JPS60243558A - Analyzing device of oxygen gas concentration - Google Patents

Analyzing device of oxygen gas concentration

Info

Publication number
JPS60243558A
JPS60243558A JP59098748A JP9874884A JPS60243558A JP S60243558 A JPS60243558 A JP S60243558A JP 59098748 A JP59098748 A JP 59098748A JP 9874884 A JP9874884 A JP 9874884A JP S60243558 A JPS60243558 A JP S60243558A
Authority
JP
Japan
Prior art keywords
gas
oxygen
electrode
reference electrode
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59098748A
Other languages
Japanese (ja)
Inventor
Shoichi Iwanaga
昭一 岩永
Ryoji Iwamura
岩村 亮二
Takeshi Fujita
毅 藤田
Akira Ikegami
昭 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59098748A priority Critical patent/JPS60243558A/en
Publication of JPS60243558A publication Critical patent/JPS60243558A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Abstract

PURPOSE:To attempt lower cost and higher precision, by fixing hermetically a perforated cover to a large surface provided with the reference electrode of solid electrolytic property formed principally in a flat plate. CONSTITUTION:In an O2 gas concentration analysis device 20 on the polarographical measuring principle, on one principal surface 38 of a solid electrolytic property formed principally in a flat plate is fixed with a measuring electrode 30 exposed to the gas specimen provided with an electron transmitting body and on the other principal surface 33 the reference electrode 31 contacting with the gas specimen through a hole 37 limiting gas dispersion is fixed respectively. These electrodes 30 and 31 are connected with a joint of a material 32 of electrolytic property. The principal surface 33 on the side of the electrode 31 is covered with a cover 35 perforated with a hole 37 for limiting gas dispersion. By this arrangement, an O2 gas concentration analysis device suited to a low cost mass production and capable in practice of measurement of O2 concentration in a high precision.

Description

【発明の詳細な説明】 〔発明の利用分野) 本発明は酸素ガス濃度分析装置にかんする。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an oxygen gas concentration analyzer.

〔発明の背f] 従来、気体中の酸素濃度の測定には、一般的に、ジルコ
ニア酸素濃淡電池が主として用いられている。この濃淡
電池は、固体電解質であるジルコニア板の両面に白金等
の電極面を形成してなるものであり、酸素濃度を測定す
るにあたっては、600〜900℃という高温において
一方の電極に被測定ガスを、他方の電極に濃度既知の酸
素を含有する基準ガスを接触させ、両電極間に発生する
起電力を測定することにより、被測定ガス中の酸素濃度
を測定するものである。しかしながら、この測定装置は
2つの酸素系(被測定ガス中の酸素と基準ガス中の酸素
)の酸素分圧Xおよび温度によって定まる起電力を利用
しようとするものであるため、被測定ガス中の酸素分圧
が基準ガス中の酸素分圧に近い場合には、微小な起電力
しか得られず、測定が困難となり、また、基準ガスが必
要であるため装置が複雑となる。
[Background f of the Invention] Conventionally, zirconia oxygen concentration cells have been mainly used to measure oxygen concentration in gas. This concentration cell is made by forming electrode surfaces of platinum or other material on both sides of a zirconia plate, which is a solid electrolyte.When measuring oxygen concentration, one electrode is charged with the gas to be measured at a high temperature of 600 to 900 degrees Celsius. The oxygen concentration in the gas to be measured is measured by bringing the other electrode into contact with a reference gas containing oxygen of known concentration and measuring the electromotive force generated between the two electrodes. However, since this measuring device attempts to utilize the electromotive force determined by the oxygen partial pressure X and temperature of two oxygen systems (oxygen in the measured gas and oxygen in the reference gas), the If the oxygen partial pressure is close to the oxygen partial pressure in the reference gas, only a small electromotive force can be obtained, making measurement difficult and requiring a reference gas, which complicates the apparatus.

