JPH03153595A - Device for pulling single crystal - Google Patents

Device for pulling single crystal

Info

Publication number
JPH03153595A
JPH03153595A JP29370589A JP29370589A JPH03153595A JP H03153595 A JPH03153595 A JP H03153595A JP 29370589 A JP29370589 A JP 29370589A JP 29370589 A JP29370589 A JP 29370589A JP H03153595 A JPH03153595 A JP H03153595A
Authority
JP
Japan
Prior art keywords
single crystal
screen
radiation screen
pulled
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29370589A
Other languages
Japanese (ja)
Other versions
JP2709310B2 (en
Inventor
Kenichi Takenaka
武中 建一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17798170&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03153595(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP1293705A priority Critical patent/JP2709310B2/en
Publication of JPH03153595A publication Critical patent/JPH03153595A/en
Application granted granted Critical
Publication of JP2709310B2 publication Critical patent/JP2709310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of plane lattice defects and to grow a high-quality single crystal by placing an inverted truncated cone-shaped radiation screen having prescribed dimensions according to the diameter of a single crystal to be pulled around this single crystal. CONSTITUTION:An inverted truncated cone-shaped radiation screen 7 is placed around a single crystal 5 to be pulled in a device for pulling a single crystal. The screen 7 satisfies 1.1-2 ratio of the diameter (a) of the bottom of the screen 7 to the diameter (c) of the single crystal 5 and >=2 ratio of the height (b) of the screen 7 to the diameter (c). In the case of an Si single crystal, holding time in the temp. range of 900-800 deg.C is shortened at the time of cooling and the occurrence of plane lattice defects is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、輻射スクリーン配設したCZ単結晶引上げ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a CZ single crystal pulling apparatus equipped with a radiation screen.

(従来の技術) チョクラルスキー法(CZ法)では、種結晶をルツボ内
のSi融液に浸し、これを回転させながら上方へ引上げ
て、種結晶下に単結晶を成長させる。この場合、ルツボ
内のSi融液は、当初ルツボ内に収容したSi原料をル
ツボ周囲に配した円筒形の発熱体により加熱溶融せしめ
るとともに、単結晶の引上げ中においても加熱せしめる
ようになっている。
(Prior Art) In the Czochralski method (CZ method), a seed crystal is immersed in a Si melt in a crucible and pulled upward while rotating to grow a single crystal under the seed crystal. In this case, the Si melt in the crucible is heated and melted by a cylindrical heating element placed around the crucible to heat the Si raw material initially housed in the crucible, and is also heated during the pulling of the single crystal. .

また、単結晶は通常0.5〜1.Onu++/minの
速度で引上げられるが、その引上げ中の冷却速度は単結
晶の品質と密接な関係がある。
Moreover, single crystals are usually 0.5 to 1. The single crystal is pulled at a speed of Onu++/min, and the cooling rate during the pulling is closely related to the quality of the single crystal.

一般に単結晶中の酸素誘起に起因する積層欠陥たる面状
格子欠陥(OSF)は、冷却時における900℃〜80
0°C間の保持時間が長くなると多発し、単結晶の品質
を著しく低下させる。
In general, planar lattice defects (OSF), which are stacking faults caused by oxygen in single crystals, occur between 900°C and 80°C during cooling.
If the holding time between 0°C becomes longer, this will occur more frequently, and the quality of the single crystal will be significantly degraded.

