JPS63229360A - Gas sensor element - Google Patents
Gas sensor elementInfo
- Publication number
- JPS63229360A JPS63229360A JP62061206A JP6120687A JPS63229360A JP S63229360 A JPS63229360 A JP S63229360A JP 62061206 A JP62061206 A JP 62061206A JP 6120687 A JP6120687 A JP 6120687A JP S63229360 A JPS63229360 A JP S63229360A
- Authority
- JP
- Japan
- Prior art keywords
- cap
- sensor element
- heater
- gas
- buffer layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 6
- 239000007784 solid electrolyte Substances 0.000 claims description 5
- 230000004044 response Effects 0.000 abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000011800 void material Substances 0.000 abstract 2
- 239000001301 oxygen Substances 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 23
- 239000007789 gas Substances 0.000 description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- -1 oxygen ions Chemical class 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は気体中に含まれる特定のガス濃度を検出する限
界電流式ガスセンサ素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a limiting current type gas sensor element that detects the concentration of a specific gas contained in a gas.
(従来の技術)
気体中のガス濃度を検出するセンサとして固体電解質を
用いた限界電流式ガスセンサが知られている。その−例
として第3図に酸素センサ素子の断面図を示す。同図に
おいて、1は固体電解質であり、固体電解質として板状
の安定化ジルコニア((ZrOz) (Yz(h)、、
os)が多く用いられており、この両面に多孔質の白
金電極アノード2及びカソード3が形成され、カソード
3を蔽うように、微小孔4を有する気体拡散制御用の例
えば部分安定化ジルコニア((ZrOz) (Yz(h
) 0.03)等からなるキャップ5が被冠され、該キ
ャップ上面には例えば金、白金等のペーストを塗布し焼
付けて構成されたヒータ6が付設されてなるものである
。ヒータ6によってセンサが高温に加熱され、電極間に
電圧が印加されると、気体中に含まれる酸素はカソード
3で還元されて酸素イオンとなり、この酸素イオンが固
体電解質lの酸素イオン空格子を介してアノード2に移
送され、いわゆるボンピング作用によって酸素イオンを
キャリヤとする電流が流れる。(Prior Art) A limiting current type gas sensor using a solid electrolyte is known as a sensor for detecting gas concentration in gas. As an example, FIG. 3 shows a sectional view of an oxygen sensor element. In the figure, 1 is a solid electrolyte, and plate-shaped stabilized zirconia ((ZrOz) (Yz(h), ,
A porous platinum electrode anode 2 and a cathode 3 are formed on both sides of the porous platinum electrode anode 2 and a cathode 3. For example, a partially stabilized zirconia (( ZrOz) (Yz(h
) 0.03) or the like, and a heater 6 constructed by applying and baking a paste of gold, platinum, etc., is attached to the upper surface of the cap. When the sensor is heated to a high temperature by the heater 6 and a voltage is applied between the electrodes, the oxygen contained in the gas is reduced to oxygen ions at the cathode 3, and these oxygen ions fill the oxygen ion vacancies in the solid electrolyte 1. The oxygen ions are transferred to the anode 2 through the oxygen ions, and a current using oxygen ions as carriers flows due to a so-called bombing effect.
この電流はキャップ5に設けられた微小孔4により酸素
の拡散が制御され律速に達し印加電圧の、ある領域にお
いて一定となり、電流−電圧特性に平坦部を生ずる。こ
の平坦部における電流が限界電流と呼ばれるものである
が、この限界電流値は酸素濃度に依存することから限界
電流値を測定することによって酸素濃度を知るものであ
る。また、ガスセンサとして例えば水素センサ素子の場
合は、水素イオンの移送方向が酸素イオンの場合と逆で
あるので、気体拡散制御用キャップはアノード側に設け
られるなど検出ガスの種類によってセンサ素子は部分的
な差異はあるが、はぼ構造は同一であるので以下主とし
て酸素センサ素子について述べる。The diffusion of oxygen is controlled by the micropores 4 provided in the cap 5, and this current reaches a rate-determining rate and becomes constant in a certain region of the applied voltage, producing a flat portion in the current-voltage characteristics. The current in this flat portion is called a limiting current, and since this limiting current value depends on the oxygen concentration, the oxygen concentration can be known by measuring the limiting current value. In addition, in the case of a hydrogen sensor element as a gas sensor, for example, the transport direction of hydrogen ions is opposite to that of oxygen ions, so the gas diffusion control cap is provided on the anode side, etc. Depending on the type of detection gas, the sensor element may be partially Although there are some differences, since the structure is the same, the oxygen sensor element will be mainly described below.