このような電位差計的測定原理に従う酸素ガス濃度分析
装置の他に、ポーラログラフスー肯な測定原理に従う酸
素ガス濃度分析装置が知られている。この測定装置は、
酸素イオン透過体と拡散孔とを有する函体および酸素イ
オン透過体の両面に形成した測定と基準の両電極からな
る検出部を備えているもので、検出器を600〜100
0℃の高温に保ちこれを被測定ガス中に入れて、前記基
準、測定両電極間に印加する電圧を除々に増加していく
。電圧の増加に伴なって当初は電極間に流れる電流も増
加するが、ある電圧以上においては電流値は一定の値に
維持される。この一定電流値は孔を通って拡散する酸素
の関数であ)、これに基き一定電流値の測定によって被
測定ガス中の酸素濃度を測定するものである。この分析
装置によれば、前記電極間に電圧を印加し、両電極間に
流れる電流を利用するものであるから、前記のごとく電
極間に生ずる起電力を利用する濃淡電池に比して、測定
が容易になる。また、この装置においては、酸素濃度と
限界電流値はほぼ比例関係にあることも測定を容易にし
、また、濃淡電池のごとく基準ガスを必要としない。
In addition to oxygen gas concentration analyzers based on such a potentiometric measurement principle, oxygen gas concentration analyzers based on a polarographic measurement principle are known. This measuring device is
It is equipped with a detection section consisting of a box having an oxygen ion permeable body and a diffusion hole, and both measurement and reference electrodes formed on both sides of the oxygen ion permeable body.
The gas is kept at a high temperature of 0° C. and placed in the gas to be measured, and the voltage applied between the reference and measurement electrodes is gradually increased. Initially, as the voltage increases, the current flowing between the electrodes also increases, but above a certain voltage, the current value is maintained at a constant value. This constant current value is a function of oxygen diffusing through the holes), and based on this, the oxygen concentration in the gas to be measured is measured by measuring the constant current value. According to this analyzer, since a voltage is applied between the electrodes and the current flowing between the two electrodes is used, it is easier to measure than the concentration battery that uses the electromotive force generated between the electrodes as described above. becomes easier. Furthermore, in this device, the fact that the oxygen concentration and the limiting current value are in a substantially proportional relationship makes measurement easy, and unlike concentration batteries, a reference gas is not required.

従来このようなポーラログラフイー的な測定原理lこ従
う酸素ガス分析装置は、第1図および第2図に示すごと
く、円板状の酸素イオンを導く固体電解質11の上面に
スパッタリング法により、円板状の基準電極12を形成
するとともに、その下面において基準電極12と対向す
る様に測定電極13を形成してなり、かつ基準電極12
側の固体電解質11上には、上部に酸素ガス拡散用の拡
散孔15を設けた断面逆U字状の円筒状の蓋14を上記
基準電極が覆われるように固着し、函体10を構成して
なるもので、加熱手段としてセラミック管の外周にニク
ロム線やカンタル線などの抵抗発熱線をら雄状に巻回し
たものに装着されている。このため製造方法が複雑で大
量生産に適さないのみならず、酸素ガス分析装置自体の
温度を精度よく制御することが難しいため、酸素濃度を
高精度に測定することができないという問題点を有して
いた。
Conventionally, an oxygen gas analyzer that follows such a polarographic measurement principle, as shown in FIGS. A reference electrode 12 is formed in the shape of a shape, and a measurement electrode 13 is formed on the lower surface of the reference electrode 12 to face the reference electrode 12.
On the solid electrolyte 11 on the side, a cylindrical lid 14 with an inverted U-shaped cross section and a diffusion hole 15 for oxygen gas diffusion in the upper part is fixed so as to cover the reference electrode, thereby forming the box 10. As a heating means, a resistance heating wire such as nichrome wire or Kanthal wire is wound around the outer periphery of a ceramic tube in a male shape. For this reason, not only is the manufacturing method complicated and unsuitable for mass production, but it is also difficult to accurately control the temperature of the oxygen gas analyzer itself, making it impossible to measure oxygen concentration with high precision. was.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、酸素濃度を精度よく測定することがで
き、低価格でしかも大量生産に適ぞした酸素ガス濃度分
析装置を提供することにある。
An object of the present invention is to provide an oxygen gas concentration analyzer that can accurately measure oxygen concentration, is inexpensive, and is suitable for mass production.

