JPS62206441A - Threshold current type gas sensor - Google Patents

Threshold current type gas sensor

Info

Publication number
JPS62206441A
JPS62206441A JP61049181A JP4918186A JPS62206441A JP S62206441 A JPS62206441 A JP S62206441A JP 61049181 A JP61049181 A JP 61049181A JP 4918186 A JP4918186 A JP 4918186A JP S62206441 A JPS62206441 A JP S62206441A
Authority
JP
Japan
Prior art keywords
gas sensor
current type
limiting current
measurement
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61049181A
Other languages
Japanese (ja)
Inventor
Hideo Shiraishi
白石 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61049181A priority Critical patent/JPS62206441A/en
Publication of JPS62206441A publication Critical patent/JPS62206441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce heat loss while raising mechanical strength, by sandwitching a sheet-like ion conductor with a pair of holding members from both sides. CONSTITUTION:A thick film heater 11 connected to a lead 13 is provided between sheet-like ion conductors 1 and 6 and a cathode 2 and an anode 5 are provided separately on the opposite surface of the heater 11. Frames 14 and 32 and shielding plates 15 and 24 are provided on the cathode 2 side and on the anode 5 side of the conductors 1 and 6 to form a closed spaces 17 and 25 as measuring space. Then, communicating holes 18 and 26 are made in the shielding plates 15 and 24 and moreover, the communicating hole 18 communicates with a communicating hole 21 formed with a top plate 16 to serve as supply hole for a gas to be measured. The frames 14 and 24, the shielding plates 15 and 24 and the top plate 16 composed holding members 31 and 32 to sandwitch the ion conductors 1 and 6 from both sides. This reduces heat loss while improving mechanical strength.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は自動車エンジンやボイラの燃焼制御用あるい
は酸欠モニタ用としての酸素イオン導電体を用いた限界
電流型酸素センサの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to the structure of a limiting current type oxygen sensor using an oxygen ion conductor for combustion control of an automobile engine or boiler or for oxygen deficiency monitoring.

〔従来技術とその問題点〕[Prior art and its problems]

高温において酸素イオン導電体となる固体電解質セラミ
クスである安定化ジルコニアは酸素センサとして広く用
いられており、まずその概要を説明する。安定化ジルコ
ニアを用いた酸素センサには濃淡電池型と限界電流型の
二型式がある。濃淡電池型は従来多く用いられている酸
素センサで、850℃近傍の高温に加熱17た安定化ジ
ルコニアを測定雰囲気と基準雰囲気の隔壁と[5、両案
囲気の酸素分圧の比の対数に比例して発生する起電力を
測定する。一方限界電流屋は最近実用化が進んできた酸
素センサであって、第5図に示すように安定化ジルコニ
ア板50表面のカソード51をキャップ55で遮蔽する
閉空間52を設け、閉空間52と外部の測定雰囲気とを
キャップ55に設けた小孔53によって連通させ外部か
らの酸素の拡散進入を制限するようにしたものである。
Stabilized zirconia, a solid electrolyte ceramic that becomes an oxygen ion conductor at high temperatures, is widely used as an oxygen sensor, and we will first provide an overview of it. There are two types of oxygen sensors using stabilized zirconia: concentration cell type and limiting current type. The concentration cell type is an oxygen sensor that has been widely used in the past. Stabilized zirconia heated to a high temperature of around 850°C is used as a partition wall between the measurement atmosphere and the reference atmosphere. Measure the electromotive force generated proportionally. On the other hand, the limiting current sensor is an oxygen sensor that has recently been put into practical use, and as shown in FIG. A small hole 53 provided in a cap 55 communicates with the external measurement atmosphere to restrict the diffusion and entry of oxygen from the outside.

安定化ジルコニア板50は図示はされていないヒーター
で加熱されてカソード51に達した酸素は電解によって
電子と結合して酸素イオンとなり、カソード51とアノ
ード54の間に電圧を与えると安定化ジルコニア中をイ
オンとt7て移動し安定化ジルコニア板50のカソード
51の反対側に設けたアノード54に電子を与えて酸素
分子として外部に放出されるので電流出力が得られる。
The stabilized zirconia plate 50 is heated by a heater (not shown), and the oxygen that reaches the cathode 51 combines with electrons by electrolysis to become oxygen ions, and when a voltage is applied between the cathode 51 and the anode 54, the stabilized zirconia plate 50 is heated. The electrons move with the ions at t7, give electrons to the anode 54 provided on the opposite side of the cathode 51 of the stabilized zirconia plate 50, and are emitted to the outside as oxygen molecules, so that a current output is obtained.

与える電圧がある値以上になると小孔53からの拡散が
酸素の輸送速度を支配するようになるので、出力電流の
値は小孔530寸法と酸素濃度とによって定まるように
なり、小孔53の寸法を定めると電圧電流特性に平坦な
領域があられれ、その領域での電流(これを限界電流と
いう)の値は酸素濃度に比例する。このように酸素濃度
に比例する電流出力が得られるので、適当な電圧を与、
えて出力電流を測定する方式により自動車エンジンやボ
イラの燃焼における空燃比制御や酸欠モニタのセンサと
して用いられる。限界電流型のセンサは外部電圧で強制
的に酸素イオンを移動させるので、イオン導電性を与え
得る温度を比較的低(とれ、350℃近傍で用いること
ができる。以上が安定化ジルコニアを用いた酸素センサ
の概要である。
When the applied voltage exceeds a certain value, diffusion from the small holes 53 comes to dominate the transport rate of oxygen, so the value of the output current is determined by the size of the small holes 530 and the oxygen concentration. Once the dimensions are determined, a flat region is created in the voltage-current characteristics, and the value of the current (this is called the limiting current) in that region is proportional to the oxygen concentration. In this way, a current output proportional to the oxygen concentration can be obtained, so by applying an appropriate voltage,
It is used as a sensor for air-fuel ratio control and oxygen deficiency monitoring in the combustion of automobile engines and boilers by measuring the output current. Since the limiting current type sensor forcibly moves oxygen ions using an external voltage, it can be used at a relatively low temperature (nearly 350°C) at which it can provide ionic conductivity. This is an overview of oxygen sensors.

この限界電流型酸素センサを構成する上で従来法の二点
が問題となっている。
There are two problems with the conventional method in constructing this limiting current type oxygen sensor.