ここで保持時間について説明すると、第3図はSi融液
面からの引上げ距離を縦軸に、そして引上げ単結晶の温
度を横軸に表わすグラフであるが、例えば6”′φ単結
晶では、液面330mm〜460amの位置にある引上
げ単結晶部分が、900°C〜800°Cの温度を有し
ていることを示している。したがって、単結晶の引上げ
速度を、今仮に1.0mm/minとすると、単結晶は
(460mm−330mm) /1.0mm/m1n=
 130m1nの間、900℃〜800℃の温度を保持
していることになる。そして上記面状格子欠陥(OSF
)を防止するためには、単結晶の冷却速度を上げ、上記
900°C〜800°Cの温度保持時間を可及的に短く
する必要がある。ところが、上記したCZ法では、引上
げ単結晶の周囲には、発熱体、ルツボ及びSi融液等の
輻射熱源があって、これから受ける輻射熱量が極めて大
きく、必然的に当該温度域における保持時間を短くでき
ないという問題点があった。
To explain the holding time here, Fig. 3 is a graph in which the vertical axis represents the pulling distance from the Si melt surface and the horizontal axis represents the temperature of the pulled single crystal. This shows that the pulled single crystal part located at a liquid level of 330 mm to 460 am has a temperature of 900°C to 800°C. Therefore, if the pulling speed of the single crystal is now 1.0 mm/ If min, the single crystal is (460mm-330mm) /1.0mm/m1n=
This means that a temperature of 900°C to 800°C is maintained for 130 m1n. And the above-mentioned planar lattice defect (OSF)
) In order to prevent this, it is necessary to increase the cooling rate of the single crystal and shorten the temperature holding time from 900°C to 800°C as much as possible. However, in the CZ method described above, there are radiant heat sources such as heating elements, crucibles, and Si melt around the pulled single crystal, and the amount of radiant heat received from these sources is extremely large, and the holding time in the temperature range is inevitably short. There was a problem that it could not be made shorter.

(発明か解決しようとする課題) 上述した所定温度域における保持時間短縮の問題は、引
上げ単結晶の回りに輻射スクリーンを配設することによ
って解決する。しかし、面状格子欠陥(OSF)の発生
防止は、引上げ単結晶の寸法に応じた形状・寸法を有す
る輻射スクリーンの配設によらなければ達成の図れない
ことが判明した。
(Problems to be Solved by the Invention) The above-mentioned problem of shortening the holding time in a predetermined temperature range is solved by disposing a radiation screen around the pulled single crystal. However, it has been found that prevention of the occurrence of planar lattice defects (OSF) can only be achieved by providing a radiation screen whose shape and dimensions correspond to the dimensions of the pulled single crystal.

例えば、第4図は第3図と同一の単結晶引上げ条件のも
とで、充分な輻射遮断長さを有しない輻射スクリーン(
第4図に於いてはb/a=1.25)を配設した場合に
おけるSi融液面からの引上げ距離と単結晶の温度との
関係を示すグラフである。かかる場合に2第3図と比較
して明らかなように、不具合な輻射遮断長さの輻射スク
リーンにおいては、1000℃乃至1100°C以上の
初期の冷却速度の向上には寄与するものの、900℃〜
800°C間の保持時間は輻射スクリーンの有無に関係
なく同じである。したがって、900℃〜800℃の温
度域における保持時間に依存する面状格子欠陥(OSF
)を防止するためには、引上げ単結晶の寸法に応じた適
切な輻射スクリーンを配設する必要があることが分かる
For example, under the same single crystal pulling conditions as in Figure 3, Figure 4 shows a radiation screen (
FIG. 4 is a graph showing the relationship between the pulling distance from the Si melt surface and the temperature of the single crystal when b/a=1.25) is provided. In such a case, as is clear from a comparison with Figure 2 and Figure 3, in a radiation screen with an inadequate radiation blocking length, although it contributes to improving the initial cooling rate from 1000°C to 1100°C or more, the temperature at 900°C ~
The holding time between 800°C is the same with or without the radiant screen. Therefore, the planar lattice defects (OSF
), it is found that it is necessary to provide an appropriate radiation screen according to the dimensions of the pulled single crystal.

本発明は、上記実情下において、面状格子欠陥(OSF
)の発生防止を達成すべく、引上げ単結晶の径を一定と
したとき、逆截頭円錐計輻射スクリーンの形状・寸法と
引上げ単結晶の冷却曲線がどのように変化してくるかを
実験し、該実験で得られた知見により完成されたもので
ある。
Under the above-mentioned circumstances, the present invention provides planar lattice defects (OSF).
), we conducted an experiment to examine how the shape and dimensions of the inverted truncated conical radiation screen and the cooling curve of the pulled single crystal change when the diameter of the pulled single crystal is constant. , was completed based on the knowledge obtained from the experiment.

