JPS61108957A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS61108957A
JPS61108957A JP59229612A JP22961284A JPS61108957A JP S61108957 A JPS61108957 A JP S61108957A JP 59229612 A JP59229612 A JP 59229612A JP 22961284 A JP22961284 A JP 22961284A JP S61108957 A JPS61108957 A JP S61108957A
Authority
JP
Japan
Prior art keywords
electrode
reference electrode
oxygen sensor
gap
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59229612A
Other languages
Japanese (ja)
Other versions
JPH0582551B2 (en
Inventor
Fujio Ishiguro
石黒 不二男
Hideo Maeda
英男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP59229612A priority Critical patent/JPS61108957A/en
Publication of JPS61108957A publication Critical patent/JPS61108957A/en
Publication of JPH0582551B2 publication Critical patent/JPH0582551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte

Abstract

PURPOSE:To decrease the internal resistance of an oxygen sensor and to prevent the exfoliation thereof by increasing the area of a reference electrode embedded into the base body of a sensor and to increase the strength of the sensor by decreasing the width of a gap for introduction of a reference material. CONSTITUTION:The plane shape of the reference electrode 6 of the sensor element 1 constituted of a sensor part 20 and a heater part 30, etc. is made into a recessed shape by a notch 6a coinciding approximately with the peripheral edge shape of the gap 7 provided so as to be sandwiched approximately thoroughly between middle and lower solid electrolyte plates 3 and 4. A measuring electrode 5 has the plane shape formed approximately the same as the plane shape of the electrode 6 and is so disposed as to face thoroughly the electrode 6 via the upper and middle solid electrolytes 2 and 3. The width of the gap 7 is decreased by embedding the electrode 6 into said gap, by which the strength of the element 1 is increased and the exfoliation of the electrode 6 is prevented. The area of the electrode 6 is increased so that measuring electrode 5 and the electrode 6 face each other at the area expanded to the same size. The decrease in the internal resistance is thus made possible.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば自動車の排気ガス中の酸素濃度を測
定するために用いる酸素センサに係り、特にセンサ素子
が長尺平板状に形成されている酸素センサの改良に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an oxygen sensor used for measuring the oxygen concentration in exhaust gas of a car, for example, and particularly relates to an oxygen sensor in which a sensor element is formed in the shape of a long flat plate. This paper relates to improvements to oxygen sensors.

(従来の技術) 近年、製造の容易性やコンパクト化の容易性等の観点か
ら、以前から在る有低円筒状の酸素センサに代わり、長
尺平板状に形成した酸素センサ素子を用いた酸素センサ
が提案されている。
(Prior art) In recent years, from the viewpoint of ease of manufacturing and compactness, oxygen sensor elements using long flat plate-shaped oxygen sensors have been introduced, replacing the existing low-profile cylindrical oxygen sensors. A sensor has been proposed.

このような長尺平板状の酸素センサ素子の従来構造例を
第8図に分解図で示す。
An example of the conventional structure of such a long flat oxygen sensor element is shown in an exploded view in FIG.

この酸素センサ素子40は、ヒーター付の酸素センサ素
子であり、センサ部50とヒータ部60とから概略構成
されている。
This oxygen sensor element 40 is an oxygen sensor element equipped with a heater, and is roughly composed of a sensor section 50 and a heater section 60.

センサ部50は、ジルコニアを主成分とする酸素イオン
伝導性固体電解質からなる長尺平板状の固体電解質板5
1と、これと同一材質からなり、一端から他端近傍まで
溝57を有する固体電解質板56とを重ね合わせて外殻
が形成されている。
The sensor section 50 includes a long flat solid electrolyte plate 5 made of an oxygen ion conductive solid electrolyte containing zirconia as a main component.
1 and a solid electrolyte plate 56 made of the same material and having a groove 57 from one end to the vicinity of the other end are overlapped to form an outer shell.

そして、上記平板状の固体電解質板51の表面一端には
、白金等からなる多孔質の測定電極52が印刷により塗
着されており、裏面には、固体電解質板51を挾んで測
定電極52と対向するように同材質の基準電極55が塗
着されている。
A porous measuring electrode 52 made of platinum or the like is printed on one end of the surface of the flat solid electrolyte plate 51, and a measuring electrode 52 is attached on the back side with the solid electrolyte plate 51 sandwiched between them. A reference electrode 55 made of the same material is applied so as to face each other.

また、固体電解質板51の両面には、上記各電極52、
55と同材質からなるリード58.59が両電極52゜
55から固体電解質51の他端へ至るまで帯状に塗着さ
れており、その端部は、基準電極端子53および測定電
極端子54となっている。
Further, on both sides of the solid electrolyte plate 51, each of the above-mentioned electrodes 52,
Leads 58 and 59 made of the same material as 55 are coated in a strip shape from both electrodes 52.55 to the other end of the solid electrolyte 51, and the ends serve as a reference electrode terminal 53 and a measurement electrode terminal 54. ing.

