JP3087450B2 - Manufacturing method of multilayer ceramic capacitor - Google Patents

Manufacturing method of multilayer ceramic capacitor

Info

Publication number
JP3087450B2
JP3087450B2 JP04147160A JP14716092A JP3087450B2 JP 3087450 B2 JP3087450 B2 JP 3087450B2 JP 04147160 A JP04147160 A JP 04147160A JP 14716092 A JP14716092 A JP 14716092A JP 3087450 B2 JP3087450 B2 JP 3087450B2
Authority
JP
Japan
Prior art keywords
dielectric
ceramic capacitor
multilayer ceramic
thickness
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04147160A
Other languages
Japanese (ja)
Other versions
JPH05343257A (en
Inventor
渡 倉橋
篤志 金澤
洋 丹羽
磨人 大宮
克知 土本
立郎 菊池
泰男 津田
恵美子 井垣
正和 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04147160A priority Critical patent/JP3087450B2/en
Publication of JPH05343257A publication Critical patent/JPH05343257A/en
Application granted granted Critical
Publication of JP3087450B2 publication Critical patent/JP3087450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は各種電子機器に利用され
る積層セラミックコンデンサの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor used for various electronic devices.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、小型で大
容量がとれるため、電子チューナ、ビデオテープレコー
ダ、ビデオカメラ等の各種電子機器に利用され、最近特
に需要が急増している。
2. Description of the Related Art Multilayer ceramic capacitors have been used in various electronic devices such as electronic tuners, video tape recorders, and video cameras because of their small size and large capacity.

【0003】以下に従来の積層セラミックコンデンサの
製造方法について説明する。
Hereinafter, a method for manufacturing a conventional multilayer ceramic capacitor will be described.

【0004】図1、図2は積層セラミックコンデンサの
構造を示すものであり、図1は長さ方向の断面図、図2
は幅方向の断面図である。図1、図2において、1は誘
電体セラミックであり、この誘電体セラミック1と交互
に異なる端部に達する内部電極2とが交互に複数積層さ
れ、上記内部電極2を電気的に接続するために両端部に
設けられた外部電極3から構成されている。
FIGS. 1 and 2 show the structure of a multilayer ceramic capacitor. FIG. 1 is a sectional view in the longitudinal direction.
Is a cross-sectional view in the width direction. 1 and 2, reference numeral 1 denotes a dielectric ceramic, and a plurality of the dielectric ceramics 1 and internal electrodes 2 alternately reaching different ends are alternately laminated to electrically connect the internal electrodes 2 to each other. And external electrodes 3 provided at both ends.

【0005】以上のような構造をもった積層セラミック
コンデンサは、1300℃以上の高温度で焼成される。
また、この積層セラミックコンデンサの静電容量(以
下、容量と呼ぶ)は、誘電体セラミック1の誘電率と、
対向する内部電極2の電極重なり部の面積と、対向する
内部電極2の電極間の誘電体セラミック1の厚みと、そ
の層数とによって決まり、以下の式で求められる。
The multilayer ceramic capacitor having the above structure is fired at a high temperature of 1300 ° C. or more.
The capacitance (hereinafter referred to as capacitance) of the multilayer ceramic capacitor is determined by the dielectric constant of the dielectric ceramic 1 and
It is determined by the area of the electrode overlapping portion of the opposing internal electrode 2, the thickness of the dielectric ceramic 1 between the opposing internal electrodes 2, and the number of layers, and is obtained by the following equation.

