JPS63165752A - Detection element - Google Patents

Detection element

Info

Publication number
JPS63165752A
JPS63165752A JP61315798A JP31579886A JPS63165752A JP S63165752 A JPS63165752 A JP S63165752A JP 61315798 A JP61315798 A JP 61315798A JP 31579886 A JP31579886 A JP 31579886A JP S63165752 A JPS63165752 A JP S63165752A
Authority
JP
Japan
Prior art keywords
element part
insulating substrate
gas
sensor element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61315798A
Other languages
Japanese (ja)
Inventor
Takeshi Minowa
美濃羽 健
Haruhisa Shiomi
塩見 治久
Toshihiko Aoyama
青山 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61315798A priority Critical patent/JPS63165752A/en
Publication of JPS63165752A publication Critical patent/JPS63165752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To avoid the damage of a sensor element part, by filling the piercing hole of an insulating substrate based on alumina with the sensor element part composed of a solid electrolyte. CONSTITUTION:When voltage is applied to the terminal 13 of a heat generator electrode and a sensor element part 5 is heated by a heat generator 15 and a reference electrode 7a is brought into contact with the atmosphere while a measuring electrode 7b is brought into contact with gas to be measured, the electromotive force corresponding to the concn. difference of oxygen gas is generated between the filling part 5a and laminated parts 5b, 5c in a piercing hole 3. This electric signal is outputted between the electrodes 7a, 7b and the concn. of the gas is measured on the basis of said signal. Since a display part 5 is contacted with a substrate only through the filling part 5a and laminated parts 5b, 5c in the piercing hole 3, the contact area thereof is small. Therefore, the damage of the element part 5 accompanied by the difference between the coefficient of thermal expansion of the solid electrolyte of the element part and that of the alumina of the substrate 1 can be avoided. Since the element part 5 is made small, the use amount of expensive zirconia can be reduced and cost reduction becomes possible.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、例えば、酸素センサ等の検出素子に関する。[Detailed description of the invention] [Industrial Application Field J The present invention relates to a detection element such as an oxygen sensor, for example.

[従来の技術およびその問題点] 近年、公害防止、省エネルギー、工程の細かい管理等を
目的として種々のセンサーが使用されている。
[Prior Art and its Problems] In recent years, various sensors have been used for the purposes of pollution prevention, energy conservation, detailed control of processes, and the like.

このようなセンサーの1つとして、板状の酸素センサが
ある(特願昭60−13230号)、すなわち、板状の
酸素センサは、ジルコニアとイツトリア固溶体を主成分
とした酸素イオン伝導性の固体電解質からなる検出基板
に、アルミナからなる絶縁基板を対向配設し、この間に
アルミナとジルコニアとを混合したスペーサを介在させ
て前基板およびスペーサに囲まれた大気室を形成したも
のである。そして、この大気室に基準となる大気を導入
することにより固体電解質層の一方の而に大気を接触さ
せ、他方の面に被測定ガスを接触させることで、l11
.測定ガスの濃度差に応じた起電力が固体電解質層間に
発生し、これにより被測定ガス濃度を測定している。
One such sensor is a plate-shaped oxygen sensor (Japanese Patent Application No. 60-13230). In other words, the plate-shaped oxygen sensor is made of an oxygen ion conductive solid mainly composed of zirconia and yttria solid solution. An insulating substrate made of alumina is placed opposite a detection substrate made of an electrolyte, and a spacer made of a mixture of alumina and zirconia is interposed between the two to form an atmospheric chamber surrounded by the front substrate and the spacer. Then, by introducing the reference atmosphere into this atmospheric chamber, the atmosphere is brought into contact with one side of the solid electrolyte layer, and the gas to be measured is brought into contact with the other side.
.. An electromotive force corresponding to the difference in concentration of the gas to be measured is generated between the solid electrolyte layers, thereby measuring the concentration of the gas to be measured.