ここでa / c = 1.1〜2.0である理由は、
1.1より小の場合には、操業上支障を生ずるおそれが
あるためであり、例えば輻射スクリーンの配設に多大な
調整を要することがあげられる。更に、2.0以上の場
合には、融液及びルツボからの輻射熱を遮断することが
図れないためである。
The reason why a/c = 1.1 to 2.0 here is,
This is because if it is smaller than 1.1, there is a risk of operational problems, and for example, a large amount of adjustment may be required in the arrangement of the radiation screen. Furthermore, if it is 2.0 or more, it is impossible to block the radiant heat from the melt and the crucible.

また、b / c≧2.0の関係は、引上げ単結晶の冷
却速度と輻射スクリーンの輻射熱遮断効果、とりわけ、
輻射スクリーンの放散熱量に起因するものであり、後述
する実験結果からの知見に基く。
In addition, the relationship b/c≧2.0 depends on the cooling rate of the pulled single crystal and the radiant heat blocking effect of the radiant screen, especially,
This is due to the amount of heat dissipated by the radiant screen, and is based on knowledge from experimental results described below.

(課題を解決するための手段) すなわち、本発明は、引上げ単結晶の回りに位置せしめ
られる逆裁頭円錐形の輻射スクリーンを具備した単結晶
引上げ装置であって、前記輻射スクリーンの裁頭部の直
径なa、同輻射スクリーンの高さをb、引上げ単結晶の
直径をCとしたとき、a / c = 1.1〜2.0
であり、且つ、b / c≧2.0であるとされる。
(Means for Solving the Problems) That is, the present invention provides a single crystal pulling apparatus equipped with an inverted truncated conical radiation screen positioned around a pulled single crystal, wherein the truncated head of the radiation screen When a is the diameter of , b is the height of the radiation screen, and C is the diameter of the pulled single crystal, a / c = 1.1 to 2.0
and b/c≧2.0.

(作 用) 上記構成によれば、引上げ単結晶の900℃〜800℃
の保持温度が可及的に短くされ、面状格子欠陥(OSF
)の発生は防止される。
(Function) According to the above configuration, the temperature of the pulled single crystal is 900°C to 800°C.
The holding temperature of lattice defect (OSF) is kept as short as possible, and the
) will be prevented from occurring.

(実施例) 以下、本発明を添付図面に基いて説明する。(Example) Hereinafter, the present invention will be explained based on the accompanying drawings.

第1図は本発明装置の断面図を示し、同図中、1は反応
容器、2はルツボ、3はヒータ、4はSi融液、5は引
上げ単結晶である。上記反応容器工の内壁には張り出し
支材6が固着され、該張り出し支材6上に略々逆裁頭円
錐形の輻射スクリーン7が取付けられている。そして、
上記輻射スクリーンの裁頭部の直径aは引上げ単結晶5
の形をCとしたときa/c=1.1〜2.0の関係を充
足するように設定され、また輻射スクリーン7の高さは
b / c≧2.0の関係を充足するように設定されて
いる。
FIG. 1 shows a sectional view of the apparatus of the present invention, in which 1 is a reaction vessel, 2 is a crucible, 3 is a heater, 4 is a Si melt, and 5 is a pulled single crystal. An overhanging strut 6 is fixed to the inner wall of the reaction vessel, and a radiation screen 7 having a substantially inverted truncated conical shape is mounted on the overhanging strut 6. and,
The diameter a of the truncated part of the radiation screen above is a pulled single crystal 5
When the shape of is C, the height of the radiation screen 7 is set to satisfy the relationship a/c=1.1 to 2.0, and the height of the radiation screen 7 is set to satisfy the relationship b/c≧2.0. It is set.