【0006】C=ε・ε 0 ・S・N/T ここで、C:積層セラミックコンデンサの容量、S:誘
電体一層を介して対向する内部電極2の電極重なり部の
面積、ε0:真空の誘電率〔8.854×10-12(F/
m)〕、ε:誘電体セラミック1の誘電率、T:焼成後
の誘電体厚み、N:誘電体層数である。この容量Cは、
誘電体セラミック1と内部電極2とを一体にして焼結し
た時点で決まり、その後に容量を調整することは困難
あった。
C = ε · ε 0 · S · N / T where C: capacitance of the multilayer ceramic capacitor , S: induction
Of the electrode overlapping portion of the internal electrode 2 opposed via one layer of the conductor.
Area, ε 0 : dielectric constant of vacuum [8.854 × 10 −12 (F /
m)], ε: dielectric constant of dielectric ceramic 1, T: dielectric thickness after firing, N: number of dielectric layers. This capacitance C is
It is determined when the dielectric ceramic 1 and the internal electrode 2 are integrally sintered, and it is difficult to adjust the capacitance thereafter.

【0007】この容量を調整する方法としては、(1)
積層体の表面で容量を調整する、(2)積層体の内部で
容量を調整する、という2つの方法が提案されている。
As a method of adjusting the capacitance, (1)
Two methods of adjusting the capacitance on the surface of the laminate and (2) adjusting the capacitance inside the laminate have been proposed.

【0008】(1)の場合には、容量を目標値より少し
小さめに設計し、焼結後に誘電体セラミック1の表面に
面積可変の容量調整用の電極を設ける構造にすることが
提案されている(実開昭49−70448号公報、実開
昭53−23535号公報、実開昭55−32027号
公報参照)。ただし、このような構造では、積層セラミ
ックコンデンサの実使用状況を考えると、この外部に設
けた上記容量調整用の電極を絶縁物で被覆する必要があ
った。
In the case of (1), it has been proposed that the capacitance is designed to be slightly smaller than the target value, and a structure is provided in which a capacitance adjusting electrode having a variable area is provided on the surface of the dielectric ceramic 1 after sintering. (See Japanese Utility Model Laid-Open Nos. 49-70448, 53-23535, and 55-32027). However, in such a structure, considering the actual use of the multilayer ceramic capacitor, it was necessary to cover the capacitance adjusting electrode provided outside with an insulator.

【0009】また、上記(2)の場合には、容量に関与
しない下側無効層と、容量を目標より小さめに設計した
有効層とを積層した積層体を例えば30体つくり、その
内の1つの積層体に上側無効層を積層し、焼成後容量を
測定する。この測定結果から目標容量に足りない分だけ
残りの29体に容量調整用の内部電極を積層印刷し、上
側無効層を積層するというものであった。
In the case of the above (2), for example, 30 laminated bodies are formed by laminating a lower ineffective layer which is not involved in the capacitance and an effective layer whose capacitance is designed to be smaller than the target. The upper ineffective layer is laminated on one of the laminates, and the capacity is measured after firing. From this measurement result, the remaining 29 electrodes are printed in a stacked manner on the remaining 29 bodies in an amount less than the target capacity, and the upper ineffective layer is stacked.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の積層セラミックコンデンサの製造方法では、積層セラ
ミックコンデンサの容量を調整する方法として上記
(1)の積層体の表面で容量を調整する場合には、積層
セラミックコンデンサの外観形状を変えるものであり、
実装上問題が発生するものであった。
However, in the above-mentioned conventional method for manufacturing a multilayer ceramic capacitor, the method of adjusting the capacitance of the multilayer ceramic capacitor in the case of adjusting the capacitance on the surface of the multilayer body as described in the above (1) is a method of adjusting the capacitance. It changes the appearance of the ceramic capacitor.
There was a problem in implementation.

【0011】また、(2)の積層体の内部で容量を調整
する場合には、製造検査工程が1つ増えることでリード
タイムが長くなることや、工程が複雑になるものであ
り、容量調整用スクリーン印刷版が必要なためコスト高
になるものであった。しかも、積層セラミックコンデン
サに用いられる誘電体グリーンシートは薄く(80μm
以下)、かつ表面に凹凸があるために、その密度が測定
しにくく、焼成後の厚みを予想しにくいという問題点を
有したものであった。
In addition, in the case of adjusting the capacitance inside the laminate of (2), the lead time becomes longer and the process becomes complicated due to the increase of one manufacturing inspection step. The cost is high because a screen printing plate is required. Moreover, the dielectric green sheet used for the multilayer ceramic capacitor is thin (80 μm
In addition, there is a problem that the density is difficult to measure and the thickness after firing is difficult to predict due to the unevenness of the surface.