ところで、上記スペーサは、絶縁基板と固体電解質層の
中間の熱&ij張係数を有するように両者の素材を混合
して形成することにより、絶縁基板と検出基板における
各素材の熱膨張率の違いに基づく応力を緩和して、検出
素子の岐損を防止している。
By the way, the above spacer is formed by mixing the materials of the insulating substrate and the solid electrolyte layer so as to have a thermal coefficient between those of the solid electrolyte layer. The resulting stress is alleviated to prevent breakage of the detection element.

しかし、このようなスペーサを用いても、高温の雰囲気
で使用される検出素子では、急激な冷却、加熱により破
損を生じる場合がある。
However, even if such a spacer is used, a detection element used in a high-temperature atmosphere may be damaged by rapid cooling or heating.

また、干、記梧成の酸素センサは、固体電解質からなる
検出基板の形状を絶縁基板と同様な形状として対向配設
して、その間に大気室を形成している。このため、検出
基板が大きくなって、固体電解質に高酒なジルコニアを
多量に使用している場合には、コストアップを招いてい
た。
In addition, in the oxygen sensor of Han and Kei, a detection substrate made of a solid electrolyte has a similar shape to an insulating substrate and is disposed facing each other to form an atmospheric chamber therebetween. For this reason, the detection substrate becomes large, and if a large amount of high-strength zirconia is used in the solid electrolyte, the cost increases.

一方、他の従来の酸素センサとして、円筒状のものが知
られている(′:X:開昭60−100658号公報)
、この酸素センサは、絶縁基板として貫通孔を有する中
空円筒体を用い、この中空円筒体外周に、画面にi4極
を有する固体電解質層を巻き付け、中空円筒内の大気導
入路→中空円筒に形成した貫通孔を通じて固体電解質の
一方の面に大気を接触させ、他方の面に被測定ガスを接
触させることで、固体電解質間の起電力に基づいて被測
定ガスの4度を測定するものである。
On the other hand, as another conventional oxygen sensor, a cylindrical one is known (':X: Publication No. 100658/1983)
This oxygen sensor uses a hollow cylindrical body with a through hole as an insulating substrate, and a solid electrolyte layer having an i4 pole is wrapped around the outer periphery of the hollow cylindrical body, and an air introduction path inside the hollow cylinder is formed from the hollow cylinder. By bringing the atmosphere into contact with one side of the solid electrolyte through the through-hole, and bringing the gas to be measured into contact with the other side, the 4 degrees of the gas to be measured is measured based on the electromotive force between the solid electrolytes. .

しかし、このような円筒状のセンサでも、上記板状の酸
素センサと同様に、熱膨張に伴う破損やコスト高の問題
は有している。
However, even such a cylindrical sensor has the same problems as the above-mentioned plate-shaped oxygen sensor, such as damage due to thermal expansion and high cost.

[問題点を解決するための手段」 上記問題点を解決するためになされた本発明の検出素子
の主要な構成は、 貫通孔を形成した絶縁基板と1 、上記貫通孔内に充填され、周囲環境に応じて電気的特
性を変化する素子部と、 この素子部の両端に接続されると共に絶縁基板の表裏面
上にそれぞれ形成された少なくとも−・対の電極と を備えたことを特徴とする。
[Means for Solving the Problems] The main components of the detection element of the present invention made to solve the above problems are as follows: 1. An insulating substrate having a through hole formed therein; It is characterized by comprising an element part whose electrical characteristics change according to the environment, and at least pairs of electrodes connected to both ends of the element part and formed respectively on the front and back surfaces of an insulating substrate. .

ここで検出素子として、酸素センサに適用した場合には
、素子部に酸素イオン導電性を有する素材、例えば、Y
2O)−Zl−02,CaOZrO2等を用いることが
できる。また、検出素子は、サーミスタのような温度検
出素子、湿度センサ等に用いることができる。
When applied to an oxygen sensor as a detection element, a material having oxygen ion conductivity, such as Y
2O)-Zl-02, CaOZrO2, etc. can be used. Further, the detection element can be used as a temperature detection element such as a thermistor, a humidity sensor, or the like.

