate matter detection sensor

Similar Documents

Publication Publication Date Title
US5406246A (en) Temperature sensor and method for producing temperature sensor elements
US7233226B2 (en) Method of producing a platinum temperature sensor
US9528971B2 (en) Particulate matter detection element and method of manufacturing same
KR910006223B1 (en) Gas sensor and method for production thereof
JPS60196659A (en) Resistance measuring electrode for sensor
JPH04253382A (en) Electrostrictive effect element
JPH09320887A (en) Laminated ceramic capacitor and its manufacture
JPS6296831A (en) Heat flowmeter sensor and manufacture thereof
US9068913B2 (en) Photolithographic structured thick layer sensor
JPS6339958Y2 (en)
JP3058305B2 (en) Thermistor and manufacturing method thereof
JP7335348B2 (en) Electrode embedded ceramic structure and manufacturing method thereof
JP3367495B2 (en) Resistance thermometer and manufacturing method thereof
JP2000124006A (en) Laminated thermistor
JP7394144B2 (en) Electrode embedded ceramic structure and its manufacturing method
CN218212746U (en) Two-way three-dimensional heating type humidity sensor and equipment with humidity acquisition function
JP2000299203A (en) Resistor and manufacture thereof
JP3292006B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS5842965A (en) Oxygen sensor element
JPS6139325Y2 (en)
JPH09229738A (en) Resistance temperature sensor
JPS6239701B2 (en)
JPS63165752A (en) Detection element
JP3087450B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0376277A (en) Laminated thermoelectric element and manufacture thereof