【0012】本発明は上記従来の問題点を解決するもの
で、外部電極形状を変えることなく、また内部に容量調
整用の電極を設ける必要もない構成で、容量が精度よく
設計できることを可能にする積層セラミックコンデンサ
の製造方法を提供することを目標とする。
The present invention solves the above-mentioned conventional problems, and makes it possible to accurately design a capacitance without changing the shape of an external electrode and without providing an electrode for capacitance adjustment inside. The purpose of the present invention is to provide a method for manufacturing a laminated ceramic capacitor.

【0013】[0013]

【課題を解決するための手段】この課題を解決するため
に本発明の積層セラミックコンデンサの製造方法は、
成前の誘電体グリーンシートの単位面積当りの誘電体粉
末重量と、この誘電体グリーンシートを複数枚積層して
圧着したものの密度とを測定し、焼成後の誘電体グリー
ンシートを複数枚積層して圧着したものの厚みとを測定
し、焼成後の誘電体グリーンシートの厚みを上記誘電体
粉末重量と誘電体グリーンシートを複数枚積層して圧着
したものの密度とから回帰式を用いて予測し、この予測
結果に基づいて内部電極の重なり面積を決定する積層セ
ラミックコンデンサの製造方法と したものである。
In order to solve this problem, a method for manufacturing a multilayer ceramic capacitor according to the present invention comprises a firing method.
Dielectric powder per unit area of dielectric green sheet before forming
Powder and stacking multiple dielectric green sheets
Measure the density of the crimped material and determine the dielectric green after firing.
Measures the thickness of multiple sheets that have been laminated and crimped
The thickness of the dielectric green sheet after firing is
Laminate multiple powder weights and dielectric green sheets and crimp
Using the regression equation from the density of
A stacking cell that determines the overlapping area of the internal electrodes based on the results
This is a method of manufacturing a lamic capacitor .

【0014】[0014]

【作用】このような製造方法により、あらかじめ、焼成
前の誘電体グリーンシートの単位面積当りの重量と密度
から、容量設計の要因である焼成後の誘電体グリーンシ
ートの厚みを精度よく予測することにより容量設計の工
程を簡単にできるため、リードタイムの短縮及びコスト
の低減を図ることができる。
According to such a manufacturing method , firing is performed in advance.
Weight and density per unit area of previous dielectric green sheet
From, since it is possible to a dielectric green sheet thickness after firing a factor in dimensioning the process of the capacitive design simply by predicting accurately, it is possible to shorten and cost reduction of lead time.

【0015】[0015]

【実施例】以下、本発明の一実施例について、具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be specifically described below.