また、検出素子を酸素センサに適用した場合の好適な態
様として、素子部の周辺で絶縁基板士に素子部を活性化
させるための発熱体を形成してもよい。
Further, as a preferred embodiment when the detection element is applied to an oxygen sensor, a heating element for activating the element part may be formed on an insulating substrate around the element part.

[作用] 本発明の検出素子の素子部を被測定ガスに接触させると
、素子部の両端面にガスの性質に応じた電気信号が出力
される0例えば、検出素子を酸素センサに適用した場合
には、素子部の一端面を基準となるガスに接触させ、素
子部の他端面を被測定ガスに接触させると、素子部間に
被測定ガスの濃度差に応じた起電力が発生し、これを一
対の電極により電気信号として取り出すことで、被測定
ガスの濃度を測定することができる。また、検出素子を
温度検出素子として適用した場合には、温度に比例した
抵抗変化が発生し、これを電気信号として取り出すこと
ができる。
[Operation] When the element part of the detection element of the present invention is brought into contact with a gas to be measured, an electric signal corresponding to the properties of the gas is output to both end faces of the element part. For example, when the detection element is applied to an oxygen sensor. When one end surface of the element part is brought into contact with the reference gas and the other end face of the element part is brought into contact with the gas to be measured, an electromotive force is generated between the element parts according to the concentration difference of the gas to be measured, By extracting this as an electrical signal using a pair of electrodes, the concentration of the gas to be measured can be measured. Furthermore, when the detection element is used as a temperature detection element, a resistance change proportional to temperature occurs, and this can be extracted as an electrical signal.

絶縁基板にアルミナ質を使用すると、熱膨張差があり、
その対策として、上述のような性質を有する本検出素子
の素子部は、絶縁基板に対して貫通孔内で接触し、その
接触面積が小さいので、仮に、絶縁基板と素子部の素材
の熱膨張係数の差が大きくても、両者間に発生する応力
が小さくなり、熱155張に伴う素子部等の破損を回避
することができる。
When alumina is used as an insulating substrate, there is a difference in thermal expansion.
As a countermeasure, the element part of this detection element having the above-mentioned properties contacts the insulating substrate within the through hole, and the contact area is small, so if the thermal expansion of the material of the insulating substrate and the element part Even if the difference in coefficients is large, the stress generated between the two is small, and damage to the element portion etc. due to heat stress can be avoided.

また、素子部にZrO2を用いた場合には、これとほぼ
同じ熱膨張を有するA Q zo3−M g O(マグ
ネシアアルミナスピネル)を絶縁基板に使用すると、こ
の間の温度上昇に伴う応力が小さくなり、素子部等の破
損をより一層回避できる。この場合、AQeOsとMg
Oの比率は、Mg020〜80モル%の範囲で有効であ
り、好ましくは40〜60モル%の範囲である。
In addition, when ZrO2 is used for the element part, if AQzo3-MgO (magnesia alumina spinel), which has almost the same thermal expansion as ZrO2, is used for the insulating substrate, the stress caused by the temperature rise during this time will be reduced. , damage to the element portion etc. can be further avoided. In this case, AQeOs and Mg
The ratio of O is effective in the range of Mg020 to 80 mol%, preferably in the range of 40 to 60 mol%.

さらに、素子部の素材も少なくとも貫通孔内だけに充填
すればよいから、その使用量を少なくでき、例えば、ジ
ルコニア等の高価な素材の量を洩らせる。
Furthermore, since the material of the element portion only needs to be filled in at least the inside of the through hole, the amount of material used can be reduced, and the amount of expensive material such as zirconia can be reduced.

[実施例] 以下本発明の一実施例を図面にしたがって説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1[Mにはジルコニアからなる素子部を有する検出基
板が示されており、この検出基板は、ガス導入部となる
間隙を隔てて対向配設される基板(図示省略)と共に酸
素センサを構成するものである。第2図はII −II
線に沿った断面図である。
The first [M] shows a detection substrate having an element part made of zirconia, and this detection substrate constitutes an oxygen sensor together with a substrate (not shown) which is disposed facing each other across a gap that serves as a gas introduction part. It is something to do. Figure 2 is II-II
It is a sectional view along the line.