上記基準電極55は、溝57内に全面が露呈しており、
溝57の開口端から流入する外気に晒されるようになっ
ている。
The entire surface of the reference electrode 55 is exposed within the groove 57,
It is exposed to the outside air flowing in from the open end of the groove 57.

ヒータ部60は、長尺平板状の2枚の°絶縁セラミック
ス層61.62が重ね合わされ、この一端部に抵抗発熱
体65が挟み込まれ、この抵抗発熱体65の両極から絶
縁セラミックス層61.62の他端へ至るまで2本の帯
状に走る導電性のリード66、67が同様にして絶縁セ
ラミックス層61.62の間に挟み込まれている。
The heater section 60 has two long flat plate-shaped insulating ceramic layers 61 and 62 stacked on top of each other, a resistive heating element 65 is sandwiched between one end of the insulating ceramic layers 61 and 62, and the insulating ceramic layers 61 and 62 are formed from both poles of the resistive heating element 65. Two strip-shaped conductive leads 66 and 67 are similarly sandwiched between the insulating ceramic layers 61 and 62 to the other end.

そして、一方の絶縁セラミックス層62の長さは、他方
61よりも短いため、リード66、67の端部が露出し
、外部電源接続用の接続端子63.64となっている。
Since the length of one insulating ceramic layer 62 is shorter than the other 61, the ends of the leads 66 and 67 are exposed and serve as connection terminals 63 and 64 for connecting to an external power source.

このヒータ部60は、上記センサ部片面に積層固着され
て、ヒーター付の酸素センサ素子40が形成される。
This heater section 60 is laminated and fixed on one side of the sensor section to form an oxygen sensor element 40 with a heater.

このような酸素センサ素子40は、第10図に示すよう
に、その中間部を絶縁碍子72によって、また端子53
.54,63.64が形成されている端部をコネクタ碍
子74によって支持された状態で、円筒状の金属製保護
管71内に収容され、絶縁碍子72の上に充填されたセ
メント、タルク、ガラス等の充填剤73および絶縁碍子
72の下に充填されたタルク等の充填剤78によって固
定されている保護管71の先端部71Aは、多数の透孔
75が形成されており、この先端部71A内に露出して
いる酸素センサ素子40の先端部の測定電極52が被測
定物質たとえばエンジンの排気ガス等に触れるようにな
っている。また、保護管71の後端部71Bには、ゴム
栓76を貫通して差込まれたリード線??a〜77cと
保護管77に導通されたアースリード線?7dとが、酸
素センサ素子40に設けられているヒータ部60の接続
端子63.64、基準電極端子53、測定電極端子54
にそれぞれ対応して接続されている。
As shown in FIG.
.. Cement, talc, and glass are housed in a cylindrical metal protection tube 71 with the ends where 54, 63, and 64 are formed supported by the connector insulator 74, and filled on the insulator 72. A large number of through holes 75 are formed in the tip portion 71A of the protective tube 71, which is fixed by a filler 73 such as the like and a filler 78 such as talc filled under the insulator 72. The measuring electrode 52 at the tip of the oxygen sensor element 40 exposed inside comes into contact with the substance to be measured, such as engine exhaust gas. Further, a lead wire is inserted into the rear end portion 71B of the protection tube 71 through the rubber stopper 76. ? The earth lead wire connected to a to 77c and the protective tube 77? 7d are the connection terminals 63 and 64 of the heater section 60 provided in the oxygen sensor element 40, the reference electrode terminal 53, and the measurement electrode terminal 54.
are connected correspondingly to each other.

このような構成の酸素センサ70は、例えば、保護管7
1の先端部71Aを自動車の排気管内に挿入することに
よって、排気ガス中の酸素濃度検出に利゛用される。こ
のとき、ヒータ部60の抵抗発熱体65に通電がなされ
てセンサ部50の電極52.55の部分を加熱して能動
化するようになっている。
The oxygen sensor 70 having such a configuration includes, for example, the protective tube 7
By inserting the tip end 71A of No. 1 into the exhaust pipe of an automobile, it is used for detecting the oxygen concentration in exhaust gas. At this time, the resistance heating element 65 of the heater section 60 is energized to heat and activate the electrodes 52 and 55 of the sensor section 50.

そして、このように高温排気ガス及びヒーター加熱で先
端部?LAが高温となるため、リード線77a〜77d
のコネクタ部分の高温酸化による接触不良を防止する必
要性から、上記のような長尺型の酸素センサ70は、コ
ネクタ部分を低温に保ちうる点で有利となる。
And the tip with high temperature exhaust gas and heater heating like this? Since LA becomes high temperature, lead wires 77a to 77d
Because of the need to prevent contact failure due to high-temperature oxidation of the connector portion, the long oxygen sensor 70 as described above is advantageous in that the connector portion can be kept at a low temperature.