【0016】まず、同一特性材料の原料ロットの異なる
厚さ40μmの誘電体グリーンシート、シートNo.1,
2,3をそれぞれ160mm×140mmの寸法に裁断す
る。その後、この誘電体グリーンシートをシートNo.ご
とに16枚積層して圧力600kg/cm2で圧着する。圧
着した誘電体グリーンシートのブロックから直径15mm
の円板を5ヶ打ち抜く(以下、グリーン円板と呼ぶ)。
この誘電体グリーンシートは誘電体粉末の比重4.5g
/cm3(90wt%)、バインダー0.1g/cm3(10wt
%)からなり、グリーン円板の重量とこれを成形するの
に用いた誘電体粉末の重量とはほぼ等しいのでこのグリ
ーン円板の重量を測定してグリーン円板を構成する誘電
体粉末重量を得て、次にこのグリーン円板の厚みを測定
し、グリーン円板の単位面積重量とグリーン円板密度を
以下の式で算出する。なお、この際重量は電子天秤(メ
トラー社製)、厚みは平マイクロメーターを用いた。
First, raw material lots of the same characteristic material differ from each other.
40 μm thick dielectric green sheet, sheet No. 1,
Each of 2 and 3 is cut into a size of 160 mm × 140 mm. Then, apply this dielectric green sheet to Sheet No.
And 16 are pressure-bonded at a pressure of 600 kg / cm 2 . 15mm in diameter from crimped dielectric green sheet block
Punch out five discs (hereinafter referred to as green discs).
This dielectric green sheet has a specific gravity of 4.5 g of the dielectric powder.
/ Cm 3 (90 wt%), binder 0.1 g / cm 3 (10 wt%)
%), The weight of the green disc and the molding of this
Since the weight of the dielectric powder used for
Of the green disk by measuring the weight of the green disk
Obtain the body powder weight, then measure the thickness of this green disk
Then, the unit area weight of the green disk and the green disk density are calculated by the following equations. At this time, an electronic balance (manufactured by Mettler) was used for the weight, and a flat micrometer was used for the thickness.

【0017】グリーン円板単位面積重量(mg/cm2)=
グリーン円板重量(mg)/[円板面積(1.767cm2
×枚数(16)] グリーン円板密度(mg/cm3)=グリーン円板重量(m
g)/[円板面積(1.767cm2)×円板厚み(μm)] このグリーン円板を、ZrO2粉を敷いた高純度のアル
ミナ匣鉢中に入れ、空気中において温度1350℃で2
時間焼成し焼成円板を得る。この焼成円板に付いたZr
2粉を十分落とし、ポイントマイクロメータで厚みを
判定する。そして、得られたグリーン円板単位面積重量
と密度と焼成円板厚みを(表1)に示している。
Green disk unit area weight (mg / cm 2 ) =
Green disk weight (mg) / [disk area (1.767cm 2 )
× number of sheets (16)] Green disk density (mg / cm 3 ) = green disk weight (m
g) / [Disc area (1.767 cm 2 ) × Disc thickness (μm)] Place this green disc in a high-purity alumina sagger covered with ZrO 2 powder, and at a temperature of 1350 ° C. in air. 2
Firing for a time to obtain a fired disk. Zr attached to this fired disk
O 2 powder to drop sufficiently to determine the thickness at the point micrometer. The obtained green disk unit area weight, density and fired disk thickness are shown in (Table 1).

【0018】[0018]

【表1】 [Table 1]

【0019】この(表1)から明らかなように、積層セ
ラミックコンデンサのグリーン円板の単位面積重量と密
度がわかれば、(表1)のグリーン円板の単位面積重量
と密度を変数として焼成後の厚みを求める回帰分析を行
い、誘電体グリーンシートの焼成後の厚み(T)が精度
よく予測できる回帰式(重回帰式)を下記のように設定
することができる。
As is clear from Table 1 , if the unit area weight and the density of the green disk of the multilayer ceramic capacitor are known, the unit area weight of the green disk of Table 1 can be obtained.
Regression analysis to determine the thickness after firing using
There, it is possible to set the regression equation thickness after firing the dielectric green sheets (T) can be predicted accurately (regression equation) as follows.

【0020】回帰式 T=16.695+2.915W
−6.233ρ ここで、T:誘電体グリーンシートの焼成後の厚み(μ
m)、W:グリーン円板の単位面積重量(mg/cm 2
ρ:グリーン円板の密度(g/cm 3 である。
Regression equation T = 16.695 + 2.915W
−6.233ρ where T: the thickness of the dielectric green sheet after firing
m) , W: unit area weight of green disk (mg / cm 2 ) ,
ρ: Density (g / cm 3 ) of the green disk.