〔発明の概要〕[Summary of the invention]

即ち、本発明の酸素ガス濃度分析装置は、酸素イオンを
伝導しうる固体電解質に、電子伝導性を有し被測定ガス
に暴露される測定電極及びガス拡散を制限する孔を通し
て被測定ガスと接触する基準電極がそれぞれ固着され、
これら測定電極及び基準電極がそれぞれ導体路を介して
固体電解質の接続部に接続されている酸素ガス濃度分析
装置において、主として平板で構成されている前記固体
電解質の一生面に測定電極、他の主面に基準電極がそれ
ぞれ固着され、基準電極側の主面が前記ガス拡散を制限
する孔が穿たれた蓋体で覆われ、かつこの蓋体に加熱手
段が備えられていることを特徴とするものである。
That is, in the oxygen gas concentration analyzer of the present invention, a solid electrolyte capable of conducting oxygen ions is brought into contact with the gas to be measured through a measurement electrode that has electronic conductivity and is exposed to the gas to be measured, and a hole that restricts gas diffusion. A reference electrode is fixed to each
In an oxygen gas concentration analyzer in which the measuring electrode and the reference electrode are respectively connected to the connection part of the solid electrolyte through conductor paths, the measuring electrode and the other main A reference electrode is fixed to each surface, the main surface on the reference electrode side is covered with a lid body having holes for restricting the gas diffusion, and the lid body is equipped with a heating means. It is something.

本発明の酸素ガス濃度分析装置は、低価格で大量生産に
適合し、利用の面で酸素濃度を精度よ〈測定できるとい
う大きな利点を有している。
The oxygen gas concentration analyzer of the present invention is suitable for mass production at a low cost, and has the great advantage of being able to accurately measure oxygen concentration in terms of use.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を図面に基ついて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

本例では、ポーラログラフイー的測定原理に従って動作
する酸素ガス濃度分析装置20において、主として平板
で構成されている固体電解質32の一生面38に電子伝
導体を有し被測定ガスに暴露される測定電極30、他の
一生面66にガス拡散を制限する孔67を通して被測定
ガスと接触する基準電極31がそれぞれ固着されている
。これら測定電極ろ0及び基準電極31はそれぞれ導体
路を介し−て前記固体電解質32の接続部に接続きれて
いる。基準電極61側の主面33は前記ガス拡散を制限
する孔37が穿たれた蓋体35で覆われ、かつこの蓋体
35には加熱手段39が備えられている。
In this example, in an oxygen gas concentration analyzer 20 that operates according to the polarographic measurement principle, a measurement electrode that has an electron conductor on the whole surface 38 of a solid electrolyte 32 mainly composed of a flat plate and is exposed to a gas to be measured. 30, a reference electrode 31 is fixed to each of the other living surfaces 66, which contacts the gas to be measured through a hole 67 for restricting gas diffusion. The measuring electrode 0 and the reference electrode 31 are each connected to a connecting portion of the solid electrolyte 32 via a conductor path. The main surface 33 on the side of the reference electrode 61 is covered with a lid 35 having holes 37 for restricting the gas diffusion, and the lid 35 is equipped with heating means 39 .

これにより、低価格で大量生産に適合し、利用の面で酸
素濃度を精度よく測定できる酸素カス濃度分析装置が得
られる。
This makes it possible to obtain an oxygen scum concentration analyzer that is suitable for mass production at a low price and that can accurately measure oxygen concentration in terms of use.

前記基準電極31は、例えば多孔質白金などの厚み5〜
10μmの膜から成如、印刷法のような公知の方法で主
面33に固着される。前記蓋体35は酸化ジルコニウム
等のセラミックなどガス不透過性の物質からなり、例え
ば焼結によって固体t%質32に固着一体化され基準電
極31との間で閉じられた空間36を形成している。
The reference electrode 31 is made of, for example, porous platinum or the like, and has a thickness of 5 to 50%.
A 10 μm thick film is then fixed to the main surface 33 by a known method such as printing. The lid body 35 is made of a gas-impermeable material such as ceramic such as zirconium oxide, and is fixed and integrated with the solid t% material 32 by sintering, for example, to form a closed space 36 with the reference electrode 31. There is.