8は冷却効果を増すために輻射スクリーン7の上部外周
部に取付けた断熱材、Aは同じく冷却効果を増すために
輻射スクリーン7の下部外周部に取付けた断熱材であっ
て、黒煙フェルト又は石英フェルトから成り、下部に取
付けられた断熱材は、断熱効果を微調整できるように、
各層取付は取外し可能な積層構造とされている。実施例
においては、当該断熱材は輻射スクリーンの下端から高
さ250mmの範囲の外周部に取付けられている。
8 is a heat insulating material attached to the upper outer circumference of the radiant screen 7 to increase the cooling effect, and A is a heat insulating material attached to the lower outer circumference of the radiant screen 7 to increase the cooling effect, and is made of black smoke felt or The insulation material made of quartz felt and installed at the bottom allows fine adjustment of the insulation effect.
Each layer has a removable laminated structure. In the embodiment, the heat insulating material is attached to the outer periphery within a height range of 250 mm from the lower end of the radiation screen.

第2図は、ルツボ内のSL原料を溶融せしめた状態での
輻射スクリーン7の内壁温度分布を示すグラフであり、
縦軸は融液面からの高さ(mm)を、横軸は内壁温度(
°C)を表わしている。輻射スクリーンの内壁温度は、
引上げ単結晶の冷却勾配に大きな影響を与えるものであ
るが、第2図より明らかな如く、b / aが所定寸法
以下の輻射スクリーンでは充分な輻射熱遮断効果を引上
げ単結晶に及ぼし得ないことが解る。これは輻射スクリ
ーンの輻射受熱の放熱作用に基づくものであり、所定寸
法以上の輻射スクリーンであれば、輻射スクリーン面か
らの放熱量により所期の輻射熱遮断効果が発揮されるこ
ととなる。
FIG. 2 is a graph showing the inner wall temperature distribution of the radiation screen 7 in a state where the SL raw material in the crucible is melted,
The vertical axis represents the height (mm) from the melt surface, and the horizontal axis represents the inner wall temperature (
°C). The inner wall temperature of the radiant screen is
This has a large effect on the cooling gradient of the pulled single crystal, but as is clear from Figure 2, a radiant screen with b/a of less than a specified size cannot have a sufficient radiant heat shielding effect on the pulled single crystal. I understand. This is based on the heat dissipation effect of the radiant screen receiving radiant heat, and if the radiant screen has a predetermined size or more, the desired radiant heat blocking effect will be exhibited by the amount of heat dissipated from the radiant screen surface.

更に、輻射スクリーンの下部外周部に取付けられた断熱
材は、輻射スクリーンの内壁面に対し、断熱効果を示す
、このような効果は、単に下部外周部に限定されるもの
でなく、断熱材を取付ける位置に対応し、輻射スクリー
ンの全長にわたり発揮されることとなる。そこで本発明
者等は、b/Cというパラメータに着目し、引上げ単結
晶の縦方向における温度分布を調べた。その結果を第5
図(6″φ単結晶の場合)、第6図(5パφ単結晶の場
合)に示す。
Furthermore, the heat insulating material attached to the lower outer periphery of the radiant screen exhibits a heat insulating effect on the inner wall surface of the radiant screen. Such an effect is not limited to the lower outer periphery; Depending on the position where it is installed, it will be emitted over the entire length of the radiant screen. Therefore, the present inventors focused on the parameter b/C and investigated the temperature distribution in the longitudinal direction of a pulled single crystal. The result is the fifth
(in the case of a 6″φ single crystal) and FIG. 6 (in the case of a 5″φ single crystal).