(発明が解決しようとする問題点) しかしながら、上記のような長尺平板状の酸素センサ素
子40は、第9図に示す横断面図がら明らかなように、
その中央に溝57が固体電解質板51により蓋をされ基
準物質の存在する空隙を形成するとともに、基準電極5
5全面をその空隙中の基準物質、たとえば空気に晒す必
要性から、溝57の幅が比較的広くなっている。
(Problems to be Solved by the Invention) However, as is clear from the cross-sectional view shown in FIG.
A groove 57 in the center is covered with a solid electrolyte plate 51 to form a gap in which a reference substance exists, and a reference electrode 5
The width of the groove 57 is relatively wide due to the need to expose the entire surface of the groove 57 to the reference substance, such as air, in the gap.

そのため、第8図中で示すように上下方向に加わる力F
に対する強度が弱く、また固体電解質板56と51の接
着部の幅が狭くなるため、その接着部でリークが生じ易
い。
Therefore, as shown in Fig. 8, the force F applied in the vertical direction
In addition, since the width of the bonded portion between the solid electrolyte plates 56 and 51 is narrow, leaks are likely to occur at the bonded portion.

従って、溝57の幅の大きさが制限されることとなり、
これに伴って基準電極55の広さも制限されるため、測
定電極52と基準電極55との対向面積が小さくなって
、内部抵抗が増加することになる。
Therefore, the width of the groove 57 is limited,
Along with this, the width of the reference electrode 55 is also limited, so the opposing area between the measurement electrode 52 and the reference electrode 55 becomes smaller, resulting in an increase in internal resistance.

また、基準電極55は、主として白金等の金属成分によ
り形成される。従って、固体電解質板51との接着力は
比較的弱いため、加熱・冷却を繰返す間に剥離が生じる
虞れがあり、これは、また内部抵抗値を上昇させる要因
となる。
Further, the reference electrode 55 is mainly formed of a metal component such as platinum. Therefore, since the adhesive strength with the solid electrolyte plate 51 is relatively weak, there is a possibility that peeling may occur during repeated heating and cooling, which also causes an increase in the internal resistance value.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、酸素イオン伝
導性固体電解質を主体として長尺平板状に形成され、そ
の長手方向の内部に一端が閉塞された管状の空隙を有す
るセンサ基体と、該センサ基体の外表面の一部に平面状
に形成された被検物質に接する1以上の測定電極と、前
記センサ基体内、の一部に実質的に埋設され、該空隙中
の基準物質と埋設されていない部分が直接接するように
設けられたか、または基準物質を透過させ得る多孔質体
を介して接するように設けられた1以上の基準電極とを
備えることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention consists of a long flat plate made mainly of an oxygen ion conductive solid electrolyte, and one end of which is closed in the longitudinal direction. a sensor base having a tubular gap; one or more measurement electrodes in contact with the analyte formed in a planar shape on a part of the outer surface of the sensor base; one or more reference electrodes that are buried and are provided so that the reference material in the void and the unburied portion are in direct contact with each other, or are provided so that they are in contact with each other through a porous body that can transmit the reference material; It is characterized by being prepared.

基準電極のご(小部分(大部分は埋設されている)、又
は基準電極の辺縁が直接または多孔質体を介して空隙内
の基準物質たとえば空気に接することができるようにす
ることで、この酸素センサはほぼ正確な信号出力を発生
できることを本発明者らは実験的に見出し、本発明に到
った。
By allowing a small part (mostly buried) of the reference electrode, or the edge of the reference electrode, to be in contact with the reference material in the cavity, such as air, directly or through a porous body, The present inventors have experimentally discovered that this oxygen sensor can generate a nearly accurate signal output, leading to the present invention.

この酸素センサがほぼ正確な信号出力を発生できるのは
、基準物質が基準電極を形成する物質粒子の境界層又は
基準電極内の小気孔等を通って基準電極内に拡散するた
めと推定される。従って基準電極は多数の粒界の存在す
る多結晶体であることが好ましく、さらに多数の気孔の
存在する多孔質電極であればより好ましい。また、基準
電極のたとえば片方の大面に接する多孔質層が存在すれ
ば基準物質の拡散がより容易となり、好ましい形態であ
る。また基準電極の埋設部分は、電極材料として通常白
金族金属を使用するがそれらの金属成分と固体電解質等
とは接着力が小さいため、すくなくとも基準電極の埋設
部分は酸素イオン伝導性固体電解質とこれら白金族金属
との混合層であることが好ましい。
It is presumed that the reason why this oxygen sensor is able to generate a nearly accurate signal output is that the reference substance diffuses into the reference electrode through the boundary layer of material particles forming the reference electrode or small pores within the reference electrode. . Therefore, the reference electrode is preferably a polycrystalline material with many grain boundaries, and more preferably a porous electrode with many pores. Further, if there is a porous layer in contact with, for example, one large surface of the reference electrode, the reference substance can diffuse more easily, which is a preferable form. In addition, platinum group metals are usually used as electrode materials in the buried part of the reference electrode, but since the adhesion between these metal components and solid electrolytes is weak, at least the buried part of the reference electrode is made of oxygen ion conductive solid electrolytes. A mixed layer with a platinum group metal is preferable.