これらの図において、■はAQ20zを主成分とした長
さ5 Q m m、横4 nt m、ylさ0. 5m
m、の絶縁基板で、この絶縁基板1の端部には、直径0
.5mm程度のスルーホール(貫通孔)3が複数形成さ
れている。これらのスルーホール3内およびその周辺部
で絶縁基板lの表裏面には、酸素イオン伝導性の固体電
解質からなるセンサ素子部5が形成されている。このセ
ンサ素子部5は、スルーホール3内に充填された充填部
5aと絶縁基板1に積層された積層部5b、5Cとから
形成されている。上記センサ素子部5は、Y2O3−Z
rO2を主成分とし、通常使用される有機バインダを混
合したペーストを絶縁基板に印刷して形成される。また
、上記センサ素子部5の積層部5b、5C上には、Zr
を含有し、かつ、白金を主成分とする多孔質の電極7が
形成され、その一方が基準電極7aに、他方が測定電極
71)に形成されている。上記基準電極7aは、絶縁基
板1の裏面およびスルーポール8(第3図参照)に形成
された導1に部9εtを介して基準電極端子11aに接
続され、一方、測定電極7bは、絶縁基板1の表面に形
成された導電部9bを介して測定電極端子11bに接続
されている。さらに、センサ素子部5の積層部5bの周
囲で絶縁基板1]−には、発熱体電極端子】3に接続さ
れた発熱体15が形成されている。
In these figures, ■ has AQ20z as its main component, has a length of 5 Q mm, a width of 4 nt m, and an yl width of 0. 5m
m, and the end of this insulating substrate 1 has a diameter of 0.
.. A plurality of through holes 3 of about 5 mm are formed. A sensor element portion 5 made of an oxygen ion conductive solid electrolyte is formed on the front and back surfaces of the insulating substrate 1 in and around these through holes 3. The sensor element section 5 is formed of a filling section 5a filled in the through hole 3 and laminated sections 5b and 5C laminated on the insulating substrate 1. The sensor element section 5 is made of Y2O3-Z
It is formed by printing a paste containing rO2 as a main component mixed with a commonly used organic binder on an insulating substrate. Further, on the laminated parts 5b and 5C of the sensor element part 5, Zr
A porous electrode 7 containing platinum as a main component is formed, one of which is a reference electrode 7a, and the other is a measurement electrode 71). The reference electrode 7a is connected to the reference electrode terminal 11a through a portion 9εt of the conductor 1 formed on the back surface of the insulating substrate 1 and the through pole 8 (see FIG. 3), while the measuring electrode 7b is The measurement electrode terminal 11b is connected to the measurement electrode terminal 11b via a conductive portion 9b formed on the surface of the electrode 1. Furthermore, a heating element 15 connected to a heating element electrode terminal 3 is formed on the insulating substrate 1]- around the laminated portion 5b of the sensor element section 5.

」二記酸累センサの検出基板を製造するには、まず、ア
ルミナを主成分するグリーンシートを形成し、このグリ
ーンシートを所定形状に切断すると共にスルーホール3
.8を形成する9次に、ペースト状のY2O3−ZrO
2固溶体原料粉末に、通常使用される有機バインダーを
混合し、これで上記グリーンシート上に厚膜印刷を用い
てセンサ素子部5を形成する。
In order to manufacture the detection board for the 2-2 acid accumulation sensor, first, a green sheet containing alumina as a main component is formed, and this green sheet is cut into a predetermined shape and the through holes 3 are cut into a predetermined shape.
.. 8 to form 9 Next, paste Y2O3-ZrO
A commonly used organic binder is mixed with the solid solution raw material powder, and the sensor element portion 5 is formed on the green sheet using thick film printing.