その一つはセンサ素子からの熱損失を抑えることである
。既に記17たように限界電流型酸素センサは350℃
近傍に加熱して用いる必要があり、加熱用のヒーターを
センサ素子に内蔵させたものでは、素子外部への熱損失
を極力少なくして、少ない消費電力で有効に加熱するこ
とが望まれる。熱損失は熱輻射によるものと素子周辺の
気体の対流による熱除去を効果によるものとがあり、特
に対流効果による熱損失が犬である。このため従来は素
子を小形化して絶対放熱面積を減少させたり、あるいは
素子自体を石綿やグラスクールのような熱絶縁材で包ん
だり[7て対処していた。t2かしなからセンサ素子を
小形化するには次のような問題がある。すなわちセンサ
素子とともに/」1形化されるヒータやカソード51.
アノード54などの電極は導電性材料のペーストを用い
たスクリーン印刷で作られるため、信号取出用のリード
の接続も含めてその小形化には限度がある。また犀膜で
あるため、前記のスクリーン印刷をさけて蒸着やスパヴ
タリングで形成させると、所要膜厚を得るまでに長時間
を要し量産に適17ない。さらに酸素を拡散進入させる
。J一孔53も詰まりの問題から/J%形化が制限され
る。限界電流特性を得るためにはこの小孔53がカソー
ドを囲む閉空間52に対して十分小さいことが必要で、
小孔53の径に限界があると閉空間52の小形化も制限
され、これによってもセンサ素子全体の小形化は制限を
受ける。
One of these is to suppress heat loss from the sensor element. As mentioned above, the limiting current type oxygen sensor has a temperature of 350°C.
It is necessary to heat the sensor element nearby, and in the case of a sensor element with a heating heater built into the sensor element, it is desirable to minimize heat loss to the outside of the element and heat it effectively with less power consumption. There are two types of heat loss: heat radiation, and heat removal due to gas convection around the element. Heat loss due to convection is particularly important. Conventionally, this has been dealt with by downsizing the device to reduce its absolute heat dissipation area, or by wrapping the device itself in a heat insulating material such as asbestos or glass coat [7]. There are the following problems in reducing the size of the sensor element from t2. That is, the heater and cathode 51 are made into one type together with the sensor element.
Since electrodes such as the anode 54 are made by screen printing using a paste of a conductive material, there is a limit to their miniaturization, including connection of leads for signal extraction. Moreover, since it is a rhinoceros membrane, if it is formed by vapor deposition or sputtering instead of the screen printing described above, it will take a long time to obtain the required thickness, making it unsuitable for mass production. Furthermore, oxygen is allowed to diffuse into the atmosphere. Due to the problem of clogging of the J hole 53, the possibility of forming the J hole 53 into a J% shape is also limited. In order to obtain the limiting current characteristics, it is necessary that this small hole 53 is sufficiently small compared to the closed space 52 surrounding the cathode.
If there is a limit to the diameter of the small hole 53, the reduction in size of the closed space 52 is also limited, which also limits the reduction in size of the sensor element as a whole.

一方熱絶縁材でセンサ素子を包むことは、センサ素子の
製作工程のほかに包み込みの工程が加わることになり、
包み込みにおいて既にセンサ素子に取りつけられている
リード線を破損させない配慮も必要であって量産上問題
がある。
On the other hand, wrapping the sensor element with a heat insulating material requires a wrapping process in addition to the sensor element fabrication process.
Care must be taken not to damage the lead wires already attached to the sensor element during wrapping, which poses a problem in mass production.

他の一つの問題は酸素イオン導電体の安定化ジルコニア
・板50・の・強度の問題である。安定化ジルコニア板
50は比較的低温の350℃近傍においても良好な導電
性を与えるように、その厚さを薄<し、カソード51と
アノード54間の電気抵抗値を低くして用いられる。t
7たがって板の機械的強度が不十分で壊れやすい欠点が
あった。
Another problem is the strength of the oxygen ion conductor stabilized zirconia plate 50. The stabilized zirconia plate 50 is used with a thin thickness and a low electrical resistance value between the cathode 51 and the anode 54 so as to provide good conductivity even at a relatively low temperature of around 350°C. t
7. Therefore, the mechanical strength of the plate was insufficient and it was easily broken.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決し、熱損失が少なく、ま
た酸素イオン導電体の破損のおそれの少ない構造の限界
電流型ガスセンサを提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and to provide a limiting current type gas sensor having a structure that causes less heat loss and less risk of damage to the oxygen ion conductor.

〔発明の要点〕[Key points of the invention]

この発明は加熱されたイオン導電体たとえば酸素イオン
導電体である薄板状の安定化ジルコニア板を両側から1
対の保持部材で挟持させることによって、イオン導電体
を外部から熱的に絶縁するとともに該イオン導電体を補
強しまた保護するようにしたものである。
In this invention, a thin stabilized zirconia plate, which is a heated ionic conductor such as an oxygen ionic conductor, is attached from both sides.
By holding the ion conductor between the pair of holding members, the ion conductor is thermally insulated from the outside, and the ion conductor is reinforced and protected.

イオン導電体である薄板状の安定化ジルコニア板にはl
対の電極層がカソード、アノードとしてそれぞれの面に
設けられており、これら電極層部は安定化ジルコニア板
に設けられた厚膜ヒータを一つの加熱手段として加熱さ
れ、測定ガスとしての酸素のイオンに対する導電性を与
える。
The thin stabilized zirconia plate, which is an ionic conductor, has l.
A pair of electrode layers is provided as a cathode and an anode on each surface, and these electrode layers are heated using a thick film heater provided on a stabilized zirconia plate as a heating means, and oxygen ions as a measurement gas are heated. Provides electrical conductivity.

保持部材にはたとえば枠状体部と遮蔽板部とから構成さ
れるような空間を閉包させ、この空間がイオン導電体の
加熱された電極層部を保温する保温空間となり、また測
定ガスをカソードに接触させてイオン化させたり、アノ
ードに電子を与えてイオンからガス分子に戻った測定ガ
スを保有[、たりするための測定空間となる。保温空間
は測定空間をかねることができる。このような空間を有
する保持部材がイオン導電体の加熱された電極層部と加
熱手段としての厚膜ヒータを含む領域を囲むように両側
から保持するので、電極層部と加熱手段とを含む領域が
外部より熱的に絶縁される。さらに保持部材は前記保温
空間や測定空間を構成するたとえば前記の枠状体部のよ
うなものでイオン導電体の電極層部と加熱手段とを含む
領域の周辺部を強固に挟持してイオン導電体を補強し、
また遮蔽板部のようなものによってイオン導電体に直接
外力が加わるのを保護する。
The holding member encloses a space composed of, for example, a frame-shaped body part and a shielding plate part, and this space becomes a heat-retaining space that keeps the heated electrode layer part of the ion conductor warm, and also serves as a heat-retaining space for keeping the heated electrode layer part of the ion conductor warm. It serves as a measurement space for holding the measurement gas that is brought into contact with the anode to ionize it, or that returns the measurement gas from ions to gas molecules by giving electrons to the anode. The heat-retaining space can also serve as a measurement space. Since the holding member having such a space surrounds and holds from both sides the region including the heated electrode layer portion of the ionic conductor and the thick film heater as the heating means, the region including the electrode layer portion and the heating means is held from both sides. is thermally insulated from the outside. Furthermore, the holding member is a member such as the above-mentioned frame-shaped body that constitutes the heat-retaining space and the measurement space, and firmly holds the peripheral part of the area including the electrode layer part of the ion conductor and the heating means, thereby conducting ion conduction. Reinforce your body,
Also, a shielding plate protects the ionic conductor from direct external force.

