JPH0510315B2 - - Google Patents

Info

Publication number
JPH0510315B2
JPH0510315B2 JP17477386A JP17477386A JPH0510315B2 JP H0510315 B2 JPH0510315 B2 JP H0510315B2 JP 17477386 A JP17477386 A JP 17477386A JP 17477386 A JP17477386 A JP 17477386A JP H0510315 B2 JPH0510315 B2 JP H0510315B2
Authority
JP
Japan
Prior art keywords
growth
crystal
temperature
raw material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17477386A
Other languages
Japanese (ja)
Other versions
JPS6330396A (en
Inventor
Yoshitaka Tomomura
Masahiko Kitagawa
Shigeo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17477386A priority Critical patent/JPS6330396A/en
Publication of JPS6330396A publication Critical patent/JPS6330396A/en
Publication of JPH0510315B2 publication Critical patent/JPH0510315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、結晶の気相成長方法に関し、特に昇
華法あるいはハロゲン輸送法を用いた−族化
合物半導体(ZnS,ZnSe…等)のバルク単結晶
成長方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for vapor phase growth of crystals, and in particular to bulk growth of - group compound semiconductors (ZnS, ZnSe, etc.) using a sublimation method or a halogen transport method. It relates to a crystal growth method.

〈従来技術とその問題点〉 昇華法,ハロゲン輸送法等の結晶成長法で従来
用いられてきた結晶成長装置は、例えば第2図に
縦型の配置で原料13である結晶微粉末あるいは
多結晶粉末が成長容器11の下部に、種結晶14
が成長容器11の上部に支持棒12に連結されて
設置されており、下部の原料13が高温T1に加
熱されて上部の低温T2領域である結晶成長部に
輸送される。このような配置では高温の成長容器
11下部と低温の成長容器11上部間の温度差
T1−T2あるいは温度勾配による蒸気の拡散と対
流により物質の輸送が生じ、低温部で結晶15の
成長が進行する。ところが良質で均一な単結晶を
得ることを目的とする単結晶成長では物質輸送が
定常的であることは必要条件であり、そのために
は輸送の駆動力となる上述の拡散と対流は定常的
でなければならない。しかるに熱による対流その
ものは本来、容器の形状に依存して形を変えると
ともに容器内で漸次成長する結晶のような流れを
阻止ししかも時間的に流れに対す境界条件を変化
させる状態が進行する状況下では、同一形状の容
器を設定しても同一の対流を確実に再現すること
はできず、しかもその定常性に関して全く想定で
きない。このような状況を反映して第2図のよう
な結晶成長装置中での結晶成長は、しばしば再現
性が低く、しかも結晶の一部には形状の乱れが含
まれることが多い。さらに、対流の定常一様性を
仮定した場合においても成長結晶がその固有の結
晶面で覆われて(即ち、固有の結晶面が発達した
形状が保持されて)成長し続ける場合、一定一方
向の流れの場の中で個々の異なる面は異なる過飽
和度となり、同一結晶中でも部位により成長状態
の異なることが容易に予想される。従つて、対流
の存在する成長装置においては、時間的,空間的
に一定でない乱れた流れが存在すると考えるのが
妥当であり、これが現在でも完全に制御された単
結晶成長法の確立されていない大きな原因の1つ
である。
<Prior art and its problems> A crystal growth apparatus conventionally used in crystal growth methods such as sublimation and halogen transport methods is used, for example, in a vertical arrangement as shown in FIG. The powder is placed in the lower part of the growth container 11, and the seed crystal 14
is installed in the upper part of the growth container 11 connected to a support rod 12, and the raw material 13 in the lower part is heated to a high temperature T1 and transported to the crystal growth section which is a low temperature T2 region in the upper part. In such an arrangement, there is a temperature difference between the lower part of the growth container 11 at a high temperature and the upper part of the growth container 11 at a low temperature.
Material transport occurs due to vapor diffusion and convection due to T 1 -T 2 or a temperature gradient, and growth of the crystal 15 progresses in the low temperature region. However, in single crystal growth, which aims to obtain a high-quality, uniform single crystal, it is a necessary condition that mass transport be steady, and for this purpose, the above-mentioned diffusion and convection, which are the driving forces for transport, must be steady. There must be. However, convection itself due to heat originally changes its shape depending on the shape of the container, blocks the flow like crystals that gradually grow inside the container, and changes the boundary conditions for the flow over time. In the following, it is not possible to reliably reproduce the same convection even if containers with the same shape are set up, and furthermore, its constancy cannot be assumed at all. Reflecting this situation, crystal growth in a crystal growth apparatus as shown in FIG. 2 often has low reproducibility, and moreover, part of the crystal often contains irregularities in shape. Furthermore, even if we assume steady uniformity of convection, if a growing crystal continues to grow covered by its unique crystal planes (i.e., the shape in which its unique crystal planes are developed), then In the flow field, different surfaces have different degrees of supersaturation, and it is easy to predict that the growth state will differ depending on the region even within the same crystal. Therefore, it is reasonable to assume that a turbulent flow exists that is not constant in time and space in a growth apparatus where convection exists, and this is the reason why a completely controlled single crystal growth method has not yet been established. This is one of the major causes.