(作 用) 基準電極は、センサ基体内にほぼ埋設されていることに
より、その両面は挾持され、剥離が生じることを防止で
きる。
(Function) Since the reference electrode is substantially buried within the sensor base, both sides thereof are held between them, and peeling can be prevented.

また、直接または多孔質体を介して基準電極は空隙内の
基準物質たとえば空気に接することができるので、基準
電極がセンサ基体内に埋設されていてもその機能を十分
に果すことができる。
Furthermore, since the reference electrode can come into contact with the reference substance, such as air, in the gap either directly or through the porous body, the reference electrode can fully perform its function even if it is embedded within the sensor base.

従って、空隙の幅を縮少可能とするとともに、基準電極
面積を増大させることが可能となる。
Therefore, it is possible to reduce the width of the gap and increase the area of the reference electrode.

(実施例) 本発明の第1実施例の構成を第1図に分解図で示す。(Example) The configuration of a first embodiment of the present invention is shown in an exploded view in FIG.

同図に示される酸素センサ素子1は、第10図に示した
ものと同様の保護管71内に収容される。そして、第8
図に示した酸素センサ素子40と同様に、センサ部20
とヒータ部30とから概略構成されている。
The oxygen sensor element 1 shown in the figure is housed in a protective tube 71 similar to that shown in FIG. And the eighth
Similar to the oxygen sensor element 40 shown in the figure, the sensor section 20
and a heater section 30.

センサ部20は、ジルコニアを主成分とする酸素イオン
伝導性の3枚の固体電解質板2.3.4を積層固着して
なるセンサ基体10と、上段の固体電解質板2の上面左
端部に印刷によって平面状に塗着された測定電極5と、
下段の固体電解質板4の上面左端部に同じく印刷によっ
て平面状に塗着された基準電極6とを備えている。
The sensor unit 20 includes a sensor base 10 formed by laminating and fixing three oxygen ion conductive solid electrolyte plates 2, 3, and 4 containing zirconia as a main component, and printed on the left end of the upper surface of the upper solid electrolyte plate 2. A measuring electrode 5 coated in a flat shape by
A reference electrode 6 is provided on the left end of the upper surface of the lower solid electrolyte plate 4, which is also applied in a flat manner by printing.

中段の固体電解質板3には、その長手方向に幅方向の中
心を走るスリットが形成されており、これは、3枚の固
体電解質板2,3.4を積層した状態で、センサ基体1
0の長手方向内部で左端が閉塞された長い長方形状の空
隙7を形成することになる。
A slit is formed in the middle solid electrolyte plate 3 in the longitudinal direction and at the center of the width direction.
A long rectangular gap 7 whose left end is closed is formed inside the space 0 in the longitudinal direction.

上記基準電極6は、白金族金属のち1または2以上の混
合物と、ジルコニア等を主体とする酸素イオン伝導性固
体電解質とを混合し、これを印刷塗着した後焼成してな
る導電体膜である。そして、この基準電極6の平面形状
は、中段と下段の固体電解質板3と4の間にほぼ完全に
挟み込まれるように、上記空隙7の周縁形状にほぼ一致
する切込み6aが設けられて凹字状となっている。さら
に、この基準電極6の平面形状の外周縁は、センサ基体
10の左端部周縁真近まで広げられており、下段の固体
電解質板4の左端部上面の2以上の面積を占有している
The reference electrode 6 is a conductive film formed by mixing a mixture of one or more platinum group metals and an oxygen ion conductive solid electrolyte mainly composed of zirconia, etc., printing and coating the mixture, and then firing the mixture. be. The planar shape of the reference electrode 6 has a concave shape with a notch 6a that almost matches the peripheral shape of the gap 7 so that it is almost completely sandwiched between the middle and lower solid electrolyte plates 3 and 4. The situation is as follows. Further, the outer peripheral edge of the planar shape of the reference electrode 6 is extended to the vicinity of the left end peripheral edge of the sensor base 10, and occupies two or more areas of the upper surface of the left end of the lower solid electrolyte plate 4.

また、上記測定電極5は、その平面形状が上記基準電極
6の平面形状とほぼ同一に形成されており、かつ上段と
中段の固体電解質2と3を介して基準電極6と完全に対
向するように配設されている。また、材質も基準電極6
の材質と同一である。
Further, the measurement electrode 5 is formed so that its planar shape is almost the same as that of the reference electrode 6, and is completely opposed to the reference electrode 6 via the solid electrolytes 2 and 3 in the upper and middle stages. It is located in In addition, the material of the reference electrode 6
The material is the same as that of

そして、上記測定電極5と基準電極6の右端からは、外
部回路接続用のリード8,9がセンサ基体10の右端に
至る帯状に形成されている。
Leads 8 and 9 for external circuit connection are formed in a band shape from the right ends of the measurement electrode 5 and the reference electrode 6 to the right end of the sensor base 10.