【0021】次に、実際に使用する積層セラミックコン
デンサの容量形成部分の(以下、有効層と呼ぶ)の誘電
体グリーンシート(40μm)を500mm×140mmの
寸法に裁断してその重量を測定した結果6.455gで
あった。また、誘電体グリーンシートを160mm×14
0mmの形状に裁断して16枚積層し、圧力600kg/cm
で圧着し、直径が15mmのグリーン円板を打ち抜き、重
量と厚みを測定したところ、それぞれ260.8mg、5
52μmであり、これによりグリーン円板の単位面積重
量は9.224mg/cm2、密度は2.674g/cm3と計
算できる。
Next, the dielectric green sheet ( 40 μm ) of the capacitance forming portion (hereinafter referred to as an effective layer) of the actually used multilayer ceramic capacitor was cut into a size of 500 mm × 140 mm, and the weight was measured. 6.455 g. The dielectric green sheet is 160 mm x 14 mm.
Cut into 0mm shape and laminated 16 sheets, pressure 600kg / cm
In crimped, where diameter punched green discs 15 mm, was weighed and the thickness, respectively 260.8Mg, 5
From this, the unit weight of the green disk can be calculated to be 9.224 mg / cm 2 and the density can be calculated to be 2.674 g / cm 3 .

【0022】この誘電体グリーンシートの重量と密度の
結果を上記の誘電体厚みを予測する回帰式T=16.6
95+2.915W−6.233ρに代入して、予測厚
み(T)=26.92μmを算出できる。
The result of the weight and density of the dielectric green sheet is used as a regression equation T = 16.6 for predicting the dielectric thickness.
95 + 2.915W-6.233ρ
Only (T) = 26.92 μm can be calculated.

【0023】この40μmの誘電体グリーンシートを用
いて18pFの積層セラミックコンデンサを製造するた
めには誘電率43、有効層2層の設計では、上述した式
C=ε・ε 0 ・S・N/Tを用いて内部電極の重なり
面積0.636mm 2 が得られる。従って、この計算結果
より、誘電体一層を介して重なり合う内部電極の面積を
0.636mm 2 になるように内部電極を誘電体グリーン
シートに印刷して乾燥させ、内部電極と誘電体セラミッ
クグリーンシートを交互に重ね静電容量を発現する有効
層を2層とし、上面、下面にそれぞれ無効層となるセラ
ミック層を9枚重ねて積層圧着し積層体ブロックを形成
する。そしてこの積層体ブロックを所定の位置で切断ピ
ッチが長さ方向2.24mm、幅方向1.50mmでチップ
状に切断し、ZrO2を敷いた高純度アルミナ匣鉢中に
入れ、空気中において温度1350℃で2時間焼成し
た。
In order to manufacture a multilayer ceramic capacitor of 18 pF using this 40 μm dielectric green sheet, the dielectric constant is 43 and the design of the two effective layers is the above equation.
Overlap of internal electrodes using C = ε · ε 0 · S · N / T
An area of 0.636 mm 2 is obtained. Therefore, this calculation result
Therefore, the area of the internal electrode overlapping with one dielectric layer
Dielectric green internal electrode so as to 0.636Mm 2
Print on a sheet and dry it.
Effective to express the capacitance by alternately stacking green sheets
Two layers, ceramic layers on the upper and lower surfaces, each being an ineffective layer
Nine layers of mic layers are laminated and pressed to form a laminate block
I do. The laminate block is cut into chips at a predetermined position at a cutting pitch of 2.24 mm in the length direction and 1.50 mm in the width direction, placed in a high-purity alumina sagger covered with ZrO 2 , and heated in air. It was baked at 1350 ° C. for 2 hours.

【0024】次に端部を研磨紙で削り、外部電極の銀ペ
ーストを塗布し、温度850℃でチップ素体に焼き付け
し外部電極を形成した。ここで容量を静電容量計(横河
ヒューレットパッカード社製)にて測定したところ1
8.16pFの容量が得られた。
Next, the edges were scraped with abrasive paper, silver paste for the external electrode was applied, and the chip was baked at a temperature of 850 ° C. to form an external electrode. Here, the capacitance was measured with a capacitance meter (manufactured by Yokogawa Hewlett-Packard Company).
A capacity of 8.16 pF was obtained.