(発明が解決しようとする問題点)
ガスセンサの特性としては、気体中のガス濃度の変化に
対してガスセンサの出力の変化するまでの時間、即ち応
答性は重要な特性であり、敏感に作動するためには更に
応答速度の向上が望まれている。従来のセンサの如くキ
ャップには通常は部分安定化ジルコニアが用いられてお
り、この上面に直接ヒータパターンが形成されているよ
うな場合はヒータは自己温度制御性、(例えば、400
℃で(ZrOz) (Y2O2) 0.03は4.7X
10−6(Ω−1c m−1)の導電率を示す)を存す
るためヒータコントロール手段を必要としない利点はあ
るが、応答性を向上させるためにセンサ温度を高くしよ
うとするとジルコニアキャップの酸素イオン伝導性が生
じてきてヒータパターン間で短絡が生じるため温度を高
くすることができない。(Problem to be solved by the invention) An important characteristic of a gas sensor is the time it takes for the output of the gas sensor to change in response to a change in the gas concentration in the gas, that is, the responsiveness, and the gas sensor operates sensitively. For this purpose, further improvement in response speed is desired. As with conventional sensors, partially stabilized zirconia is usually used for the cap, and when a heater pattern is formed directly on the top surface of the cap, the heater has self-temperature control (for example, 400
At °C (ZrOz) (Y2O2) 0.03 is 4.7X
Although it has the advantage of not requiring a heater control means because it has a conductivity of 10-6 (Ω-1cm-1), if you try to raise the sensor temperature to improve response, the oxygen in the zirconia cap The temperature cannot be raised because ionic conductivity occurs and a short circuit occurs between the heater patterns.
また、前記の如くキャップ上面に直接ヒータが付設され
ているために、センサ素子の加熱によって熱歪を生じキ
ャップにクラックを生じやすく、ひいてはヒータの切断
にまで至ることがある。Further, since the heater is directly attached to the top surface of the cap as described above, heating of the sensor element causes thermal distortion, which tends to cause cracks in the cap, which may even lead to the heater being cut off.
(問題点を解決するための手段)
本発明は、前記の如き問題点を解決するためになされた
もので、キャップ5とヒータ6との間に半焼結状態(全
気孔重大)のアルミナ層、ムライト層またはコージェラ
イト層等からなる絶縁性緩衝層を設けたセンサ素子とす
るものであり、更にキャップの側面にカソードのリード
の拡張部分を設けた構造のセンサ素子を提供するもので
ある。(Means for Solving the Problems) The present invention was made to solve the above problems, and includes a semi-sintered alumina layer (all pores are serious) between the cap 5 and the heater 6. The sensor element is provided with an insulating buffer layer made of a mullite layer, a cordierite layer, or the like, and further provided with an extended portion of a cathode lead on the side surface of the cap.
(作用)
例えば前記の酸素センサにおいて、ヒータ回路には10
mAオーダの、電極回路には10〜100ハオーダの
電流が流れるが、キャップ5には耐熱性に優れているこ
とから普通は部分安定化ジルコニアが用いられており、
これは高温では固有抵抗が比較的小さく多少導電性を帯
びてくるのでヒータ回路の電流が電極回路に漏洩し、こ
の漏洩電流が電極回路の出力電流に重畳されるためにセ
ンサの応答速度に影響してくる。従って前記の如くキャ
ンプとヒータとの間に絶縁層を介在させると漏洩電流が
なくなり応答速度が改善される。更に、カソードのリー
ドに拡張部分を設けることによってキャップに帯電した
電荷の放出を促進することができるため応答性はさらに
一層改善出来る。この絶縁層はキャップと同じ熱膨張係
数をもつ耐熱性が高いものが望ましいが、適当な材料が
ないので、固有抵抗の大きな半焼結状態のアルミナ層等
の絶縁性緩衝層とするものである。また、全気孔率の大
きなアルミナ層とすることによりこれが緩衝層となり熱
膨張係数の違いを吸収してキャップの熱ショックを緩和
するので、キャップのクラックの発生を防止することが
できる。(Function) For example, in the oxygen sensor mentioned above, the heater circuit has 10
A current of 10 to 100 orders of magnitude flows through the electrode circuit on the order of mA, but partially stabilized zirconia is normally used for the cap 5 because of its excellent heat resistance.