前記測定電極60は、例えば多孔質白金などの膜からな
υ、印刷法のような公知の方法で主面38に固着される
。測定電極30の主面68と反対側の面は、好捷しくは
多孔性保護層(図示せず)によって覆われている。この
保護層は例えばマグネシウムのスピネルから成り、熱測
定ガスに対する保護の役目を果たす。
The measurement electrode 60 is made of a film of porous platinum, for example, and is fixed to the main surface 38 by a known method such as a printing method. The surface of the measuring electrode 30 opposite the main surface 68 is preferably covered by a porous protective layer (not shown). This protective layer consists, for example, of magnesium spinel and serves as protection against the calorimetric gas.

前記加熱手段39は、PIあるいはP、 −ah合金等
の金属からなる加熱素子であり、好ましくは蛇行状をな
し、厚みは10μmであることが好ましいθ 以下、本発明の一実施例を図面によシ詳しく説明する。
The heating means 39 is a heating element made of a metal such as PI or P, -ah alloy, preferably has a meandering shape, and preferably has a thickness of 10 μm. Let me explain in detail.

第5図(a)〜(k)に示すように3枚の6モル%Y、
0−2rαよ如なる固体電解質グリーンシート(58X
 am X O,5mm ) 41.51.61 を用
意し図5(b)に示すように一方のグリーンシート41
の一側面に白金ペーストを印刷して160℃×10分間
の乾燥をおこなって未焼成状態の基準電極42を形成し
、また、図5(C)に示すようにその他側面に基準電極
42に相対して配置されるように白金ペーストを印刷し
て130°C×10分間の乾燥をおこなって未焼成状態
の測定電極43を形成した0さらに、基準電極上に図5
(d)に示すように有機バインダを印刷して130℃×
10分間乾燥し、後で焼結時に再び除去して形成される
空間形成体44を設けた。
As shown in FIG. 5(a) to (k), three sheets of 6 mol% Y,
Solid electrolyte green sheet such as 0-2rα (58X
am
A platinum paste is printed on one side and dried at 160°C for 10 minutes to form an unfired reference electrode 42, and a platinum paste is printed on the other side opposite to the reference electrode 42 as shown in FIG. Platinum paste was printed so that the platinum paste was arranged as shown in FIG.
As shown in (d), print the organic binder at 130°C
A space forming body 44 was formed by drying for 10 minutes and removing it again during sintering.

他方のグリーンシート51上に図5(f)に示すように
アルミナペーストを印刷して130℃×10分間の乾燥
をおこなって未焼成状態の絶縁層52mを形成し、びら
にその上に図5(g)に示すように白金ペーストを印刷
し、130℃×10分間で乾燥して未焼成状態の蛇行状
ヒータ56を形成した。この上に図5(h)に示すよう
に前記アルミナペーストを印刷して130℃×10分間
の乾燥をおこない、グリーンシート上に未焼成状態で絶
縁層52bにおおわれたヒータ層を形成した。
As shown in FIG. 5(f), alumina paste is printed on the other green sheet 51 and dried at 130° C. for 10 minutes to form an unfired insulating layer 52m. As shown in (g), a platinum paste was printed and dried at 130° C. for 10 minutes to form a meandering heater 56 in an unfired state. The alumina paste was printed on this as shown in FIG. 5(h) and dried at 130° C. for 10 minutes to form a heater layer covered with an insulating layer 52b in an unfired state on the green sheet.

次いで、これらのグリーンシー) 41.51 、61
を重ね合わせ100℃×10分間で110Icβの圧着
をおこなって第図5(J)に示すような積層構造体を形
成した後、ポンナ型でシー)51.61にガス拡散用孔
71をあけ、これら全体を1 boooCで1時間焼成
した。さらに、マグネシウムのスピネル粉末をプラズマ
溶射することにより多孔質保護層を形成し、酸素ガス濃
度分析装置70を形成lまた。
Then these green seas) 41.51, 61
After stacking them and applying pressure bonding of 110Icβ at 100° C. for 10 minutes to form a laminated structure as shown in FIG. The whole was fired at 1 boooC for 1 hour. Furthermore, a porous protective layer is formed by plasma spraying magnesium spinel powder, and the oxygen gas concentration analyzer 70 is also formed.