〈発明の目的〉 本発明は斯る点に鑑みてなされたものであり、
ZnS,ZnSe等の−族化合物半導体の気相輸
送に基づく単結晶成長に際して、対流を除外する
ことにより原料から蒸発した蒸気の輸送を特定の
輸送機構のみで進行させ、輸送から成長の過程に
おける流れの影響を排除した上で、一定の平坦な
温度に設定された原料領域と成長領域の間の温度
差を十分急峻に設定し、温度差のみにより輸送量
を厳密に制御することで成長する結晶の形態を完
全に保つ方法を提供することを目的とする。
<Object of the invention> The present invention has been made in view of the above points, and
When growing single crystals of - group compound semiconductors such as ZnS and ZnSe based on vapor phase transport, by excluding convection, the transport of vapor evaporated from the raw material proceeds only by a specific transport mechanism, and the flow in the process from transport to growth. After eliminating the effects of The purpose is to provide a method for perfectly preserving the shape of.

〈発明の概要〉 本発明の結晶成長方法の特徴は、結晶成長領域
(低温部)と原料領域(高温部)が一定の平坦な
温度に設定され、低温の結晶成長領域は成長装置
の下部に配置し、高温の原料領域を上部に配置し
て、しかもその間の温度差を急峻に設定すること
によつて原料温度に基づく蒸気圧力と結晶領域温
度に基づく蒸気圧力の差のみが結晶成長の駆動力
となるようにした点である。この方法において
は、成長容器中の蒸気の圧力は原料温度によつて
決定される圧力であり、成長領域全域で一定の過
飽和状態が達成されており、この領域中で容器内
壁上へは折出が生じない範囲の温度差(即ち過飽
和度)であることと、自然核発生を阻止するため
に容器内壁を十分に清浄化、安定化させることは
容易に実現される。このような方法によつて物質
の輸送は温度差のみによつて厳密に設定され、従
つて結晶成長が厳密に制御される。
<Summary of the Invention> The crystal growth method of the present invention is characterized in that the crystal growth region (low temperature section) and the raw material region (high temperature section) are set at a constant flat temperature, and the low temperature crystal growth region is located at the bottom of the growth apparatus. By placing the high-temperature raw material region at the top and setting the temperature difference between them steeply, only the difference between the steam pressure based on the raw material temperature and the steam pressure based on the crystal region temperature drives crystal growth. This is a point that was made to be a source of strength. In this method, the pressure of the vapor in the growth vessel is determined by the temperature of the raw material, and a certain supersaturation state is achieved throughout the growth region, and no precipitation occurs on the inner wall of the vessel in this region. It is easy to achieve a temperature difference (that is, supersaturation degree) within a range that does not cause nucleation, and to sufficiently clean and stabilize the inner wall of the container to prevent spontaneous nucleation. By means of such a method, the transport of substances is precisely set by means of temperature differences only, and thus the crystal growth is precisely controlled.