さらに、測定電極5の上面は、測定電極5よりも広い面
積のスピネル等を用いた多孔質絶縁セラミックスからな
る保護層17で覆われており、測定電極5は、この保護
層17を介して被検物質に接触している。
Furthermore, the upper surface of the measuring electrode 5 is covered with a protective layer 17 made of porous insulating ceramics made of spinel or the like and having a larger area than the measuring electrode 5. Contact with test substance.

次に、ヒータ部30は、2枚の長尺平板状の絶縁セラミ
ックス層12.13の間の左端部に抵抗発熱体14が挟
みこまれており、この抵抗発熱体I4の両極からは、絶
縁セラミックス層12.13の右端に至る外部電源接続
用のリード15.16が2本の帯状に形成されている。
Next, in the heater section 30, a resistive heating element 14 is sandwiched between the left end portion between two elongated flat plate-shaped insulating ceramic layers 12.13. Leads 15 and 16 for connecting an external power source to the right end of the ceramic layer 12 and 13 are formed in the shape of two bands.

このように構成されたヒータ部30は、絶縁セラミック
ス層11を介して、上記センサ部20の下面に一体に接
合されており、上記抵抗発熱体14の発熱で、上記基準
電極6の部分の加熱を行う。
The heater section 30 configured in this manner is integrally joined to the lower surface of the sensor section 20 via the insulating ceramic layer 11, and heats the reference electrode 6 by the heat generated by the resistance heating element 14. I do.

第2図は、上記の酸素センサ素子lの電極部分の横断面
(第1図のn−n断面)を示す図である。
FIG. 2 is a diagram showing a cross section (cross section taken along line nn in FIG. 1) of the electrode portion of the oxygen sensor element 1 described above.

同図に示されるように、基準電極6は、上下の両面がほ
ぼ完全に2枚の固体電解質板3.4に挟まれており、僅
かに内周辺端面6bのみが空隙7に臨んでいる。従って
、空隙7内の基準物質(例えば大気)は、この端面6b
から基準電極6内に拡散してほぼ全面に行き渡ると推定
され、はぼ正確な信号出力を発生する。
As shown in the figure, the upper and lower surfaces of the reference electrode 6 are almost completely sandwiched between the two solid electrolyte plates 3.4, and only the inner peripheral end surface 6b faces the gap 7. Therefore, the reference substance (for example, the atmosphere) in the cavity 7 is
It is estimated that the reference electrode 6 diffuses into the reference electrode 6 and spreads over almost the entire surface, generating a highly accurate signal output.

また、基準電極6を埋め込むことで、空隙7の幅を小さ
くすることができ、酸素センサ素子1の強度を向上させ
ることが可能となるとともに、基準電極6の剥離が生じ
ることが防止できる。
Further, by embedding the reference electrode 6, the width of the gap 7 can be reduced, the strength of the oxygen sensor element 1 can be improved, and peeling of the reference electrode 6 can be prevented.

これにより、基準電極6の面積を広くすることが可能と
なり、測定電極5を基準電極6と同一形状に拡大し、か
つ互いに対向させれば、内部抵抗を小さくすることがで
きる。
This makes it possible to increase the area of the reference electrode 6, and by enlarging the measurement electrode 5 to the same shape as the reference electrode 6 and facing each other, the internal resistance can be reduced.

次に、本発明の第2実施例として、上記第1実施例では
、基準電極6が、その内周辺端面6bにおいて空隙7に
接していたものを、第3図に示すように、多孔質体21
を介して空隙7と連通ずる構成としたものを挙げる。
Next, as a second embodiment of the present invention, the reference electrode 6 which was in contact with the gap 7 at its inner peripheral end surface 6b in the first embodiment is replaced with a porous material as shown in FIG. 21
An example of a structure that communicates with the air gap 7 via the air gap 7 is mentioned below.

基準電極6の内周辺は、空隙7との境界よりも固体電解
質板3,4の内奥に若干引込んでおり、この基準電極6
の内周辺端面に接するように多孔質体21が設けられて
いる。この多孔質体21は、スピネル、アルミナ、ジル
コニア等を用いた主として多孔質セラミックスからなる
The inner periphery of the reference electrode 6 is slightly retracted deeper into the solid electrolyte plates 3 and 4 than the boundary with the gap 7, and the inner periphery of the reference electrode 6
A porous body 21 is provided so as to be in contact with the inner peripheral end surface of the porous body 21 . This porous body 21 is mainly made of porous ceramics using spinel, alumina, zirconia, etc.