ポーラログノフィー的測定原理にしたがって動作する酸
素ガス濃度分析装置をこのように構造にすると検出器7
0を直接的に加熱することができるので少ない電力で該
分析装置を加熱できる。
If the oxygen gas concentration analyzer that operates according to the polarognographic measurement principle is constructed in this way, the detector 7
Since 0 can be directly heated, the analyzer can be heated with less electric power.

次に、上記装置を用いて種々の酸素濃度を有する被測定
ガスを測定した結果を示す。この測定に当ってはヒータ
に加える電力を制御して、800℃に保持しつつ、検出
器に被測定ガスを送った。この際、検出器においては、
酸素ガスの拡散によって拡散孔71を介して検出器70
の空間44内に酸素ガスが流入する。このようにして流
入した酸素ガスは基準電極42.測定電極43に印加さ
れた電圧により、基準電極42で還元されて酸素イオン
となり、固体電解質中を測定電極43へ移動し、ここで
酸化されて酸素ガスとなり、検出器70の外部に排出さ
れる。このようにして、被測定ガスを送入しつつ、基準
電極42.測定電極430間に印加される電圧を変え、
各電圧における電流値を測定した。この測定は、酸素濃
度の異なる被測定ガスそれぞれについて行なった0その
結果、第6図に示すような酸素濃度(係)と限界電流特
性の関係(mA)を得た。この限界電流特性を利用した
酸素ガス濃度分析装置においては、酸素濃度に対する限
界電流が測定時の検出ガス温度によって大幅に変化する
。しかし、このような構造にすると検出器とヒータが一
体化され構成されているので、検出器の温度を高精度に
制御でき、検出ガス温度による測定精度の低下がない。
Next, the results of measuring gases to be measured having various oxygen concentrations using the above device will be shown. In this measurement, the gas to be measured was sent to the detector while controlling the electric power applied to the heater to maintain the temperature at 800°C. At this time, in the detector,
Detector 70 through diffusion hole 71 by diffusion of oxygen gas
Oxygen gas flows into the space 44 . The oxygen gas that has flowed in this way is transferred to the reference electrode 42. Due to the voltage applied to the measurement electrode 43 , it is reduced at the reference electrode 42 to become oxygen ions, moves through the solid electrolyte to the measurement electrode 43 , where it is oxidized to become oxygen gas, and is discharged to the outside of the detector 70 . . In this way, while supplying the gas to be measured, the reference electrode 42. changing the voltage applied between the measurement electrodes 430;
The current value at each voltage was measured. This measurement was carried out for each of the gases to be measured having different oxygen concentrations.As a result, the relationship (mA) between oxygen concentration (correlation) and limiting current characteristics as shown in FIG. 6 was obtained. In an oxygen gas concentration analyzer that utilizes this limiting current characteristic, the limiting current with respect to oxygen concentration changes significantly depending on the detected gas temperature at the time of measurement. However, with such a structure, since the detector and the heater are integrated, the temperature of the detector can be controlled with high precision, and measurement accuracy does not deteriorate due to the detected gas temperature.

この様に、本発明の酸素ガス濃度分析装置によれは、基
準電極に接して閉じられた空間を容易に形成することが
できるため、大量生産に適しており、しかも安価である
と共に、蓋にヒータが設けられているため、分析装置の
温度制御が容易であυ、酸素濃度分析の高精度化が良好
に達成されるという、極めて実用的かつ重要な利点を有
している。
As described above, the oxygen gas concentration analyzer of the present invention can easily form a closed space in contact with the reference electrode, so it is suitable for mass production, is inexpensive, and can be attached to a lid. Since the heater is provided, it is easy to control the temperature of the analyzer and highly accurate oxygen concentration analysis can be achieved, which is an extremely practical and important advantage.