〈実施例〉 −族化合物半導体であるZnS,ZnSeのハ
ロゲン輸送法による単結晶成長方法を用いて本発
明の1実施例を説明する。第1図は本発明例の説
明に供するハロゲン輸送法を用いる結晶成長装置
の構成図である。単結晶が成長される石英製成長
容器1は直径30mm、長さ数100mmの中空円筒状容
器であり内部上方に原料容器2下方に種結晶6が
設けられている。原料容器2の上方の成長容器1
にはZnS,ZnSe等の−族化合物から成る原
料5,種結晶6及び輸送媒体ハロゲンの充填口3
が配置されている。充填口3は原料等が充填され
た後密栓あるいは融着封止される。成長容器1は
上部中央に保持棒4があり、加熱炉中に保持され
る。成長に際して成長容器1上部(図中のA部
分)の原料5側は高温(温度T1)に、成長容器
1下部(図中のB部分)の種結晶6及び成長側は
低温(温度T2)に、それぞれ均一温度に加熱さ
れる。成長部分(B部分)において温度差ΔT
(=T1−T2)に基づく蒸気圧差分の過飽和がいた
るところで一定に生じて保持されており、輸送及
び単結晶成長の駆動力となつている。十分に清浄
化、安定化処理を施した成長容器1内壁には核発
生は生じず、従つて単結晶7の成長は種結晶6上
のみに進行する。単結晶7付近で蒸気の流れは生
じないため単結晶7表面での蒸気圧力は一定であ
り、一定の成長速度で乱れることなく成長する。
結晶面による成長速度の異方性により例えばZnS
では(111)面、(100)面が広く発達した単結晶
となるが、結晶表面での蒸気圧力の一定性、定常
性により形状の乱れが含まれず、種結晶6に対応
した一定形状の高品質な単結晶7が得られる。
<Example> An example of the present invention will be described using a method for growing a single crystal of ZnS and ZnSe, which are − group compound semiconductors, by a halogen transport method. FIG. 1 is a block diagram of a crystal growth apparatus using a halogen transport method for explaining an example of the present invention. A quartz growth container 1 in which a single crystal is grown is a hollow cylindrical container with a diameter of 30 mm and a length of several 100 mm, and a seed crystal 6 is provided above the raw material container 2 and below the interior. Growth container 1 above raw material container 2
There is a raw material 5 consisting of - group compounds such as ZnS and ZnSe, a seed crystal 6, and a filling port 3 for transport medium halogen.
is located. After the filling port 3 is filled with raw materials and the like, it is hermetically sealed or fused. The growth container 1 has a holding rod 4 at the center of the upper part and is held in the heating furnace. During growth, the raw material 5 side in the upper part of the growth container 1 (part A in the figure) is kept at a high temperature (temperature T 1 ), and the seed crystal 6 and the growth side in the lower part of the growth container 1 (part B in the figure) are kept at a low temperature (temperature T 2 ) . ), each is heated to a uniform temperature. Temperature difference ΔT in the growing part (part B)
Supersaturation of the vapor pressure difference based on (=T 1 −T 2 ) occurs and is maintained constant everywhere, and is the driving force for transport and single crystal growth. Nucleation does not occur on the inner wall of the growth container 1 which has been sufficiently cleaned and stabilized, and therefore the single crystal 7 grows only on the seed crystal 6. Since no vapor flow occurs near the single crystal 7, the vapor pressure on the surface of the single crystal 7 is constant, and the growth occurs at a constant growth rate without disturbance.
For example, ZnS
In this case, the result is a single crystal with widely developed (111) and (100) planes, but due to the constancy and steadiness of the vapor pressure on the crystal surface, there is no shape disturbance, and the crystal has a uniform shape corresponding to the seed crystal 6. A high quality single crystal 7 is obtained.

成長容器1の温度分布は、例えばA部分とB部
分に各々独立して高周波誘導加熱コイル或は抵抗
加熱炉を周設し、該コイル或は炉を利用して成長
容器を加熱することにより容易に達成される。原
料5の蒸発温度が低い場合には熱線照射法によつ
て加熱しても良い。温度差ΔTはA部分とB部分
の境界付近で急峻な勾配をもつて形成されるが、
B部分で成長容器内壁等種結晶6以外の面に折出
が生じないように温度T2及び温度差ΔTを設定す
る。
The temperature distribution of the growth container 1 can be easily controlled, for example, by independently installing high-frequency induction heating coils or resistance heating furnaces in parts A and B, and heating the growth container using the coils or furnaces. will be achieved. When the evaporation temperature of the raw material 5 is low, it may be heated by a heat ray irradiation method. The temperature difference ΔT is formed with a steep slope near the boundary between parts A and B, but
The temperature T 2 and the temperature difference ΔT are set so that precipitation does not occur on surfaces other than the seed crystal 6 such as the inner wall of the growth container in the B portion.

温度T1に加熱された原料5からの蒸気はハロ
ゲンガスを媒体として輸送されA部分からB部分
へ移行する際に温度差ΔTの領域を通過し、この
温度差ΔTに対応した折出駆動力が付与される。
従つてB部分で種結晶6を接触した原料5のガス
から種結晶6で折出が生じ、折出駆動力に基く単
結晶7が成長する。
Steam from the raw material 5 heated to a temperature T1 is transported using halogen gas as a medium, and when moving from part A to part B, passes through a region of temperature difference ΔT, and the extraction driving force corresponding to this temperature difference ΔT is generated. will be granted.
Therefore, precipitation occurs in the seed crystal 6 from the gas of the raw material 5 that has contacted the seed crystal 6 in the B portion, and a single crystal 7 grows based on the precipitation driving force.

尚、本発明は上記−族化合物半導体に限定
されるものではなく、種々の結晶を気相成長させ
る場合に有効となるものである。
Note that the present invention is not limited to the above-mentioned - group compound semiconductors, but is effective when growing various crystals in a vapor phase.