さらに、m層部5およびグリーンシートの表裏面に基準
電極7a、導電部9aおよび基準電極端子11aを白金
ペーストで10μm程度の厚さで厚膜印刷により形成し
、続いて、測定電極7b、導電部91)および測定電極
端子11bを同様に形成する0次に、発熱体電極端子1
3および発熱体15をグリーンシート上に形成する。続
いて、第3図に示すように大気室16を形成するように
他のグリーンシート17.19を積層した後に、これを
1400℃から1500℃で焼成することで検出素子が
完成する。なお、素子部や電極等を省略したグリーンシ
ート1aの状態を第4図に示す。
Further, a reference electrode 7a, a conductive part 9a, and a reference electrode terminal 11a are formed on the m-layer part 5 and the front and back surfaces of the green sheet by thick film printing with platinum paste to a thickness of about 10 μm, and then the measurement electrode 7b and the conductive 91) and the measuring electrode terminal 11b are formed in the same manner, and then the heating element electrode terminal 1
3 and a heating element 15 are formed on a green sheet. Subsequently, as shown in FIG. 3, after laminating other green sheets 17 and 19 to form an atmospheric chamber 16, the green sheets 17 and 19 are fired at 1400° C. to 1500° C. to complete the detection element. Incidentally, FIG. 4 shows the state of the green sheet 1a with the element portion, electrodes, etc. omitted.

そして、第3図の焼成後のものをケース(図示省略)に
収納保持することで酸素センサが完成する。
Then, the oxygen sensor is completed by storing and holding the fired product shown in FIG. 3 in a case (not shown).

次に上記構成の酸素センサの伴用について説明する。Next, the use of the oxygen sensor having the above configuration will be explained.

いま、発熱体電極端子13に印加して、発熱体15によ
りセンサ素子部5を加熱した状態で、大気室16に面す
る基準電極7a側を大気に接触させると共に、測定電極
7blllを被測定ガスに接触させると、スルーホール
3内の充填部5aおよび積層部5b、5cffiに酸素
ガス濃度差に応じた起電力が発生し、この電気信号が基
準電極7aと測定電極7b間に出力され、これに基づい
てガス濃度が測定される。
Now, while applying voltage to the heating element electrode terminal 13 and heating the sensor element part 5 by the heating element 15, the reference electrode 7a side facing the atmospheric chamber 16 is brought into contact with the atmosphere, and the measurement electrode 7bll is connected to the gas to be measured. When brought into contact with the electrode, an electromotive force corresponding to the difference in oxygen gas concentration is generated in the filling part 5a and the laminated parts 5b and 5cffi in the through hole 3, and this electric signal is output between the reference electrode 7a and the measurement electrode 7b. The gas concentration is measured based on

上記酸素センサの構成および作用により以下に述べる効
果がある。
The configuration and operation of the oxygen sensor have the following effects.

■ センサ素子部5がスルーホール3内の充填部5aと
積層部5b、5cだけで絶縁基板1に接触して形成され
ており、その接触面積が従来の技術で説明した同形状の
板を対向配設したしのと比較して小さいから、センサ素
子部5の固体電解質と絶縁基板1のアルミナとの熱膨張
係数の差に基づく破損を回避することができる。
■ The sensor element part 5 is formed in contact with the insulating substrate 1 only by the filling part 5a in the through hole 3 and the laminated parts 5b and 5c, and the contact area is the same as that of the plate facing the same shape as described in the conventional technique. Since it is smaller than the disposed insulator, damage due to the difference in thermal expansion coefficient between the solid electrolyte of the sensor element section 5 and the alumina of the insulating substrate 1 can be avoided.

■ センサ素子部5を小さくできるから、高債なジルコ
ニアの使用量を減らすことができ、コストダウンを図る
ことができる。
(2) Since the sensor element portion 5 can be made smaller, the amount of expensive zirconia used can be reduced, and costs can be reduced.

■ センサ素子部5の積層部5b、5Cの表面積が小さ
いから、積層部5L+の周囲の絶縁基板1上に発熱体1
5を直接形成することができるので、従来、一般的に用
いられているような、他の絶縁層を介在させてその上に
発熱体を形成したり、積層部に間隙を隔てて対向配設し
た基板上に発熱体を設けなくてよいので、構成が簡単に
なる。
■ Since the surface area of the laminated parts 5b and 5C of the sensor element part 5 is small, the heating element 1 is placed on the insulating substrate 1 around the laminated part 5L+.
5 can be directly formed, so it is possible to form the heating element on top of it with another insulating layer interposed, as is commonly used in the past, or to place the heating element in a laminated part facing each other with a gap between them. Since there is no need to provide a heating element on the printed circuit board, the configuration becomes simple.