本実施例は、このように多孔質体21を設けたことによ
り、基準電極6の内周辺端面部での固体電解質板4,3
の接合強度を増大させることができ、(多孔質体21は
主としてセラミックスであり、固体電解質板とよく接合
する)、また、多孔質体21は固体電解質板との接着性
がつよいため、第3図でも判るように、空隙7内へ膨出
させることができるため、空隙7内の基準物質との接触
面積を大きくできる。
In this embodiment, by providing the porous body 21 in this way, the solid electrolyte plates 4 and 3 at the inner peripheral end face of the reference electrode 6 are
(The porous body 21 is mainly made of ceramics and bonds well with the solid electrolyte plate).Also, since the porous body 21 has strong adhesiveness with the solid electrolyte plate, the third As can be seen in the figure, since it can bulge into the cavity 7, the area of contact with the reference substance within the cavity 7 can be increased.

なお、その他の構成部分は、第1実施例と同一であり、
同一符号を付して説明は省略する。
Note that the other components are the same as in the first embodiment,
The same reference numerals are used to omit the explanation.

また、第4図に本発明の第3実施例として示すように、
上記第2実施例で用いた多孔質体21を、基準電極6の
下面全域に敷設して多孔質体層31を形成すれば、より
一層基準物質が基準電極6全面に行き渡る効率が高くな
る。
Further, as shown in FIG. 4 as a third embodiment of the present invention,
If the porous body 21 used in the second embodiment is laid over the entire lower surface of the reference electrode 6 to form the porous body layer 31, the efficiency with which the reference substance is distributed over the entire surface of the reference electrode 6 is further increased.

また、第5図に本発明の第4実施例として示すように、
基準電極6を固体電解質板2に接するように配設し、空
隙7中の基準物質に基準電極の中央部分(電極の大部分
は固体電解質板2,3間に埋設される。)の平面6Cで
接するようにすることも可能である。
Further, as shown in FIG. 5 as a fourth embodiment of the present invention,
The reference electrode 6 is arranged so as to be in contact with the solid electrolyte plate 2, and the plane 6C of the central part of the reference electrode (most of the electrode is buried between the solid electrolyte plates 2 and 3) is placed in the reference material in the gap 7. It is also possible to make them touch each other.

基準電極の中央部分6Cは固体電解質仮に埋設された部
分と連続した層を形成し、従って埋設部分によりささえ
られるため、はとんど剥離することはなく、より安定に
基準物質を電極全体に行きわたるように拡散させること
ができる。さらにこの実施例に示すように測定電極との
対向面積が増すため、酸素センサの内部抵抗をさらに小
さくできる。
The central portion 6C of the reference electrode forms a continuous layer with the temporarily buried solid electrolyte portion, and is therefore supported by the buried portion, so it hardly peels off and allows the reference material to be distributed throughout the electrode more stably. It can be spread widely. Furthermore, as shown in this embodiment, since the area facing the measurement electrode is increased, the internal resistance of the oxygen sensor can be further reduced.

さらに、第6図、第7図に示子ように、基準電極6の平
面形状を、外周に切込み22を設けた多葉状としたり、
多数の丸孔23を設けた網状としたり、あるいは格子状
(図示略)とする等、上下の固体電解質板3,4が接す
る面積を増大させる形状としておけば、基準電極6の部
分での接合強度を一層強めることができる。この場合、
切込み22や丸孔23等の面積分だけ基準電極6の総面
積を増大させておけば、性能が低下することは無い。
Furthermore, as shown in FIGS. 6 and 7, the planar shape of the reference electrode 6 is made into a multi-lobed shape with cuts 22 provided on the outer periphery,
If the shape increases the contact area between the upper and lower solid electrolyte plates 3 and 4, such as a net shape with a large number of round holes 23 or a grid shape (not shown), the bonding at the reference electrode 6 can be achieved. The strength can be further increased. in this case,
If the total area of the reference electrode 6 is increased by the area of the notch 22, round hole 23, etc., the performance will not deteriorate.

なお、上記実施例では、一般的なヒーター付の酸素セン
サに本発明を適用した例を示したが、本発明は、これ以
外の型の酸素センサ、例えば酸素ポンプを備える酸素セ
ンサ等にも同様にして適用可能モあることは明らかであ
る。
In addition, although the above embodiment shows an example in which the present invention is applied to a general oxygen sensor equipped with a heater, the present invention can be similarly applied to other types of oxygen sensors, such as oxygen sensors equipped with an oxygen pump. It is clear that there are some applicable methods.

(発明の効果) 以上詳細に説明したように、本発明は、基準電極をセン
サ基体内に埋設することで、基準電極の剥離が生じるこ
とを防止でき、かつ、基準物質導入用の空隙の幅を狭く
して素子の強度を増大させることが可能となる。
(Effects of the Invention) As explained in detail above, the present invention can prevent the reference electrode from peeling off by embedding the reference electrode in the sensor base, and the width of the gap for introducing the reference substance can be reduced. It becomes possible to increase the strength of the element by narrowing the width.