保持部材の一方たとえはカソード側の保持部材には遮蔽
板部に設けた外部と連通する断面積のきわめて小さい連
通路のような測定ガスの制限平段を備えて、測定ガスの
測定空間への導入を制限t2て限界電流特性を与える。
One of the holding members, for example, the holding member on the cathode side, is equipped with a measurement gas restriction flat step, such as a communication path with an extremely small cross-sectional area that communicates with the outside, provided on the shield plate, to prevent the measurement gas from entering the measurement space. The introduction is limited t2 to give a limiting current characteristic.

また他方の保持部材たとえばアノード側の保持部材にお
いても遮蔽板部の連通路のような導出手段を備えてアノ
ード側でイオンからガス分子となった測定ガスを外部へ
導出する。
Further, the other holding member, for example, the holding member on the anode side, is also provided with a lead-out means such as a communication path in the shielding plate portion, so that the measurement gas, which has changed from ions to gas molecules on the anode side, is led out to the outside.

また保持部材をたとえば通気性熱絶縁体のような多孔性
の通気性材料で構成し、その通気性孔を保温空間、測定
空間、制限手段ならびに導出手段として用いることがで
きる。この場合通気性熱絶縁体がイオン導電体を両側か
ら強固に挟持する構成をとることができ、また開口を備
えた非通気性の補強枠体によりイオン導電体を挟持させ
、該開口にたとえば通気性繊維のような通気性熱絶縁物
を挿入した構成をとることもできる。
Further, the holding member may be made of a porous breathable material such as a breathable thermal insulator, and the breathable holes thereof can be used as a heat retention space, a measurement space, a restriction means, and a derivation means. In this case, a structure can be adopted in which the breathable thermal insulator firmly sandwiches the ionic conductor from both sides, and the ionic conductor is sandwiched by a non-breathable reinforcing frame provided with an opening, for example, It is also possible to use a structure in which a breathable heat insulating material such as a synthetic fiber is inserted.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明による限界電流型ガスセンサとしての
酸素センサの構造を実施例として示L7たものであり、
構造を理解しやすいように分解斜視図としである。イオ
ン導電体としての薄板状の安定化ジルコニア板1には1
対の電極層の一方としての厚膜のカソード2と信号電流
取り出し用の導電性厚膜3が設けられている。この導電
性厚膜3は特願昭60−132658号明細書に記載の
本発明者の発明により、安定化ジルコニア板1に設けた
スルーホール4の内面にも形成された安定化ジルコニア
板1に裏面に達[2ており、他方の電極層としてのアノ
ード5が設けられたイオン導電体としての薄板状の安定
化ジルコニア板6と前記の安定化ジルコニア板1とを重
ねた時に安定化ジルコニア板6上に設けたカソード用厚
膜端子7と接触して、カソード2とカソード用厚膜端子
7とを電気的に接続する。安定化ジルコニア板6のアノ
ード5と同じ側にも、図には断面のみ示した導電性厚膜
8が設けられており、この導電性厚膜8は導電性厚膜3
の、場合と同様に安定化ジルコニア板6のスルーホール
9の内面にも形成され、アノード5と反対側の面に設け
たアノード側厚膜端子10とアノード5とを電気的に接
続する。さらに安定化ジルコニア板6のアノード5と反
対側の面には、加熱手段としての電熱体である厚膜ヒー
タ11がヒータ用厚膜端子12とともに設けである。カ
ソード用厚膜端子7.アノード用厚膜端子10およびヒ
ータ用厚膜端子12には、センサ外部との接続用として
それぞれに白金箔のリード13が接続しである。カソー
ド2およびアノード5はともに白金系ペーストのスクリ
ーン印刷で形成され、導電性厚膜3および8、カソード
用厚膜端子7.アノード用厚膜端子10、厚膜ヒータ1
1.ならびにヒータ用厚膜端子12はいずれも白金ロジ
ウム合金ペーストのスクリーン印刷によるものであり、
安定化ジルコニアの焼結処理において安定化ジルコニア
面に焼き付けられる。
FIG. 1 shows an example of the structure of an oxygen sensor as a limiting current type gas sensor according to the present invention.
An exploded perspective view is shown to make the structure easier to understand. 1 for the thin plate-like stabilized zirconia plate 1 as an ionic conductor
A thick film cathode 2 as one of the pair of electrode layers and a conductive thick film 3 for taking out a signal current are provided. This conductive thick film 3 is applied to the stabilized zirconia plate 1 which is also formed on the inner surface of the through hole 4 provided in the stabilized zirconia plate 1, according to the inventor's invention described in Japanese Patent Application No. 132,658/1980. The stabilized zirconia plate reaches the back surface [2] and when the stabilized zirconia plate 1, which is a thin plate-like stabilized zirconia plate 6 as an ion conductor and provided with the anode 5 as the other electrode layer, is stacked, the stabilized zirconia plate The cathode 2 and the cathode thick film terminal 7 are electrically connected by contacting the cathode thick film terminal 7 provided on the cathode 6 . Also provided on the same side of the stabilized zirconia plate 6 as the anode 5 is a conductive thick film 8, only shown in cross section.
Similarly to the above case, the anode 5 is also formed on the inner surface of the through hole 9 of the stabilized zirconia plate 6, and the anode 5 is electrically connected to the anode side thick film terminal 10 provided on the surface opposite to the anode 5. Further, on the surface of the stabilized zirconia plate 6 opposite to the anode 5, a thick film heater 11 which is an electric heating element as a heating means is provided together with a thick film terminal 12 for heater. Thick film terminal for cathode 7. A platinum foil lead 13 is connected to the anode thick film terminal 10 and the heater thick film terminal 12 for connection to the outside of the sensor. Both the cathode 2 and the anode 5 are formed by screen printing a platinum-based paste, and include conductive thick films 3 and 8, thick film terminals for the cathode 7. Thick film terminal 10 for anode, thick film heater 1
1. Both thick film terminals 12 for heaters are screen printed with platinum-rhodium alloy paste,
It is baked into the stabilized zirconia surface during the sintering process of stabilized zirconia.