なお当然のことではあるが、本発明はこの実施例により
制限されるものではない。
It should be noted that, as a matter of course, the present invention is not limited to this example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体電解質が主として平らな板であ)
、この固体電解質の基準電極を有する大面に孔を有する
蓋を固体電解質に密着固定することによって、工業的に
有利な方法で、基準電極の設けられた固体電解質板と蓋
の間に閉じられた空間を形成できるので大量生産にすぐ
れた製造方法によって製造されうるという利点を有する
According to the invention, the solid electrolyte is mainly a flat plate)
By tightly fixing a lid having holes on a large surface having a reference electrode of the solid electrolyte to the solid electrolyte, the lid can be closed between the solid electrolyte plate provided with the reference electrode and the lid in an industrially advantageous method. It has the advantage that it can be manufactured by a manufacturing method that is suitable for mass production because it can form a space with a large space.

すた、蓋にヒータが形成されているため、ヒータと酸素
ガス濃度分析装置が一体化して構成されてお如、該分析
装置の温度を高精度に制御できるので、測定ガスの温度
が低温から高温までどのように変化しても高い精度で測
定ガス中の酸素濃度を検出できる。また、該分析装置を
少ない電力で効率よく均一に加熱できる。
Since the heater is formed in the case and the lid, the heater and the oxygen gas concentration analyzer are integrated, and the temperature of the analyzer can be controlled with high precision, so the temperature of the gas to be measured can be adjusted from low to low. The oxygen concentration in the measurement gas can be detected with high accuracy no matter how the temperature changes. Moreover, the analyzer can be efficiently and uniformly heated with less electric power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素ガス濃度分析装置の説明図でセンサ
の断面図と本装置の回路図を示し、第2図はセンサの一
部欠載斜視図、第3図は本発明に係る、酸素ガス濃度分
析装置の概略構造図であり、第4図は第3図による酸素
ガス濃度分析装置を分解して示す斜視図、第5図は本発
明の実施例における酸素ガス濃度分析装置の製造工程を
示す説明図、第6図は実施例における酸素濃度と限界電
流値の関係を示す線図である。 11 固体電解質、 12 基準電極、13 測定電極
、 10 函体、 15 拡散孔、 20・・・酸素ガス濃度分析装置、 60 測定電極、 31 ・・基準電極、32・・・固
体電解質、35・・・蓋、66・・空間、37・・ガス
拡散孔、 39・・加熱素子、40・・空気絶縁層、41 、51
 、61 ・固体電解質グリーンシート、42・・基準
電極、43・測定電極、 44・・・空所形成体、52 絶縁層、56 蛇行状ヒ
ータ、7トガス拡散用孔。 躬 1 囚 拓21 /4
FIG. 1 is an explanatory diagram of a conventional oxygen gas concentration analyzer, showing a cross-sectional view of the sensor and a circuit diagram of the device, FIG. 2 is a perspective view of the sensor, with some parts missing, and FIG. 3 is an illustration of a conventional oxygen gas concentration analyzer according to the present invention. FIG. 4 is an exploded perspective view of the oxygen gas concentration analyzer shown in FIG. 3, and FIG. 5 is a diagram showing the manufacturing of the oxygen gas concentration analyzer according to an embodiment of the present invention. FIG. 6, which is an explanatory drawing showing the process, is a diagram showing the relationship between the oxygen concentration and the limiting current value in the example. 11 solid electrolyte, 12 reference electrode, 13 measurement electrode, 10 box, 15 diffusion hole, 20... oxygen gas concentration analyzer, 60 measurement electrode, 31... reference electrode, 32... solid electrolyte, 35... - Lid, 66... Space, 37... Gas diffusion hole, 39... Heating element, 40... Air insulation layer, 41, 51
, 61 - Solid electrolyte green sheet, 42 - Reference electrode, 43 - Measurement electrode, 44 - Cavity forming body, 52 Insulating layer, 56 Meandering heater, 7 Gas diffusion hole. Tsumugi 1 Prisoner Taku 21 /4

Claims (1)