This is because at high temperatures, the specific resistance is relatively small and it becomes somewhat conductive, so the current from the heater circuit leaks to the electrode circuit, and this leakage current is superimposed on the output current of the electrode circuit, which affects the response speed of the sensor. I'll come. Therefore, as described above, interposing an insulating layer between the camp and the heater eliminates leakage current and improves the response speed. Furthermore, by providing an extended portion on the cathode lead, it is possible to promote the release of the charge charged on the cap, so that the response can be further improved. It is desirable that this insulating layer has the same coefficient of thermal expansion as the cap and is highly heat resistant, but since there is no suitable material, an insulating buffer layer such as a semi-sintered alumina layer with high resistivity is used. Furthermore, by forming an alumina layer with a large total porosity, it becomes a buffer layer that absorbs differences in thermal expansion coefficients and alleviates the thermal shock of the cap, thereby making it possible to prevent cracks from occurring in the cap.
(実施例)
第1図は、本発明によるガスセンサの実施例としての酸
素センサ素子の断面図であり、キャップ5とヒータ6と
の間に半焼結体(全気孔重大)のアルミナ層7を絶縁層
並びに緩衝層として設けたものである。その他の構造は
従来例の第3図と同様であるので同一部分は同一記号に
て示し説明を省く。アルミナ層7はAf203中にSi
O□を1〜5%、CaOを1〜5%混入し、これを14
00℃、3時間位の焼結で密度40〜70%の半焼結体
としたものである。これは耐熱性及び絶縁性にも優れて
いるので漏洩電流は流れず、同時に緩衝層としてキャン
プ5の熱ショックを緩和することができるので加熱によ
るキャップのクラックを防止することができる。(Example) FIG. 1 is a cross-sectional view of an oxygen sensor element as an example of the gas sensor according to the present invention, in which an alumina layer 7 of a semi-sintered body (all pores are important) is insulated between a cap 5 and a heater 6. It is provided as a buffer layer as well as a buffer layer. The rest of the structure is the same as that of the conventional example shown in FIG. 3, so the same parts are indicated by the same symbols and the explanation will be omitted. The alumina layer 7 contains Si in Af203.
Mix 1 to 5% of O□ and 1 to 5% of CaO, and add 14% of this.
A semi-sintered body with a density of 40 to 70% was obtained by sintering at 00°C for about 3 hours. This has excellent heat resistance and insulation properties, so no leakage current flows, and at the same time, it can act as a buffer layer to alleviate the thermal shock of the camp 5, thereby preventing the cap from cracking due to heating.
第2図(イ)は本発明によるガスセンサ素子の他の実施
例の酸素センサ素子の断面図であり、第2図(ロ)は該
酸素センサ素子の斜視図である。FIG. 2(A) is a sectional view of an oxygen sensor element according to another embodiment of the gas sensor element according to the present invention, and FIG. 2(B) is a perspective view of the oxygen sensor element.
同図においてカソード3のリード8に白金ペーストによ
りキャップ5の側面にリードの拡張部分8aを設けたも
のであり、その他の構造は第1図と同様であり同一部分
は同一記号にて示す。この第2図に示す実施例について
ヒータ6によりセンサ温度を450℃に加熱し、酸素濃
度が0から21%に変化したときの90%応答速度はア
ルミナ層7がない場合は20秒であったが、アルミナ層
7を設けることによって8秒に短縮された。In the figure, a lead extension 8a is provided on the side surface of the cap 5 using platinum paste on the lead 8 of the cathode 3, and the other structure is the same as that in FIG. 1, and the same parts are indicated by the same symbols. Regarding the example shown in FIG. 2, when the sensor temperature was heated to 450°C by the heater 6 and the oxygen concentration changed from 0 to 21%, the 90% response speed was 20 seconds without the alumina layer 7. However, by providing the alumina layer 7, the time was reduced to 8 seconds.
以上は酸素センサ以外のガスセンサ素子においても同様
である。The above also applies to gas sensor elements other than oxygen sensors.
(発明の効果)
前述の如く本発明Gこよるガスセンサ素子とすることに
よってセンサ素子の応答性が改善されると同時に加熱に
よるキャップにおけるクラックの発生、更にはヒータの
切断を防止することができる。(Effects of the Invention) As described above, by providing a gas sensor element according to the present invention, the responsiveness of the sensor element is improved, and at the same time, it is possible to prevent cracks from occurring in the cap due to heating and furthermore, from cutting off the heater.