また、基準電極の面積を拡大させることが可能となり、
内部抵抗の低い酸素センサを提供することができる。
In addition, it is possible to expand the area of the reference electrode,
An oxygen sensor with low internal resistance can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例における酸素センサ素子の
構成を示す分解斜視図、 第2図は第1図のn−n断面図、 第3図は本発明の第2実施例における電極部分の横断面
図、 第4図は本発明の第3実施例における電極部分の横断面
図、 第5図は本発明の第4実施例における電極部分の横断面
図、 第6図および第7図は本発明の他の実施例における基準
電極の平面形状を示す斜視図、第8図は従来例の構成を
示す分解斜視図、第9図はその電極部分における横断面
図、第10図は酸素センサの全体構成を示す縦断面図で
ある。 1・・・酸素センサ素子  2.3.4・・・固体電解
質板5・・・測定電極     6・・・基準電極7・
・・空隙       10・・・センサ基体21・・
・多孔質体     31・・・多孔質体層第1図 ■ 第2図 f 第3図 第4図 第5図
FIG. 1 is an exploded perspective view showing the configuration of an oxygen sensor element according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along nn in FIG. 1, and FIG. 3 is an electrode according to a second embodiment of the present invention. FIG. 4 is a cross-sectional view of the electrode portion in the third embodiment of the present invention; FIG. 5 is a cross-sectional view of the electrode portion in the fourth embodiment of the present invention; FIGS. 6 and 7 8 is an exploded perspective view showing the configuration of a conventional example, FIG. 9 is a cross-sectional view of the electrode portion, and FIG. FIG. 2 is a longitudinal cross-sectional view showing the overall configuration of an oxygen sensor. 1... Oxygen sensor element 2.3.4... Solid electrolyte plate 5... Measuring electrode 6... Reference electrode 7.
...Gap 10...Sensor base 21...
・Porous body 31... Porous body layer Fig. 1 ■ Fig. 2 f Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】 1、酸素イオン伝導性固体電解質を主体として長尺平板
状に形成され、その長手方向の内部に一端が閉塞された
管状の空隙を有するセンサ基体と、 該センサ基体の外表面の一部に平面状に形 成された被検物質に接する1以上の測定電極と、 前記センサ基体内の一部に実質的に埋設さ れ、前記空隙中の基準物質と埋設されていない部分によ
り直接接するように設けられたか、または基準物質を透
過させ得る多孔質体を介して接するように設けられた1
以上の基準電極とを備えることを特徴とする酸素センサ
。 2、前記基準電極の辺縁の一部が前記空隙に臨んでいる
特許請求の範囲第1項記載の酸素センサ。 3、前記多孔質体は多孔質セラミックスで形成されてい
る特許請求の範囲第1項記載の酸素センサ。 4、前記基準電極は多孔質である特許請求の範囲第1項
乃至第3項のいずれかに記載の酸素センサ。 5、前記多孔質体は、前記基準電極の片面に積層され、
かつその一部が前記空隙に露呈している特許請求の範囲
第1項、第3項または第4項に記載の酸素センサ。 6、前記測定電極と基準電極は互いにほぼ対向する位置
に配設されている特許請求の範囲第1項〜第5項のいず
れかに記載の酸素センサ。 7、前記基準電極は白金族金属のうち1種または数種を
主成分とする特許請求の範囲第1項〜第6項のいずれか
に記載の酸素センサ。 8、前記基準電極が白金族金属と酸素イオン伝導性固体
電解質との混合体からなる特許請求の範囲第1項〜第7
項のいずれかに記載の酸素センサ。
[Scope of Claims] 1. A sensor base formed into a long flat plate mainly made of an oxygen ion conductive solid electrolyte, and having a tubular void with one end closed inside the sensor base in the longitudinal direction; and an outside of the sensor base. one or more measurement electrodes formed in a planar shape on a part of the surface and in contact with the test substance, and substantially buried in a part of the sensor base, and the reference substance in the gap and the unburied part. 1 provided in direct contact or provided in contact via a porous body that allows the reference substance to pass through.
An oxygen sensor comprising the above reference electrode. 2. The oxygen sensor according to claim 1, wherein a part of the edge of the reference electrode faces the gap. 3. The oxygen sensor according to claim 1, wherein the porous body is made of porous ceramics. 4. The oxygen sensor according to any one of claims 1 to 3, wherein the reference electrode is porous. 5. The porous body is laminated on one side of the reference electrode,
The oxygen sensor according to claim 1, 3, or 4, wherein a portion of the oxygen sensor is exposed to the void. 6. The oxygen sensor according to any one of claims 1 to 5, wherein the measurement electrode and the reference electrode are disposed at positions substantially facing each other. 7. The oxygen sensor according to any one of claims 1 to 6, wherein the reference electrode contains one or more platinum group metals as a main component. 8. Claims 1 to 7 in which the reference electrode comprises a mixture of a platinum group metal and an oxygen ion conductive solid electrolyte.
The oxygen sensor according to any of paragraphs.
JP59229612A 1984-10-31 1984-10-31 Oxygen sensor Granted JPS61108957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229612A JPS61108957A (en) 1984-10-31 1984-10-31 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229612A JPS61108957A (en) 1984-10-31 1984-10-31 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPS61108957A true JPS61108957A (en) 1986-05-27
JPH0582551B2 JPH0582551B2 (en) 1993-11-19