【特許請求の範囲】[Claims] 酸素イオンを伝導しうる固体電解質に、電子伝導性を有
し被測定ガスに暴露される測定電極及びガス拡散を制限
する孔を通して被測定ガスと接触する基準電極がそれぞ
れ固着され、これら測定電極及び基準電極がそれぞれ導
体路を介して固体電解質の接続部(ζ接続されている酸
素ガス濃度分析装置において、主として平板で構成され
ている前記固体電解質の一主面に測定電極、他の主面に
基準電極がそれぞれ固着され、基準電極側の主面が前記
ガス拡散を制限する孔が穿たれた蓋体で覆われ、かつこ
の蓋体に加熱手段が備えられていることを特徴とする酸
素ガス濃度分析装置。
A measurement electrode that has electron conductivity and is exposed to the gas to be measured and a reference electrode that contacts the gas to be measured through holes that limit gas diffusion are fixed to a solid electrolyte that can conduct oxygen ions, and these measurement electrodes and In an oxygen gas concentration analyzer in which reference electrodes are each connected to a solid electrolyte connection (ζ) via a conductor path, a measurement electrode is placed on one main surface of the solid electrolyte, which is mainly composed of a flat plate, and a measurement electrode is placed on the other main surface. Oxygen gas, characterized in that the reference electrodes are fixed to each other, the main surface on the reference electrode side is covered with a lid body having holes for restricting the gas diffusion, and the lid body is equipped with heating means. Concentration analyzer.
JP59098748A 1984-05-18 1984-05-18 Analyzing device of oxygen gas concentration Pending JPS60243558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098748A JPS60243558A (en) 1984-05-18 1984-05-18 Analyzing device of oxygen gas concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098748A JPS60243558A (en) 1984-05-18 1984-05-18 Analyzing device of oxygen gas concentration

Publications (1)

Publication Number Publication Date
JPS60243558A true JPS60243558A (en) 1985-12-03

Family

ID=14228085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098748A Pending JPS60243558A (en) 1984-05-18 1984-05-18 Analyzing device of oxygen gas concentration

Country Status (1)

Country Link
JP (1) JPS60243558A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206441A (en) * 1986-03-06 1987-09-10 Fuji Electric Co Ltd Threshold current type gas sensor
JPS62285055A (en) * 1986-06-03 1987-12-10 Fuji Electric Co Ltd Oxygen sensor
JPS62285056A (en) * 1986-06-03 1987-12-10 Fuji Electric Co Ltd Manufacture of oxygen sensor
JPS62201057U (en) * 1986-06-13 1987-12-22
JPS6383653U (en) * 1986-11-20 1988-06-01
JPS63199060U (en) * 1987-06-10 1988-12-21

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206441A (en) * 1986-03-06 1987-09-10 Fuji Electric Co Ltd Threshold current type gas sensor
JPS62285055A (en) * 1986-06-03 1987-12-10 Fuji Electric Co Ltd Oxygen sensor
JPS62285056A (en) * 1986-06-03 1987-12-10 Fuji Electric Co Ltd Manufacture of oxygen sensor
JPS62201057U (en) * 1986-06-13 1987-12-22
JPS6383653U (en) * 1986-11-20 1988-06-01
JPS63199060U (en) * 1987-06-10 1988-12-21

Similar Documents

Publication Publication Date Title
US4487680A (en) Planar ZrO2 oxygen pumping sensor
US6579436B2 (en) Gas sensor and method of producing the same
US4902400A (en) Gas sensing element
WO1998012550A1 (en) Gas sensor
EP0188900A2 (en) Electrochemical device
US7045047B2 (en) Gas sensor element
JPS61170650A (en) Oxygen concentration sensor
EP0294085B1 (en) Electrochemical elements
JP3534612B2 (en) Flat limit current sensor
JPH0617891B2 (en) Oxygen concentration detector
JPS60243558A (en) Analyzing device of oxygen gas concentration
JPH0513262B2 (en)
JPS5965758A (en) Electrochemical device and cell
US4795544A (en) Electrochemical gas sensor
JP2598771B2 (en) Composite gas sensor
US6352631B1 (en) Gas sensor
US6084414A (en) Testing for leakage currents in planar lambda probes
JPH09264872A (en) Gas sensor
JPH07167833A (en) Gas sensor
JPS62148849A (en) Air-fuel ratio sensor
JPS61296262A (en) Air/fuel ratio sensor
JPS62190461A (en) Activation detecting device for air fuel ratio sensor
JPS62145161A (en) Oxygen sensor
JPS61209352A (en) Electrochemical apparatus and its preparation
JP3003957B2 (en) Oxygen sensor