■ センサ素子部5に複数の充填部5aが設けられて大
気と被測定ガスと接触しているから、安定した出力18
号を得ることができる。
■ Since the sensor element part 5 is provided with a plurality of filling parts 5a and is in contact with the atmosphere and the gas to be measured, stable output 18 is achieved.
You can get the number.

第5図は第2図の変形例を示す検出基板であり、絶縁基
板1に形成されたスルーホール3とセンサ素子部5の充
填部5aとの間に緩衝部21が介在している。このII
隣郡部21アルミナとジルコニアの混合物からなり、絶
縁基板1のアルミナと充填部5aの固体電解質に対して
中間の熱膨張係数になっている。この検出基板では、!
IIIf部21の部用1より絶縁基板1と充填部5aの
熱膨張に伴う破損の防止に対して一層効果がある。
FIG. 5 shows a detection board that is a modification of the one shown in FIG. 2, in which a buffer part 21 is interposed between the through hole 3 formed in the insulating board 1 and the filling part 5a of the sensor element part 5. This II
The neighboring part 21 is made of a mixture of alumina and zirconia, and has an intermediate coefficient of thermal expansion with respect to the alumina of the insulating substrate 1 and the solid electrolyte of the filling part 5a. With this detection board!
This is more effective than the part 1 of the IIIf part 21 in preventing damage to the insulating substrate 1 and the filling part 5a due to thermal expansion.

次に、本発明は、その好適な実施例として、第6図およ
び第71間に示す中空円筒体の外周に検出基板を巻いた
酸素センサにも適用できる9図において、31は絶縁基
板となる中空円筒体であり、その外径が3. 2mm、
内径が1.5mmに形成されている。この中空円筒体3
1は、アルミナからなり、その端部にスルーホール33
が2つ形成されている。そして、中空円筒体31の一方
の端部は、In ’a !R35により開基され、他方
の端部は開口部37となっており、そして、内部は中空
部となって基準気体導入路39(第71’2)となって
いる。
Next, as a preferred embodiment, the present invention can also be applied to an oxygen sensor in which a detection substrate is wrapped around the outer periphery of a hollow cylindrical body shown between FIGS. 6 and 71. In FIG. 9, 31 is an insulating substrate. It is a hollow cylindrical body, and its outer diameter is 3. 2mm,
The inner diameter is 1.5 mm. This hollow cylindrical body 3
1 is made of alumina and has a through hole 33 at its end.
Two are formed. And, one end of the hollow cylindrical body 31 is In'a! The other end is opened by R35, and the other end is an opening 37, and the inside is hollow, forming a reference gas introduction path 39 (71'2).

−1−記中空円筒部31の外周には、第1図の実施例で
説明した検出基板とほぼ同様な構成のものが巻かれてい
る。すなわち、検出基板4】は、第7図の分解斜視図に
示すように、端部にスルーホール42が複数形成された
絶縁基板43と、この絶縁基板43の両側に積層される
と共にスルーホール42内に充填される固体電解質から
なるセンサ素子部45と、センサ素子部45上に形成さ
れ、端子部47.49を有する基準電極51および測定
電極53と、測定電極53を被覆する多孔質セラミック
層からなる絶縁1f455と、センサ素子部45の周囲
で絶縁基板43上に積層され、端子部57を有する発熱
体5つと、発熱体53を覆い、かつ、絶縁155を露出
させる開口60を有する発熱体保護セラミック161と
から構成されている。
-1- A detection substrate having substantially the same structure as the detection substrate described in the embodiment of FIG. 1 is wound around the outer periphery of the hollow cylindrical portion 31. That is, as shown in the exploded perspective view of FIG. 7, the detection substrate 4 includes an insulating substrate 43 having a plurality of through holes 42 formed at its end, and a plurality of through holes 42 laminated on both sides of this insulating substrate 43. A sensor element part 45 made of a solid electrolyte filled therein, a reference electrode 51 and a measurement electrode 53 formed on the sensor element part 45 and having terminal parts 47 and 49, and a porous ceramic layer covering the measurement electrode 53. an insulation 1f 455 consisting of an insulation 1f 455, five heating elements laminated on the insulation substrate 43 around the sensor element part 45 and having a terminal part 57, and a heating element having an opening 60 that covers the heating element 53 and exposes the insulation 155. It is made up of a protective ceramic 161.