Family

ID=16894903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229612A Granted JPS61108957A (en) 1984-10-31 1984-10-31 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS61108957A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238355A (en) * 1989-03-13 1990-09-20 Ngk Insulators Ltd Waterproof type oxygen sensor
US5447618A (en) * 1993-04-13 1995-09-05 Nippondenso Co., Ltd. Oxygen sensor
US5660661A (en) * 1993-04-13 1997-08-26 Nippondenso Co., Ltd. Oxygen sensor
JP2004506881A (en) * 2000-08-18 2004-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensors, especially oxygen sensors
DE4412525B4 (en) * 1993-04-13 2005-05-25 Denso Corp., Kariya oxygen sensor
JP2005216687A (en) * 2004-01-29 2005-08-11 Nec Corp Fuel concentration sensor, fuel container for fuel cell using it, fuel cell system using it and method of manufacture for fuel concentration sensor
DE4447998B4 (en) * 1993-04-13 2005-12-22 Denso Corp., Kariya Oxygen sensor for measuring oxygen concn. of internal combustion engine exhaust gas - comprises solid electrolyte plate, ventilation plate, and heating base
US20090277806A1 (en) * 2006-06-30 2009-11-12 Nat Inst Of Adv Industrial Sci And Tech Electrochemical cell system gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252494A (en) * 1984-04-13 1985-12-13 ザ ロツクフエラー ユニバーシテイ Estrogen synthesis inhibitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252494A (en) * 1984-04-13 1985-12-13 ザ ロツクフエラー ユニバーシテイ Estrogen synthesis inhibitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238355A (en) * 1989-03-13 1990-09-20 Ngk Insulators Ltd Waterproof type oxygen sensor
US5447618A (en) * 1993-04-13 1995-09-05 Nippondenso Co., Ltd. Oxygen sensor
US5660661A (en) * 1993-04-13 1997-08-26 Nippondenso Co., Ltd. Oxygen sensor
DE4412525B4 (en) * 1993-04-13 2005-05-25 Denso Corp., Kariya oxygen sensor
DE4447998B4 (en) * 1993-04-13 2005-12-22 Denso Corp., Kariya Oxygen sensor for measuring oxygen concn. of internal combustion engine exhaust gas - comprises solid electrolyte plate, ventilation plate, and heating base
JP2004506881A (en) * 2000-08-18 2004-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensors, especially oxygen sensors
JP2005216687A (en) * 2004-01-29 2005-08-11 Nec Corp Fuel concentration sensor, fuel container for fuel cell using it, fuel cell system using it and method of manufacture for fuel concentration sensor
US20090277806A1 (en) * 2006-06-30 2009-11-12 Nat Inst Of Adv Industrial Sci And Tech Electrochemical cell system gas sensor

Also Published As

Publication number Publication date
JPH0582551B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US5108577A (en) Electrochemical device
US4697165A (en) Ceramic heater and a method of manufacturing the same
US4668375A (en) Electric connection terminal for a sensor element utilizing ceramics
KR890001983B1 (en) Sensor for concentration of o2
US6866517B2 (en) Contact slidable structure with a high durability
JPS6336461B2 (en)
JP4172279B2 (en) Gas sensor
US6660142B2 (en) Nonfragile and quickly activatable structure of gas sensor element
US6666962B2 (en) Electrochemical sensor element with a porous reference gas accumulator
US4419213A (en) Oxygen sensing element formed as laminate of thin layers on substrate provided with heater and lead wires
JPH0161176B2 (en)
JPS61134655A (en) Oxygen sensor element
JPS61108957A (en) Oxygen sensor
JP4093784B2 (en) Multilayer gas sensor element, manufacturing method thereof, and gas sensor
JPH0222692Y2 (en)
JP3711597B2 (en) Air-fuel ratio detection device
JP2000180402A (en) Electrochemical measurement sensor
JPH11194111A (en) Flat sensor element
JPS59187252A (en) Oxygen sensor
JPH0417382B2 (en)
JP2002357589A (en) Gas sensor element and gas sensor
JP2004144756A (en) Sensor member
JP3783375B2 (en) Air-fuel ratio sensor element
JP4262764B2 (en) Multilayer gas sensor element
US20050199497A1 (en) Sensor for an electrochemical detecting element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term