カソード2を設けた安定化ジルコニア板1に対してはカ
ソード2を囲む枠状体部としての2枚の枠14が重ねら
れる。この実施例では枠14は2枚であるが、枚数はセ
ンサの設計条件により変り得るものである。さらに枠状
体部の安定化ジルコニア板1側と反対の側には遮蔽板部
として遮蔽板15と天板16とが重ねられ、カソードを
囲む測定空間としての閉空間17を形成する。遮蔽板1
5には連通孔18が開口しており、さらに天板16には
きわめて浅い案内溝19とこれに連なる開口20が設け
であるので、連通孔18.案内溝19.遮蔽板15およ
び開口20とによって断面積のきわめて小さい連通路2
1が形成され、測定空間としての閉空間17への測定ガ
スとしての酸素ガスの導入を制限する制限手段を構成し
ている。
On the stabilized zirconia plate 1 provided with the cathode 2, two frames 14 as frame-like body parts surrounding the cathode 2 are superimposed. In this embodiment, there are two frames 14, but the number can vary depending on the design conditions of the sensor. Furthermore, a shielding plate 15 and a top plate 16 are stacked as a shielding plate part on the opposite side of the frame-shaped body to the stabilized zirconia plate 1 side, forming a closed space 17 as a measurement space surrounding the cathode. Shielding plate 1
5 has a communication hole 18 open therein, and the top plate 16 is provided with an extremely shallow guide groove 19 and an opening 20 connected thereto. Guide groove 19. The shielding plate 15 and the opening 20 create a communication path 2 with an extremely small cross-sectional area.
1 is formed and constitutes a restricting means for restricting the introduction of oxygen gas as a measurement gas into a closed space 17 as a measurement space.

アノード側についてもほとんど同様な構成であって、安
定化ジルコニア板6に対t7て枠状体部と1、ての2枚
の枠23と遮蔽板部としての遮蔽板部を重ねて、アノー
ド側にも測定空間とL2ての閉空間25を形成し、さら
に遮蔽板24に設けられた導出手段としての連通路26
を通じて閉空間25からアノード5で酸素分子となった
酸素ガスをセンサ外部へ導出す、る。
The anode side has almost the same configuration, and the stabilized zirconia plate 6 is stacked with a frame-like body part, 1 and 2 frames 23, and a shielding plate part as a shielding plate part, and is stacked on the anode side. A closed space 25 is formed between the measurement space and L2, and a communication path 26 as a derivation means provided on the shielding plate 24 is also formed.
Oxygen gas, which has become oxygen molecules at the anode 5, is led out of the sensor from the closed space 25 through the sensor.

枠14.遮蔽板15および天板16は後に第2図におい
て示すカソード側の保持部材31を、また枠23゜遮蔽
板24とで同じく後に第2図において示すアノード側の
保持部材32を構成1〜て安定化ジルコニア板1と6と
を両側から挟持する。
Frame 14. The shielding plate 15 and the top plate 16 form a cathode-side holding member 31 later shown in FIG. 2, and the frame 23° and the shielding plate 24 form an anode-side holding member 32 shown later in FIG. The oxidized zirconia plates 1 and 6 are sandwiched from both sides.

安定化ジルコニアは酸素イオン導電体であるはかにすぐ
れた熱絶縁体料でもある。枠14と23.遮蔽板15と
24.および天板16は安定化ジルコニア板1および6
との熱膨張係数を一致させる点でいずれも安定化ジルコ
ニアで作られており、きわめて熱絶縁性にすぐれている
。さらに閉空間17と25に含まれる測定ガスとしての
酸素の量は、電流制限型ガスセンサの構成原理の上から
閉空間17と25の保有する空気の量にくらべてきわめ
てわずかであって、熱特性の面では閉空間17と25と
はきわめて熱絶縁性の高い空気で満されていると考えて
差し支えない。したがって測定空間としての閉空間17
と25とはそのま匁保混空間として機能する。
Stabilized zirconia is also an excellent thermal insulator material that is an oxygen ion conductor. Frames 14 and 23. Shielding plates 15 and 24. and the top plate 16 is stabilized zirconia plates 1 and 6
Both are made of stabilized zirconia, which matches the coefficient of thermal expansion with the zirconia, and has excellent thermal insulation properties. Furthermore, the amount of oxygen as the measurement gas contained in the closed spaces 17 and 25 is extremely small compared to the amount of air held in the closed spaces 17 and 25 due to the construction principle of the current-limited gas sensor. In this respect, it is safe to assume that the closed spaces 17 and 25 are filled with air having extremely high thermal insulation properties. Therefore, the closed space 17 as a measurement space
and 25 function as a momempo mixed space.

このように厚膜ヒータ11によって加熱された安定化ジ
ルコニア板1と6とを、測定空間と保温空間をかねた空
間を閉包しがっ熱絶縁材料で作られた保持部材31と3
2が挟持する構造となっており、センサ周辺の空気への
熱伝導ならびに空気の対流によって安定化ジルコニア板
1と6とから熱が奪われることが防止されるとともに安
定化ジルコニア板工と6からの熱輻射による熱損失も抑
止できる。また安定化ジルコニア板1と6とはカソード
2)アノード5および厚膜ヒータ11を含む領域の周縁
部を枠14と23で強固に挟持されることによって補強
され、さらに遮蔽板15と24によって保獲されるので
、カソード2とアノード5間の導電性を良好にするため
に板厚を薄くしても外力によって破損する恐れがない。
The stabilized zirconia plates 1 and 6 heated by the thick film heater 11 are held in holding members 31 and 3 made of a thermally insulating material, which enclose a space serving as a measurement space and a heat retention space.
2 is sandwiched between the stabilized zirconia plates 1 and 6, which prevents heat from being taken away from the stabilized zirconia plates 1 and 6 due to heat conduction to the air around the sensor and air convection. Heat loss due to thermal radiation can also be suppressed. Furthermore, the stabilized zirconia plates 1 and 6 are reinforced by firmly sandwiching the peripheral edges of the area including the cathode 2) anode 5 and thick film heater 11 between frames 14 and 23, and are further protected by shielding plates 15 and 24. Therefore, even if the thickness of the plate is made thin to improve the conductivity between the cathode 2 and the anode 5, there is no risk of damage due to external force.