この実施例では、中空円筒体31内の大気導入路39か
らの空気がスルーホール33→多孔質の基準電極51を
介してセンサ素子部45の一端面に接触し、一方、被測
定ガスに多孔質の測定電極53を介してセンサ素子部4
5の他端面に接触し、両端面間の起電力に基づいて被測
定ガス濃度を検出する。
In this embodiment, air from the atmosphere introduction path 39 in the hollow cylinder 31 contacts one end surface of the sensor element section 45 via the through hole 33 → the porous reference electrode 51, while the gas to be measured contacts the porous reference electrode 51. The sensor element section 4 is
5 and detects the concentration of the gas to be measured based on the electromotive force between the two end surfaces.

本実施例では、従来の技術で説明したもののように、中
空円筒体に巻かれる部材を固体電解質で形成しておらず
、スルーホール42およびその周辺だけに固体電解質の
センサ素子部45を形成しているので、上記第1図の実
施例と同様に、スルーポール42に充填されたセンサ素
子部45と絶縁基板43との接触面積を小さくでき、熱
Q係数の差に基づく破損を防止する効果等がある。
In this embodiment, the member wound around the hollow cylindrical body is not formed of solid electrolyte as described in the conventional technique, but the sensor element portion 45 of solid electrolyte is formed only in the through hole 42 and its surroundings. Therefore, similar to the embodiment shown in FIG. 1, the contact area between the sensor element portion 45 filled in the through pole 42 and the insulating substrate 43 can be reduced, which has the effect of preventing damage due to the difference in thermal Q coefficient. etc.

なお、第6図および第7図の実施例では、発熱体59絶
縁基板43に対して外周側に形成したが、絶縁基板43
の内周側、つまり、中空円筒体31と絶縁基板43との
間に形成しても同様な効果を奏することは勿論である。
Note that in the embodiments shown in FIGS. 6 and 7, the heating element 59 is formed on the outer peripheral side of the insulating substrate 43;
It goes without saying that the same effect can be obtained even if it is formed on the inner peripheral side of the hollow cylinder 31, that is, between the hollow cylindrical body 31 and the insulating substrate 43.

し発明の効果] 以上説明したように、本発明によれば、絶縁基板と素子
部との熱VJj張係数の差に伴う素子の担11を回避す
ることができる。また、素子部に使用する傾を減らずこ
とができるので、素子部にジルコニアなどの高価な素材
を用いるものに対してコストダウンを図ることができる
[Effects of the Invention] As described above, according to the present invention, it is possible to avoid the stress of the element due to the difference in thermal VJj tensile coefficient between the insulating substrate and the element portion. In addition, since it is possible to reduce the amount of material used in the element portion, it is possible to reduce the cost compared to those in which an expensive material such as zirconia is used for the element portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による酸素センサの要部を一
部破断して示す斜視図、第2図は第1図の■−■!線に
沿った断面図、第3図は対向する基板で大気導入路を設
けた酸素センサの断面図、第4図は酸素センサの構成を
説明する斜視図、第5図は第2図の変形例を示す断面図
、第6図は他の実施例による酸素センサを示す斜視図、
第7図は第6図の実施例の分解斜視図である 1、43・・・絶縁基板 3.42・・・スルーホール(貫通孔)5.45・・・
センサ素子部 5a・・・充填部 5L+、5c・・・積層部 7・・・電極 7a、51・・・基準電極7b、53・
・・測定電極 15・・・発熱体
FIG. 1 is a partially cutaway perspective view of the main parts of an oxygen sensor according to an embodiment of the present invention, and FIG. 3 is a sectional view of an oxygen sensor with an air introduction path provided on opposing substrates, FIG. 4 is a perspective view illustrating the configuration of the oxygen sensor, and FIG. 5 is a modification of FIG. 2. A sectional view showing an example; FIG. 6 is a perspective view showing an oxygen sensor according to another embodiment;
FIG. 7 is an exploded perspective view of the embodiment shown in FIG.
Sensor element part 5a...Filled part 5L+, 5c...Laminated part 7...Electrode 7a, 51...Reference electrode 7b, 53.
...Measuring electrode 15...Heating element