上記第5図、第6図から明らかな如く、単結晶が6″φ
の場合はb/c=1.7の輻射スクリーンにおいては、
引上げ初期の冷却勾配は確保できるものの、面状格子欠
陥(OSF)の発生に大きな要因を持つ、900℃〜8
00°Cの温度域での冷却は充分でなく、面状格子欠陥
の発生防止に必要な保持時間の短縮は図れていない。し
かし、輻射スクリーンをb/c≧2.0とすることによ
り、900℃〜800℃に至るまでの冷却勾配の確保が
でき、900 ’C〜800℃の保持時間を短くできる
。単結晶が5″φの場合においても、同様にb / c
≧2.0の輻射スクリーンを用いることにより、900
℃〜800°Cにおける保持時間の短縮ができることが
解る。
As is clear from Figures 5 and 6 above, the single crystal is 6″φ
In the case of the radiation screen with b/c=1.7,
Although a cooling gradient can be maintained at the initial stage of pulling, temperatures between 900°C and 8°C are a major factor in the generation of planar lattice defects (OSFs).
Cooling in the temperature range of 00°C is not sufficient, and it is not possible to shorten the holding time necessary to prevent the occurrence of planar lattice defects. However, by setting the radiation screen to b/c≧2.0, a cooling gradient from 900°C to 800°C can be ensured, and the holding time from 900'C to 800°C can be shortened. Similarly, when the single crystal is 5″φ, b/c
900 by using a radiation screen of ≧2.0
It can be seen that the holding time at temperatures between 800°C and 800°C can be shortened.

したがって、引上げ単結晶の寸法に対し、一定の比率の
遮断長さを有する輻射スクリーンによって面状格子欠陥
(OSF)の発生防止に必要な輻射熱遮断効果を得るこ
とができる。
Therefore, the radiation heat shielding effect necessary for preventing the occurrence of planar lattice defects (OSF) can be obtained by using a radiation screen having a shielding length that is a certain ratio to the dimensions of the pulled single crystal.

ここで、単結晶の引上げ速度(mm/m1n)に関して
、第5図及び第6図は引上げ速度1.0mm/minの
実施例を示すものである。
Here, regarding the pulling speed (mm/m1n) of the single crystal, FIGS. 5 and 6 show an example in which the pulling speed is 1.0 mm/min.

前記の如く、輻射スクリーンの輻射熱遮断効果は輻射ス
クリーンの放熱作用に起因するものであり、引上げ単結
晶の寸法に対し、輻射スクリーンを所定寸法以上に維持
するものとすれば、引上げ単結晶の冷却勾配は引上げ速
度に影響されるものでない。
As mentioned above, the radiant heat shielding effect of the radiant screen is due to the heat dissipation effect of the radiant screen, and if the radiant screen is maintained at a predetermined size or more with respect to the size of the pulled single crystal, the cooling of the pulled single crystal will be reduced. The slope is not affected by the rate of pull.

なお、これによって得た単結晶の面状格子欠陥発生数(
個/am’)と輻射スクリーンのb / cとの関係を
第7図に示す。図より明らかなように、6′°φ引上げ
単結晶、若しくは5パφ引上げ単結晶のいずれにおいて
も、b/c≧2.0において面状格子欠陥(OSF)の
発生がなくなっている。
In addition, the number of planar lattice defects in the single crystal obtained by this method (
Figure 7 shows the relationship between b/c of the radiation screen. As is clear from the figure, there is no occurrence of planar lattice defects (OSF) when b/c≧2.0 in either the 6'°φ pulled single crystal or the 5°φ pulled single crystal.

ところで、各炉において全て同じ冷却勾配を作ることは
難しく、炉の相違による品質のバラツキが生じ易い。し
かし、上記実施例に依れば下部の断熱材Aが積層構造と
され、且つ層毎に取付は取外し可能であるため、暦数を
調整し、冷却勾配を微調整できる。
However, it is difficult to create the same cooling gradient in each furnace, and variations in quality are likely to occur due to differences in furnaces. However, according to the above embodiment, the lower heat insulating material A has a laminated structure, and since each layer can be attached and removed, the calendar number can be adjusted and the cooling gradient can be finely adjusted.