さらに枠14と23.遮蔽板15と24とはそれぞれ全
く同一形状であるため、同一材料である安定化ジルコニ
アを用いる、とlとさと、・と・もJCf産性な向上さ
せている。
Furthermore, frames 14 and 23. Since the shielding plates 15 and 24 have exactly the same shape, using the same material, stabilized zirconia, improves the JCf productivity for both.

なお参考までに本発明によるセンサの製作過程を簡単に
述べる。天板16.遮蔽板15と為、枠工4と23、安
定化ジルコニア板1と6は焼結前のグリーンシートの状
態で重ねられる。この際各グリーンシートは所要の形状
に成形されており、安定化ジルコニア板1と6とにはカ
ソード2.アノード5゜導電性厚膜3と8.カソード用
厚膜端子7.アノード用厚膜端子10.厚膜ヒータ11
.ヒータ用厚膜端子12とが既にスクリーン印Jiil
jによってそれぞれに設けられている。また遮蔽板15
には、ここでは形状の理解を助けるため独立させて示し
であるが、案内溝の形状に成形したスチロール樹脂の可
燃性厚膜28を図の点線の位置にスクリーン印刷し、後
のホットプレスの工程で天板16に案内溝19を形成さ
せる。さらに前述のホットプレスの工程で閉空間17と
25の形を保つために、ここには図示されていないが閉
空間と同一形状のスチロール樹脂の可燃板が挿入される
。上記によって重ねたものをホットプレスで加圧成形し
た後1500℃の温度で1時間焼成してジルコニアを焼
結する。この過程で可燃性厚膜28は焼失し、天板16
に案内溝19が形成される。また可燃板も焼失して所要
の閉空間を与える。以上が製作過程の概要である。
For reference, the manufacturing process of the sensor according to the present invention will be briefly described. Top plate 16. The shielding plate 15, the frames 4 and 23, and the stabilized zirconia plates 1 and 6 are stacked in the state of green sheets before sintering. At this time, each green sheet is formed into a required shape, and the stabilized zirconia plates 1 and 6 have a cathode 2. Anode 5° conductive thick film 3 and 8. Thick film terminal for cathode 7. Thick film terminal for anode 10. Thick film heater 11
.. The thick film terminal 12 for the heater has already been marked with a screen mark.
j. Also, the shielding plate 15
Although it is shown here separately to help understand the shape, a thick styrene resin flammable film 28 formed into the shape of a guide groove is screen printed at the dotted line in the figure, and then hot pressed. A guide groove 19 is formed in the top plate 16 in the process. Furthermore, in order to maintain the shape of the closed spaces 17 and 25 during the hot pressing process described above, a styrene resin combustible plate having the same shape as the closed spaces is inserted, although not shown here. The stacked pieces as described above are pressure-molded using a hot press and then fired at a temperature of 1500° C. for 1 hour to sinter the zirconia. In this process, the combustible thick film 28 is burned out, and the top plate 16
A guide groove 19 is formed in. The combustible plate is also burnt out to provide the required closed space. The above is an overview of the production process.

第2図はこの発明の実施例による限界電流型酸素センサ
の外形を示Iまたもので、(a)が上面(b)が側面で
ある。第3図は第2図(a)の上面図におげろA−A断
面を模式的に示したもので、安定化ジルコニア板1と6
とを挟持する枠14と23.遮蔽板15と24、天板1
6の集合を、閉空−間17と25などを含めて保持部材
31および32としている。この構成においては大気中
の酸素のように比較的酸素濃度の高いガスを対象とする
場合に、第1図に示したスクリーン印刷される可燃性厚
膜28の厚さを薄くし、また長さを長くするような形状
とすることによって案内溝19の断面積をせばめ、長さ
を長くすることができるので、工作の困難な微少直径の
細孔を穿孔するよりもガスの絞り込み効果の大きい連通
路21を容易に形成することができる。
FIG. 2 shows the outer shape of a limiting current type oxygen sensor according to an embodiment of the present invention, in which (a) is the top surface and (b) is the side surface. FIG. 3 schematically shows a cross section taken along line A-A in the top view of FIG. 2(a), and shows stabilized zirconia plates 1 and 6.
The frames 14 and 23 . Shielding plates 15 and 24, top plate 1
6, including the closed spaces 17 and 25, are referred to as holding members 31 and 32. In this configuration, when a gas with a relatively high oxygen concentration such as oxygen in the atmosphere is targeted, the thickness of the screen-printed flammable thick film 28 shown in FIG. By making the guide groove 19 longer, the cross-sectional area of the guide groove 19 can be narrowed and the length can be increased. The passage 21 can be easily formed.

第4図にはこの発明のそれぞれ異なる他の実施例を模式
的な断面図とt7て示す。第4図(a)は第3図で示し
た連通路21を遮蔽板29に設けた微少直径の縦孔30
としたものである。この縦孔3oは酸素濃度の比較的低
いガスを測定する場合に設げることができ、天板16を
省略できる利点がある。図では縦孔30の数は1個であ
るが、同等の限界電流特性を与える複数個であってもか
まわない。(b)は第3図の保持部材32を多孔性セラ
ミクスのような多孔質の通気性熱絶縁体33としたもの
であり、該通気性熱絶縁体330通気性孔が導出手段も
含めた測定空間と保温空間とを構成している。通気性熱
絶縁体33は安定化ジルコニア板1と6とを保持部材3
1とともにカソード2.アノード5および厚膜ヒータ1
1を含む領域の周縁部あるいは全面で強固に挟持してお
り、通気性熱絶縁体33を安定化ジルコニア板6に重ね
るだけでよい簡単な構成とすることができる。この通気
性熱絶縁体33はさらに(C)に示すように枠14ある
いは23と類似の外部への開口を備えた補強枠体35の
開口内に通気性熱絶縁物ととしてのグラスウール状の熱
絶縁性繊維36を挿入した不均質構造のものにすると、
目詰まりが発生した時に新たなものと交換できる利点が
ある。この構成では熱絶縁性繊維36の通気性孔が導出
手段も含めた測定空間と保温空間とを構成し、補強枠体
35が安定化ジルコニア板1と6との補強と保護の役目
を果すが、熱絶縁性繊維36も外力の緩和の役目を果す
。(d)は(b)に対してさらにカソード側の保持部材
31も通気性熱絶縁体34としたものである。
FIG. 4 shows schematic cross-sectional views and t7 of other different embodiments of the present invention. FIG. 4(a) shows a vertical hole 30 with a minute diameter in which the communication path 21 shown in FIG. 3 is provided in the shielding plate 29.
That is. This vertical hole 3o can be provided when measuring gas with a relatively low oxygen concentration, and has the advantage that the top plate 16 can be omitted. In the figure, the number of vertical holes 30 is one, but there may be a plurality of vertical holes that provide equivalent limiting current characteristics. (b) is a case in which the holding member 32 in FIG. 3 is replaced with a porous air-permeable thermal insulator 33 such as porous ceramics, and the measurement including the means for extracting the air-permeable holes of the air-permeable thermal insulator 330 is performed. It constitutes a space and a heat insulation space. The breathable thermal insulator 33 holds the stabilized zirconia plates 1 and 6 in the holding member 3.
1 along with cathode 2. Anode 5 and thick film heater 1
The stabilized zirconia plate 6 is firmly sandwiched between the periphery or the entire surface of the region including the stabilized zirconia plate 6, and can be configured simply by simply stacking the breathable thermal insulator 33 on the stabilized zirconia plate 6. This breathable thermal insulator 33 further includes a glass wool-like heat insulator as a breathable thermal insulator in the opening of a reinforcing frame 35 having an opening to the outside similar to frame 14 or 23, as shown in (C). If it has a non-uniform structure with insulating fibers 36 inserted,
It has the advantage of being able to be replaced with a new one when it becomes clogged. In this configuration, the ventilation holes of the thermally insulating fibers 36 constitute a measurement space including a lead-out means and a heat retention space, and the reinforcing frame 35 serves to reinforce and protect the stabilized zirconia plates 1 and 6. , the thermally insulating fibers 36 also play a role in mitigating external forces. (d) is different from (b) in that the holding member 31 on the cathode side is also made of a breathable thermal insulator 34.