Claims (1)

【特許請求の範囲】 貫通孔を形成した絶縁基板と、 上記貫通孔内に充填され、周囲環境に応じて電気的特性
を変化する素子部と、 この素子部の両端に接続されると共に絶縁基板の表裏面
上にそれぞれ形成された少なくとも一対の電極と を備えたことを特徴とする検出素子。
[Scope of Claims] An insulating substrate with a through hole formed therein, an element portion filled in the through hole and whose electrical characteristics change depending on the surrounding environment, and an insulating substrate connected to both ends of the element portion. and at least one pair of electrodes formed on the front and back surfaces of the detection element.
JP61315798A 1986-12-26 1986-12-26 Detection element Pending JPS63165752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315798A JPS63165752A (en) 1986-12-26 1986-12-26 Detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315798A JPS63165752A (en) 1986-12-26 1986-12-26 Detection element

Publications (1)

Publication Number Publication Date
JPS63165752A true JPS63165752A (en) 1988-07-09

Family

ID=18069679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315798A Pending JPS63165752A (en) 1986-12-26 1986-12-26 Detection element

Country Status (1)

Country Link
JP (1) JPS63165752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
DE102014206814B4 (en) 2013-04-12 2022-05-05 Denso Corporation A/F sensor element and method of making same
DE102014206815B4 (en) 2013-04-12 2022-05-05 Denso Corporation Lambda sensor element and method for its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
JP4530529B2 (en) * 2000-12-27 2010-08-25 京セラ株式会社 Heater integrated oxygen sensor element
DE102014206814B4 (en) 2013-04-12 2022-05-05 Denso Corporation A/F sensor element and method of making same
DE102014206815B4 (en) 2013-04-12 2022-05-05 Denso Corporation Lambda sensor element and method for its manufacture

Similar Documents

Publication Publication Date Title
EP0144185B1 (en) Electrochemical device
US4655901A (en) Oxygen sensor element
US5288389A (en) Oxygen sensor with higher resistance to repeated thermal-shocks and shorter warm-up time
JPS60228955A (en) Electrochemical apparatus and its preparation
JPS6193944A (en) Gas detecting element
JPS61134655A (en) Oxygen sensor element
JPS61172054A (en) Oxygen gas sensor
JPS63165752A (en) Detection element
JPH0623723B2 (en) Oxygen sensor
JPH0310131A (en) Thermistor for high temperature use
JP2000180402A (en) Electrochemical measurement sensor
JPS60196659A (en) Resistance measuring electrode for sensor
JP2514664B2 (en) Oxygen sensor
JPS61108957A (en) Oxygen sensor
JPH09218178A (en) Gas sensor and manufacture thereof
JPS60243558A (en) Analyzing device of oxygen gas concentration
JPS61137055A (en) Oxygen sensor element
JP2003075397A (en) Oxygen sensor
JP2002277431A (en) Gas sensor element, production method thereof and gas sensor
CN211741153U (en) Embedded conductive platinum wire oxygen sensor
JP2678045B2 (en) Carbon dioxide sensor
JPS61167857A (en) Gaseous oxygen sensor
CN115753940A (en) Laminated solid electrolyte oxygen sensor
JPH04136752A (en) Carbonic acid gas sensor
JPS62211525A (en) Temperature sensor