(発明の効果) 以上の如く、本発明においては、所定のb / cの寸
法を備えた輻射スクリーンによって、加熱体、融液及び
ルツボの輻射熱源からの輻射熱を遮蔽し、引上げ単結晶
の冷却勾配を適正に維持し得て、面状格子欠陥(OSF
)の発生に大きな影響を及ぼす、900℃〜800℃の
温度域における保持時間を短くできることにより、引上
げ単結晶中の面状格子欠陥の発生を無くすことができ、
高品質の単結晶を安定して成長育成できるという優れた
効果を有する。
(Effects of the Invention) As described above, in the present invention, the radiant screen with predetermined b/c dimensions blocks the radiant heat from the radiant heat source of the heating body, the melt, and the crucible, and cools the pulled single crystal. Gradient can be maintained properly and planar lattice defects (OSFs) can be maintained properly.
) By shortening the holding time in the temperature range of 900°C to 800°C, which has a large effect on the occurrence of
It has the excellent effect of stably growing and cultivating high-quality single crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す断面図、第2図は
輻射スクリーン内壁の温度分布を示すグラフ、第3図は
縦方向における結晶中心の温度分布図、第4図は引上げ
単結晶が900℃〜800℃である保有時間を説明する
ためのグラフ、第5図は、6゛φ単結晶の900°C〜
800″Cの保有時間がb / cに依って変化するこ
とを示すグラフ、第6図は5″φ単結晶の900℃〜8
00℃の保有時間がb / aに依って変化することを
示すグラフ、第7図は5″φ及び6″φ単結晶における
b / cと面状格子欠陥の発生数との関係を示すグラ
フである。 5・・・引上げ単結晶  7・・・輻射スクリーンa・
・・輻射スクリーンの裁頭部の直径b・・・輻射スクリ
ーンの高さ C・・・引上げ単結晶の直径 第 図 600 700 800 900 100011001
200内壁巳呈膚(’C) 00 600  800 000 120゜ 400 結晶中心部の温度(°C)
Fig. 1 is a sectional view showing an embodiment of the device of the present invention, Fig. 2 is a graph showing the temperature distribution on the inner wall of the radiation screen, Fig. 3 is a temperature distribution chart at the center of the crystal in the vertical direction, and Fig. 4 is a drawing graph showing the temperature distribution on the inner wall of the radiation screen. A graph for explaining the retention time of a crystal at 900°C to 800°C, Figure 5 shows the retention time of a 6゛φ single crystal at 900°C to 800°C.
A graph showing that the retention time at 800"C varies depending on b/c, Figure 6 shows the retention time of 5"φ single crystal from 900℃ to 8
A graph showing that the retention time at 00°C changes depending on b/a. Figure 7 is a graph showing the relationship between b/c and the number of planar lattice defects in 5"φ and 6"φ single crystals. It is. 5... Pulled single crystal 7... Radiation screen a.
... Diameter of the truncated part of the radiation screen b ... Height of the radiation screen C ... Diameter of the pulled single crystal Fig. 600 700 800 900 100011001
200 Inner wall skin ('C) 00 600 800 000 120°400 Temperature at the center of the crystal (°C)

Claims (2)

【特許請求の範囲】[Claims] (1)引上げ単結晶の回りに位置せしめられる逆裁頭円
錐形の輻射スクリーンを具備した単結晶引上げ装置であ
って、前記輻射スクリーンの裁頭部の直径をa、同輻射
スクリーンの高さをb、引上げ単結晶の直径をcとした
ときに、a/c=1.1〜2.0であり、且つb/c≧
2.0であることを特徴とする単結晶引上げ装置。
(1) A single crystal pulling apparatus equipped with an inverted truncated cone-shaped radiation screen positioned around the pulled single crystal, wherein the diameter of the truncated part of the radiation screen is a, and the height of the radiation screen is b, when the diameter of the pulled single crystal is c, a/c = 1.1 to 2.0, and b/c≧
2.0.
(2)引上げ単結晶の回りに位置せしめられる逆裁頭円
錐形の輻射スクリーンであって、当該輻射スクリーンの
外周部を積層構造としたことを特徴とする第1項記載の
単結晶引上げ装置。
(2) The single crystal pulling apparatus according to item 1, characterized in that the radiation screen has an inverted truncated conical shape and is placed around the pulled single crystal, and the outer peripheral portion of the radiation screen has a laminated structure.
JP1293705A 1989-11-11 1989-11-11 Single crystal pulling device Expired - Lifetime JP2709310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293705A JP2709310B2 (en) 1989-11-11 1989-11-11 Single crystal pulling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1293705A JP2709310B2 (en) 1989-11-11 1989-11-11 Single crystal pulling device