【0025】また、この素体をエポキシ樹脂で直径20
mmの円柱状におおいかためて、水研磨紙にてチップ素体
を研磨し、有効層部分の誘電体厚みを測定した。その結
果、26.7μmであり厚みの予測(26.92μm)が
精度よく予測できたことが確認できた。
This element is made of epoxy resin and has a diameter of 20 mm.
The chip body was polished with water abrasive paper so as to cover a column of mm, and the dielectric thickness of the effective layer portion was measured. As a result, it was 26.7 μm, and it was confirmed that the thickness was accurately predicted ( 26.92 μm ).

【0026】なお、本実施例では、誘電体グリーンシー
トの誘電体粉末重量を評価するにグリーン円板の重量を
用いたが、他にも所定の長さ(500mm)のシート重量
を用いて算出してもよい。また、誘電体グリーンシート
の厚みに関しても、厚み別に回帰式を求めることで予測
精度が高まることは当然のことである。
In this embodiment, in order to evaluate the weight of the dielectric powder of the dielectric green sheet, the weight of the green disk was measured.
Used, but also other sheet weight of specified length (500mm)
May be used for calculation. Also, regarding the thickness of the dielectric green sheet, it is natural that the prediction accuracy is improved by obtaining a regression equation for each thickness.

【0027】[0027]

【発明の効果】以上のように、本発明の製造方法によれ
ば、容量調整を行うことなく容量を設計できる。つま
り、容量の設計因子である誘電体厚みを精度よく予測
し、容量設計の工程を簡単にできるためリードタイムの
短縮及びコストの低減を図ることができる。
As described above, according to the manufacturing method of the present invention, the capacitance can be designed without adjusting the capacitance. That is, the thickness of the dielectric, which is a design factor of the capacitor, is accurately predicted, and the process of designing the capacitor can be simplified, so that the lead time and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実施例及び従来例の積層セラミッ
クコンデンサの構成を示す長さ方向の断面図
FIG. 1 is a longitudinal sectional view showing a configuration of a multilayer ceramic capacitor of an embodiment according to the present invention and a conventional example.

【図2】図1の積層セラミックコンデンサの幅方向の断
面図
FIG. 2 is a cross-sectional view of the multilayer ceramic capacitor of FIG. 1 in a width direction.

【符号の説明】[Explanation of symbols]