これに対しても(C)の場合のように図、示は1tノて
“い、ないが補強枠体内に熱絶縁性繊維を挿入して目詰
まりの場合に交換可能な構造とすることができる。いず
れの場合においてもカソード側はアノード側よりも通気
性を抑えて限界電流特性を与えるようにする。(e)は
イオン導電体を1枚の薄板の安定化ジルコニア板37と
したもので、一方の側にカソード38他方の側にアノー
ド39を設け、さらにカソード38を設げた側に厚膜ヒ
ータ40を設けである。厚膜ヒータ40はアノード側に
設けても差し支えない。
Regarding this, as in the case of (C), although the figure and illustration are not 1 ton, it is possible to insert heat insulating fibers into the reinforcing frame to create a structure that can be replaced in case of clogging. In either case, the cathode side is made to have lower air permeability than the anode side to provide limiting current characteristics. In (e), the ionic conductor is a single thin stabilized zirconia plate 37. , a cathode 38 is provided on one side, an anode 39 is provided on the other side, and a thick film heater 40 is provided on the side where the cathode 38 is provided.The thick film heater 40 may be provided on the anode side.

この例ではカソード38とアノード39との間隔が短か
くなるので、さらに良好な導電性を得ることができる。
In this example, since the distance between the cathode 38 and the anode 39 is shortened, even better conductivity can be obtained.

この実施例においてはカソード側の保持部材31として
4種類(第3図、第4図(a)、第4図(d)、および
熱絶縁性繊維)、アノード側の保持部材32として3種
類(第3図、第4図(b)、第4図(C) ) 、酸素
イオン導電体とt7て2種類(第3図、第4図(e))
を選んでセンサを構成することができる。さらに第4図
(a)に示す縦孔30の形状や、第4図(e)に示す厚
膜ヒータ40を設げる位置の多様性を考慮するとさらに
多くの実施例が可能となる。
In this embodiment, there are four types of holding members 31 on the cathode side (FIGS. 3, 4(a), 4(d), and thermally insulating fibers), and three types of holding members 32 on the anode side ( Figure 3, Figure 4 (b), Figure 4 (C)), oxygen ion conductor and two types of t7 (Figure 3, Figure 4 (e))
You can select and configure the sensor. Furthermore, many more embodiments are possible by considering the shape of the vertical hole 30 shown in FIG. 4(a) and the variety of positions in which the thick film heater 40 is provided as shown in FIG. 4(e).

〔発明の効果〕〔Effect of the invention〕

この発明では加熱されたイオン導電体としての薄板状の
安定化ジルコニア板を両側から1対の保持部材で挟持さ
せる構造としている。保持部材はイオン導電体であるほ
かに良好な熱絶縁材料ででもある安定化ジルコニアを材
料とした枠と遮蔽板とで構成して、これらの作る閉空間
が測定空間をかねた保温空間を形成して安定化ジルコニ
ア板の電極層部と厚膜ヒータを囲むように前記安定化ジ
ルコニア板を挟持するので、周辺の空気への熱伝達や対
流効果さらに熱輻射などによってイオン導電体から熱が
奪われるのを防止できて、イオン導電体を少ない消費電
力で有効に加熱することができる。また保持部材を構成
する枠は電極層部と厚膜ヒータを含む領域の周縁部でイ
オン導電体の薄板を両側から強固に挟持するので、イオ
ン導電体は枠によって補強されると同時に遮蔽板により
外部から保護されるので、イオン導電体や電極層部が衝
撃、振動、あるいは金属粉を含むガスによるガスエロー
ジョンなどによって破損するのを防止できる。このため
イオン導電体としての安定化ジルコニア板の板厚を薄く
することができ、測定ガスである酸素のイオンに対する
導電性を向上させることが可能となる。またカソード側
の遮蔽板部を遮蔽板と天板の二枚で構成t2て、天板に
設けた溝によって測定ガスの導入を制限する連通路を形
成すれば、酸素濃度の高い測定ガスが有効に絞り込める
ような断面積が小さくかつ長さの長い連通路を容易に構
成することができる。
This invention has a structure in which a thin stabilized zirconia plate as a heated ion conductor is held between a pair of holding members from both sides. The holding member consists of a frame and a shielding plate made of stabilized zirconia, which is an ionic conductor and also a good thermal insulator, and the closed space created by these forms a heat-retaining space that also serves as a measurement space. Since the stabilized zirconia plate is sandwiched so as to surround the electrode layer portion of the stabilized zirconia plate and the thick film heater, heat is removed from the ionic conductor by heat transfer to the surrounding air, convection effects, and thermal radiation. The ionic conductor can be effectively heated with less power consumption. In addition, the frame constituting the holding member firmly holds the thin plate of the ion conductor from both sides at the periphery of the area including the electrode layer part and the thick film heater, so the ion conductor is reinforced by the frame and at the same time by the shielding plate. Since they are protected from the outside, the ionic conductor and electrode layer can be prevented from being damaged by impact, vibration, or gas erosion caused by gas containing metal powder. Therefore, the thickness of the stabilized zirconia plate as an ion conductor can be reduced, and the conductivity to oxygen ions, which is the measurement gas, can be improved. In addition, if the cathode side shielding plate section is composed of two sheets, a shielding plate and a top plate, and a groove provided in the top plate forms a communication path that restricts the introduction of the measurement gas, the measurement gas with a high oxygen concentration is effective. It is possible to easily construct a communication path with a small cross-sectional area and a long length that can be narrowed down to a small area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の分解斜視図、第2図は同じ
〈実施例の外形図、第3図は第2図(a)のA−A線に
沿う断面図、第4図はそれぞれ別の実施例の、断面図、
第5図は従来技術による限界電流型ガスセンサの断面図
である。 1.6,37,50:安定化ジルコニア板、2,38゜
51:カソード、5,39,54ニアノード、11 、
40 :厚膜ヒータ、14,23:枠、15,24:遮
蔽板、16:天板、17.25.52 :閉空間、18
:連通孔、19:案内溝、20:開口、21 、26 
:連通路、31 、32 :保持″(22) 部材、33 、34 :通気性熱絶縁体、35:補強枠
体、第2図 第3図 37安定化シル]二了矛反  397/−トMr  A
  ぷR
Fig. 1 is an exploded perspective view of an embodiment of the present invention, Fig. 2 is an external view of the same embodiment, Fig. 3 is a sectional view taken along line A-A in Fig. 2(a), and Fig. 4 is an exploded perspective view of an embodiment of the present invention. Cross-sectional views of different embodiments,
FIG. 5 is a sectional view of a limiting current type gas sensor according to the prior art. 1.6, 37, 50: Stabilized zirconia plate, 2, 38° 51: Cathode, 5, 39, 54 near node, 11,
40: Thick film heater, 14, 23: Frame, 15, 24: Shielding plate, 16: Top plate, 17.25.52: Closed space, 18
: Communication hole, 19: Guide groove, 20: Opening, 21, 26
: Communication path, 31, 32: Holding'' (22) member, 33, 34: Breathable heat insulator, 35: Reinforcement frame, Fig. 2, Fig. 3, 37 Stabilizing sill] Contradiction between 397/- Mr A
PuR