〈発明の効果〉 以上詳説した如く、本発明によれば結晶成長の
ための物質輸送に伴う流れの効果(不整流)を除
いた上で厳密に急峻に設定された温度差により輸
送を制御することが可能になり、一定の過飽和の
雰囲気中で制御しつつ単結晶成長を行なうことが
できるため、結晶はその個々の面方位に固有の成
長速度で成長し形態の乱れは導入されない。この
ようにして高品質でしかも工業的に十分な寸法を
もつ整つた形状のバルク単結晶を得ることがで
き、化合物半導体デバイスおよび結晶成長基板等
の結晶材料の実現が可能となる。
<Effects of the Invention> As explained in detail above, according to the present invention, transport is controlled by a temperature difference strictly set steeply after removing the flow effect (irregularity) associated with mass transport for crystal growth. Since single crystal growth can be controlled in a constant supersaturated atmosphere, the crystal grows at a growth rate specific to its individual plane orientation, and no morphological disorder is introduced. In this way, it is possible to obtain a bulk single crystal of high quality and a regular shape with industrially sufficient dimensions, making it possible to realize crystalline materials such as compound semiconductor devices and crystal growth substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の説明に供する成長
装置の概略構成図である。第2図は従来のハロゲ
ン輸送法に用いられている成長装置の概略構成図
である。 1……成長容器、2……原料容器、3……充填
口、4……保持棒、5……原料、6……種結晶、
7……単結晶。
FIG. 1 is a schematic diagram of a growth apparatus used to explain one embodiment of the present invention. FIG. 2 is a schematic diagram of a growth apparatus used in the conventional halogen transport method. 1... Growth container, 2... Raw material container, 3... Filling port, 4... Holding rod, 5... Raw material, 6... Seed crystal,
7...Single crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶成長用原料を加熱してその蒸気を結晶成
長領域まで輸送し、該蒸気を過飽和状態にして結
晶を成長させる結晶成長方法において、前記原料
を上方の高温領域、前記結晶成長領域を下方の低
温領域にそれぞれ配置し、該高温領域と低温領域
の境界には急峻な温度差が形成されていることを
特徴とする結晶成長方法。
1 In a crystal growth method in which a raw material for crystal growth is heated and its vapor is transported to a crystal growth region, and the vapor is brought into a supersaturated state to grow a crystal, the raw material is heated in an upper high temperature region and the crystal growth region is lowered. A crystal growth method characterized in that the crystals are placed in low temperature regions, and a steep temperature difference is formed at the boundary between the high temperature region and the low temperature region.
JP17477386A 1986-07-24 1986-07-24 Method for growing crystal Granted JPS6330396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17477386A JPS6330396A (en) 1986-07-24 1986-07-24 Method for growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17477386A JPS6330396A (en) 1986-07-24 1986-07-24 Method for growing crystal

Publications (2)

Publication Number Publication Date
JPS6330396A JPS6330396A (en) 1988-02-09
JPH0510315B2 true JPH0510315B2 (en) 1993-02-09

Family

ID=15984417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17477386A Granted JPS6330396A (en) 1986-07-24 1986-07-24 Method for growing crystal

Country Status (1)

Country Link
JP (1) JPS6330396A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563675U (en) * 1992-01-30 1993-08-24 上原ネームプレート工業株式会社 Vapor-deposited specimen

Also Published As

Publication number Publication date
JPS6330396A (en) 1988-02-09

Similar Documents

Publication Publication Date Title
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
TWI774929B (en) Manufacturing method of silicon carbide single crystal
JPS6018639B2 (en) Hydrothermal crystal growth method and apparatus
JPH0510315B2 (en)
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
JP2979770B2 (en) Single crystal manufacturing equipment
JPH03153595A (en) Device for pulling single crystal
US3210149A (en) Method of producing monocrystals of a semiconductor via the vapor phase
US4869776A (en) Method for the growth of a compound semiconductor crystal
US3649210A (en) Apparatus for crucible-free zone-melting of crystalline materials
JPH054894A (en) Crystal growth of compound semi-conductor
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JPS58176194A (en) Vessel for growing single crystal
Bulakh Growth of boule DdS single crystals from the vapour phase
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH0371399B2 (en)
JP3125681B2 (en) Method for growing ZnSe single crystal
RU1431391C (en) Process of growing monocrystals of cadmium telluride
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP4207783B2 (en) Method for producing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPS62283897A (en) Vapor growth method for compound semiconductor single crystal
JPS60195082A (en) Apparatus for producing semiconductor crystal