第1図は本発明によるガスセンサ素子の実施例の酸素セ
ンサ素子断面図、第2図(イ)は同じく他の実施例の酸
素センサ素子断面図、第2図(ロ)は第2図(イ)の斜
視図、第3図は酸素センサ素子の従来例の断面図である
。
1:固体電解質、2:多孔質電極(アノード)、3:多
孔質電極(カソード)、 5:気体拡散制御)用キャッ
プ体、6:ヒータ、7:絶縁性緩衝層、8a:リードの
拡張部分。
代理人 弁理士 竹 内 9
第2図
(A)
(ロ)FIG. 1 is a sectional view of an oxygen sensor element according to an embodiment of the gas sensor element according to the present invention, FIG. 2(a) is a sectional view of an oxygen sensor element of another embodiment, and FIG. ) is a perspective view, and FIG. 3 is a sectional view of a conventional example of an oxygen sensor element. 1: Solid electrolyte, 2: Porous electrode (anode), 3: Porous electrode (cathode), 5: Cap body for gas diffusion control), 6: Heater, 7: Insulating buffer layer, 8a: Lead extension part . Agent Patent Attorney Takeuchi 9 Figure 2 (A) (B)
Claims (2)
多孔質電極の一方の電極を蔽う気体拡散制御用キャップ
上にヒータが付設されてなる限界電流式ガスセンサ素子
において、ヒータとキャップとの間に絶縁性緩衝層を介
在させてなることを特徴とするガスセンサ素子。(1) In a limiting current type gas sensor element in which a heater is attached to a gas diffusion control cap that covers one electrode of porous electrodes provided on both sides of a gas ion-conducting solid electrolyte, there is a gap between the heater and the cap. A gas sensor element comprising: an insulating buffer layer interposed between the gas sensor element and the insulating buffer layer.
拡張部分を形成してなる特許請求の範囲第1項記載のガ
スセンサ素子。(2) The gas sensor element according to claim 1, wherein an extended portion of the lead of the porous electrode is formed on a side surface of the cap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62061206A JPS63229360A (en) | 1987-03-18 | 1987-03-18 | Gas sensor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62061206A JPS63229360A (en) | 1987-03-18 | 1987-03-18 | Gas sensor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63229360A true JPS63229360A (en) | 1988-09-26 |
Family
ID=13164482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62061206A Pending JPS63229360A (en) | 1987-03-18 | 1987-03-18 | Gas sensor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63229360A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159551A (en) * | 1988-12-13 | 1990-06-19 | Fujikura Ltd | Heater wiring pattern for oxygen sensor |
-
1987
- 1987-03-18 JP JP62061206A patent/JPS63229360A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159551A (en) * | 1988-12-13 | 1990-06-19 | Fujikura Ltd | Heater wiring pattern for oxygen sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1227539A (en) | Oxygen sensor | |
US4107019A (en) | Solid electrolyte thin film oxygen sensor having thin film heater | |
JPS6336461B2 (en) | ||
JP3626775B2 (en) | Sensor for measuring the oxygen content in a gas mixture and method for adjusting the composition of a fuel / air mixture supplied to an internal combustion engine | |
JPS6228422B2 (en) | ||
JP2744088B2 (en) | Air-fuel ratio sensor | |
JPH07209244A (en) | Planar type sensor element on solid electrolyte base body | |
US4462890A (en) | Oxygen sensing element having barrier layer between ceramic substrate and solid electrolyte layer | |
JP4646167B2 (en) | Exhaust gas sensor | |
US9404885B2 (en) | Amperometric gas sensor | |
CA1104654A (en) | Resistor-type solid electrolyte oxygen sensor | |
JP2003517605A (en) | Electrochemical measurement sensor | |
JP4739572B2 (en) | Electrochemical measurement sensor | |
JP4099391B2 (en) | Heating device | |
US4832818A (en) | Air/fuel ratio sensor | |
JPH04303753A (en) | Electrochemical element | |
JP2947929B2 (en) | Sensor element for limiting current sensor for measuring lambda values of gas mixtures | |
JPS63229360A (en) | Gas sensor element | |
KR100327079B1 (en) | Electrochemical sensor with sensor element | |
JPH03149791A (en) | Ceramic heater | |
JP2000180402A (en) | Electrochemical measurement sensor | |
JP2851632B2 (en) | Electrochemical element | |
JP3678747B2 (en) | Insulating layer system for electrical isolation of current circuits. | |
JPH0536212Y2 (en) | ||
JPH0612528Y2 (en) | Electrochemical device |