Claims (1)

【特許請求の範囲】 1)1対の電極層を備えた固体電解質からなる薄板状の
イオン導電体と、該イオン導電体の電極層部を測定温度
に加熱する加熱手段と、該手段により加熱された電極層
部を外部から保温する保温空間と電極層に接触させるべ
き測定ガスを保有する測定空間とをそれぞれ閉包し、電
極層部と加熱手段とを囲むようにイオン導電体を両側か
ら挟持する1対の保持部材とを備え、該一対の保持部材
によりイオン導電体が電極層部と加熱手段とを含む領域
の少なくとも周縁部において強固に挟持され、前記測定
空間の一方は測定ガスの導入量を制限する制限手段を介
して、他方は測定ガスの導出手段を介してそれぞれ外部
に連通されるようにしたことを特徴とする限界電流型ガ
スセンサ。 2)特許請求の範囲第1項記載のガスセンサにおいて、
ガスセンサが酸素センサであり、イオン導電体が安定化
ジルコニアからなることを特徴とする限界電流型ガスセ
ンサ。 3)特許請求の範囲第2項記載のガスセンサにおいて、
保持部材が安定化ジルコニアからなることを特徴とする
限界電流型ガスセンサ。 4)特許請求の範囲第1項記載のガスセンサにおいて、
イオン導電体が2枚の薄板で構成され、加熱手段が該2
枚の薄板の間に挟まれる電熱体であることを特徴とする
限界電流室ガスセンサ。 5)特許請求の範囲第1項記載のガスセンサにおいて、
電極層が薄板状のイオン導電体の両面にそれぞれ設けら
れ、測定ガスの制限手段と導出手段とがそれぞれ別の保
持部材内に設けられることを特徴とする限界電流型ガス
センサ。 6)特許請求の範囲第1項記載のガスセンサにおいて、
各保持部材内の測定空間が保温空間の少なくとも一部と
共通に設けられることを特徴とする限界電流型ガスセン
サ。 7)特許請求の範囲第1項記載のガスセンサにおいて、
保持部材の少なくとも一方がイオン導電体側に配され測
定空間を画成する枠状体部と、該枠状体部の反イオン導
電体側に配され測定空間を外部から閉じて遮蔽する遮蔽
板部とから構成され、該遮蔽板部に制限手段ないしは導
出手段としての測定ガスの連通路が設けられることを特
徴とする限界電流型ガスセンサ。 8)特許請求の範囲第7項記載のガスセンサにおいて、
制限手段が設けられる側の保持部材の遮蔽板部がさらに
枠状体部側の遮蔽板と反枠状体部側の天板とから構成さ
れ、遮蔽板側には測定空間に通じる連通孔が、天板側に
は該連通孔に通じる制限手段としての遮蔽板側のせまい
案内溝と該案内溝を外部に連通させる開口とがそれぞれ
設けられることを特徴とする限界電流型ガスセンサ。 9)特許請求の範囲第7項記載のガスセンサにおいて、
導出手段が設けられる側の遮蔽部材が単一の遮蔽板から
なり、該遮蔽板に導出手段として測定空間を外部に連通
させる導出孔が設けられることを特徴とする限界電流型
ガスセンサ。 10)特許請求の範囲第7項から第9項までのいずれか
に記載のガスセンサにおいて、保温空間が測定空間と共
用されることを特徴とする限界電流型ガスセンサ。 11)特許請求の範囲第1項記載のガスセンサにおいて
、保持部材の少なくとも一方が多孔質の通気性熱絶縁体
で構成され、保温空間および測定空間、ならびに制限手
段ないしは導出手段が該熱絶縁体の通気性孔により構成
されることを特徴とする限界電流型ガスセンサ。 12)特許請求の範囲第1項記載のガスセンサにおいて
、保持部材の少なくとも一方が電極層部に対応する部位
に外部への開口を備えた非通気性の補強枠体と該開口内
に挿入される通気性熱絶縁物とにより構成されることを
特徴とする限界電流型ガスセンサ。
[Claims] 1) A thin plate-shaped ionic conductor made of a solid electrolyte having a pair of electrode layers, a heating means for heating the electrode layer portion of the ionic conductor to a measurement temperature, and heating by the means. A heat-retaining space that keeps the heated electrode layer portion warm from the outside and a measurement space that holds the measurement gas that is to be brought into contact with the electrode layer are each enclosed, and the ionic conductor is sandwiched from both sides so as to surround the electrode layer portion and the heating means. a pair of holding members, the ionic conductor is firmly held by the pair of holding members at least at the peripheral edge of the region including the electrode layer portion and the heating means, and one of the measurement spaces is provided with a space for introducing the measurement gas. 1. A limiting current type gas sensor, characterized in that one of the gases is communicated with the outside through a limiting means for restricting the amount of gas to be measured, and the other is communicated with the outside through a means for deriving the measured gas. 2) In the gas sensor according to claim 1,
A limiting current type gas sensor characterized in that the gas sensor is an oxygen sensor and the ionic conductor is made of stabilized zirconia. 3) In the gas sensor according to claim 2,
A limiting current type gas sensor characterized in that a holding member is made of stabilized zirconia. 4) In the gas sensor according to claim 1,
The ionic conductor is composed of two thin plates, and the heating means is composed of two thin plates.
A limiting current chamber gas sensor characterized by being an electric heating element sandwiched between two thin plates. 5) In the gas sensor according to claim 1,
1. A limiting current type gas sensor characterized in that electrode layers are provided on both sides of a thin plate-like ion conductor, and measurement gas restriction means and derivation means are provided in separate holding members. 6) In the gas sensor according to claim 1,
A limiting current type gas sensor characterized in that a measurement space within each holding member is provided in common with at least a portion of a heat retention space. 7) In the gas sensor according to claim 1,
a frame-shaped body part in which at least one of the holding members is disposed on the ion conductor side and defines a measurement space; and a shielding plate part arranged in the anti-ion conductor side of the frame-shaped body part to close and shield the measurement space from the outside. A limiting current type gas sensor comprising: a limiting current type gas sensor, characterized in that the shielding plate portion is provided with a communication path for measuring gas as a limiting means or a deriving means. 8) In the gas sensor according to claim 7,
The shielding plate portion of the holding member on the side where the limiting means is provided further includes a shielding plate on the side of the frame-shaped body and a top plate on the side opposite to the frame-shaped body, and the shielding plate side has a communication hole communicating with the measurement space. A limiting current type gas sensor, characterized in that the top plate side is provided with a narrow guide groove on the shielding plate side as a restricting means communicating with the communication hole, and an opening for communicating the guide groove with the outside. 9) In the gas sensor according to claim 7,
A limiting current type gas sensor characterized in that the shielding member on the side where the deriving means is provided consists of a single shielding plate, and the shielding plate is provided with a deriving hole that communicates the measurement space with the outside as the deriving means. 10) A limiting current type gas sensor according to any one of claims 7 to 9, characterized in that the heat retention space is shared with the measurement space. 11) In the gas sensor according to claim 1, at least one of the holding members is composed of a porous, air-permeable thermal insulator, and the heat retention space, the measurement space, and the restricting means or deriving means are formed of the thermal insulator. A limiting current type gas sensor characterized by being composed of ventilation holes. 12) In the gas sensor according to claim 1, at least one of the holding members is inserted into the non-breathable reinforcing frame body having an opening to the outside at a portion corresponding to the electrode layer portion. A limiting current type gas sensor comprising a breathable thermal insulator.
JP61049181A 1986-03-06 1986-03-06 Threshold current type gas sensor Pending JPS62206441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049181A JPS62206441A (en) 1986-03-06 1986-03-06 Threshold current type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049181A JPS62206441A (en) 1986-03-06 1986-03-06 Threshold current type gas sensor