1 誘電体セラミック 2 内部電極 3 外部電極 1 Dielectric ceramic 2 Internal electrode 3 External electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大宮 磨人 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 土本 克知 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 菊池 立郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 津田 泰男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 井垣 恵美子 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 棚橋 正和 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−75311(JP,A) 特開 平3−84993(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 4/00 - 4/40 H01G 13/00 - 13/06 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Mahito Omiya 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Katsuchi Tsuchimoto 1006 Kadoma Kadoma Kadoma City, Osaka Matsushita Electric Within Sangyo Co., Ltd. (72) Inventor Tatsuro Kikuchi 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Yasuo Tsuda 1006, Oaza Kadoma, Kadoma, Osaka Pref. Inventor Emiko Igaki 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Masakazu Tanahashi 1006 Kadoma Kadoma Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP 4-75311 (JP, A) JP-A-3-84993 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 4/00-4/40 H01G 13/00-13 / 06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体グリーンシートと内部電極を複数交
互に、かつ上記内部電極が交互に異なる端部に達するよ
うに積層した後に1300℃以上の高温で焼成し、この
焼成された素体の端部に内部電極が露出するように研磨
を行い、その端部へ外部電極を形成する積層セラミック
コンデンサの製造方法において、上記焼成前の誘電体グ
リーンシートの単位面積当りの誘電体粉末重量と、この
誘電体グリーンシートを複数枚積層して圧着したものの
密度とを測定し、焼成後の誘電体グリーンシートを複数
枚積層して圧着したものの厚みとを測定し、焼成後の誘
電体グリーンシートの厚みを上記誘電体粉末重量と誘電
体グリーンシートを複数枚積層して圧着したものの密度
とから回帰式を用いて予測し、この予測結果に基づいて
内部電極の重なり面積を決定する積層セラミックコンデ
ンサの製造方法。
1. A fired body at a high temperature of 1300 ° C. or higher after laminating a plurality of dielectric green sheets and internal electrodes alternately so that the internal electrodes alternately reach different ends. was ground so that the internal electrodes are exposed at the end portion, in the manufacturing method of a multilayer ceramic capacitor for forming the external electrode to the end, and dielectrics powder weight per unit area of the dielectric green sheet before the firing The density of a plurality of dielectric green sheets laminated and pressed is measured, and the thickness of a plurality of fired dielectric green sheets laminated and pressed is measured, and the fired dielectric green sheet is measured. The thickness of the dielectric powder and the dielectric
Of multiple green sheets laminated and pressed
And a method for manufacturing a multilayer ceramic capacitor, in which a prediction is made using a regression equation, and the overlapping area of the internal electrodes is determined based on the prediction result.
JP04147160A 1992-06-08 1992-06-08 Manufacturing method of multilayer ceramic capacitor Expired - Lifetime JP3087450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04147160A JP3087450B2 (en) 1992-06-08 1992-06-08 Manufacturing method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04147160A JP3087450B2 (en) 1992-06-08 1992-06-08 Manufacturing method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH05343257A JPH05343257A (en) 1993-12-24
JP3087450B2 true JP3087450B2 (en) 2000-09-11

Family

ID=15423949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04147160A Expired - Lifetime JP3087450B2 (en) 1992-06-08 1992-06-08 Manufacturing method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3087450B2 (en)

Also Published As

Publication number Publication date
JPH05343257A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
CN102810397A (en) Multilayer ceramic electronic component and multilayer ceramic capacitor
KR101728393B1 (en) Multilayer capacitor and manufacturing method for same
EP0285873B1 (en) Method of producing a multi-layered ceramic capacitor
JP6293175B2 (en) Multilayer ceramic capacitor
JP7338665B2 (en) Multilayer ceramic capacitor
CN103854858A (en) Multilayered ceramic capacitor and board for mounting the same
JPH11340089A (en) Manufacture of multilayer ceramic electronic component multilayer ceramic electronic component
JP3047708B2 (en) Manufacturing method of ceramic laminated electronic component
JPH09320887A (en) Laminated ceramic capacitor and its manufacture
US11276527B2 (en) Multilayer ceramic capacitor
JP3087450B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3292006B2 (en) Manufacturing method of multilayer ceramic capacitor
JP7493322B2 (en) Multilayer Ceramic Capacitors
KR20150093022A (en) Multi-layered ceramic electronic part, manufacturing method thereof and board having the same mounted thereon
JP3363236B2 (en) Manufacturing method of multilayer ceramic capacitor
CN217544375U (en) Multilayer ceramic capacitor
JP5526617B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP3160855B2 (en) Multilayer ceramic capacitors
JPH0845769A (en) Manufacture of multilayered ceramic capacitor
JP2784545B2 (en) Dielectric ceramic composition for composite circuit board
JPH0195591A (en) Multylayered ceramic substrate and manufacture thereof
EP0390944B1 (en) Manufacturing method for a multilayer ceramic substrate
JP2555639B2 (en) Method for manufacturing multilayer ceramic substrate
JPH04286107A (en) Laminated ceramic capacitor
JP2575909Y2 (en) Multilayer ceramic capacitors

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

EXPY Cancellation because of completion of term