Publications (1)

Publication Number Publication Date
JPS62206441A true JPS62206441A (en) 1987-09-10

Family

ID=12823871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049181A Pending JPS62206441A (en) 1986-03-06 1986-03-06 Threshold current type gas sensor

Country Status (1)

Country Link
JP (1) JPS62206441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004581A (en) * 1989-07-31 1991-04-02 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116248A (en) * 1979-02-23 1980-09-06 Bosch Gmbh Robert Electrochemical feeler for measuring oxygen content of gas
JPS55125448A (en) * 1979-03-10 1980-09-27 Bosch Gmbh Robert Electrochemical detector for measuring oxygen content of gas
JPS5931444A (en) * 1982-08-16 1984-02-20 Hitachi Ltd Lean sensor
JPS59131157A (en) * 1983-01-17 1984-07-27 Fujikura Ltd Method for measuring amount of oxygen in gas
JPS6013457B2 (en) * 1978-09-30 1985-04-08 富士電機株式会社 photoacoustic analyzer
JPS60243558A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Analyzing device of oxygen gas concentration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013457B2 (en) * 1978-09-30 1985-04-08 富士電機株式会社 photoacoustic analyzer
JPS55116248A (en) * 1979-02-23 1980-09-06 Bosch Gmbh Robert Electrochemical feeler for measuring oxygen content of gas
JPS55125448A (en) * 1979-03-10 1980-09-27 Bosch Gmbh Robert Electrochemical detector for measuring oxygen content of gas
JPS5931444A (en) * 1982-08-16 1984-02-20 Hitachi Ltd Lean sensor
JPS59131157A (en) * 1983-01-17 1984-07-27 Fujikura Ltd Method for measuring amount of oxygen in gas
JPS60243558A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Analyzing device of oxygen gas concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004581A (en) * 1989-07-31 1991-04-02 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay

Similar Documents

Publication Publication Date Title
JP2851292B2 (en) Method of manufacturing NTC temperature sensor for measurement gas and NTC temperature sensing element with NTC temperature sensor for measurement gas
US5516410A (en) Planar sensor element having a solid electrolyte substrate
JP2744088B2 (en) Air-fuel ratio sensor
EP0343533B1 (en) Gas sensing element
JPH04231859A (en) Oxygen concentration detector
JPS62206441A (en) Threshold current type gas sensor
US6964733B1 (en) Planar sensor element
US6888109B2 (en) Heating device
CN113203784B (en) Variable frequency oxygen sensor
JP2001281219A (en) Air-fuel ratio sensor element
EP0273304B1 (en) Oxygen sensor
JP4573939B2 (en) Gas sensor element
US20110214989A1 (en) Sensor element having a carrier element
JPS60171450A (en) Safe detection apparatus for combustion machinery
JP2000105214A (en) Exhaust gas component sensor of engine
JPH02147853A (en) Sensor for detecting concentration of gas
JP2003149195A (en) Gas sensor
JPS62211525A (en) Temperature sensor
JP2000275210A (en) Combustion gas component sensor and manufacture thereof
JP2002296222A (en) Sensor element
JP2003156467A (en) Sensor element for electrochemical measuring sensor
JPS63229360A (en) Gas sensor element
JP2643409B2 (en) Limit current type oxygen sensor
JPS60111151A (en) Electrochemical device
JPH03277959A (en) Gas-concentration sensor