Publications (2)

Publication Number Publication Date
JPH03153595A true JPH03153595A (en) 1991-07-01
JP2709310B2 JP2709310B2 (en) 1998-02-04

Family

ID=17798170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293705A Expired - Lifetime JP2709310B2 (en) 1989-11-11 1989-11-11 Single crystal pulling device

Country Status (1)

Country Link
JP (1) JP2709310B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021853A1 (en) * 1995-12-08 1997-06-19 Shin-Etsu Handotai Co., Ltd. Single crystal production apparatus and process
EP0811707A1 (en) * 1996-06-05 1997-12-10 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process and apparatus for making single crystals
EP0781866A3 (en) * 1995-12-27 1998-08-12 Shin-Etsu Handotai Company Limited An apparatus and a method for growing a single crystal
WO2000050671A1 (en) * 1999-02-26 2000-08-31 Memc Electronic Materials, Inc. Heat shield assembly for crystal puller
US6251184B1 (en) 1997-02-13 2001-06-26 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields for czochralski pullers
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
US6482263B1 (en) 2000-10-06 2002-11-19 Memc Electronic Materials, Inc. Heat shield assembly for crystal pulling apparatus
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
US6797062B2 (en) 2002-09-20 2004-09-28 Memc Electronic Materials, Inc. Heat shield assembly for a crystal puller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal
JPS5750759A (en) * 1980-09-10 1982-03-25 Hitachi Ltd Charged particle irradiator
JPS62138386A (en) * 1985-12-11 1987-06-22 Shin Etsu Handotai Co Ltd Device for pulling single crystal
JPS63315589A (en) * 1987-06-16 1988-12-23 Osaka Titanium Seizo Kk Single crystal production apparatus
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal
JPS5750759A (en) * 1980-09-10 1982-03-25 Hitachi Ltd Charged particle irradiator
JPS62138386A (en) * 1985-12-11 1987-06-22 Shin Etsu Handotai Co Ltd Device for pulling single crystal
JPS63315589A (en) * 1987-06-16 1988-12-23 Osaka Titanium Seizo Kk Single crystal production apparatus
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021853A1 (en) * 1995-12-08 1997-06-19 Shin-Etsu Handotai Co., Ltd. Single crystal production apparatus and process
US5972106A (en) * 1995-12-08 1999-10-26 Shin-Etsu Handotai Co., Ltd. Device and method for producing single crystal
EP0781866A3 (en) * 1995-12-27 1998-08-12 Shin-Etsu Handotai Company Limited An apparatus and a method for growing a single crystal
EP0811707A1 (en) * 1996-06-05 1997-12-10 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process and apparatus for making single crystals
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
US6251184B1 (en) 1997-02-13 2001-06-26 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields for czochralski pullers
US6409833B2 (en) 1997-02-13 2002-06-25 Samsung Electronics Co., Ltd. Insulating-containing ring-shaped heat shields and support members for Czochralski pullers
US6472040B1 (en) 1997-02-13 2002-10-29 Samsung Electronics Co., Ltd. Semi-pure and pure monocrystalline silicon ingots and wafers
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6676753B2 (en) 1997-02-13 2004-01-13 Samsung Electronics Co., Ltd. Czochralski pullers for manufacturing monocrystalline silicon ingots, including heat shield having sloped portions
US6780238B2 (en) 1997-02-13 2004-08-24 Samsung Electronics Co., Ltd. Argon/ammonia rapid thermal annealing for silicon wafers
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
US6197111B1 (en) 1999-02-26 2001-03-06 Memc Electronic Materials, Inc. Heat shield assembly for crystal puller
WO2000050671A1 (en) * 1999-02-26 2000-08-31 Memc Electronic Materials, Inc. Heat shield assembly for crystal puller
US6482263B1 (en) 2000-10-06 2002-11-19 Memc Electronic Materials, Inc. Heat shield assembly for crystal pulling apparatus
US6797062B2 (en) 2002-09-20 2004-09-28 Memc Electronic Materials, Inc. Heat shield assembly for a crystal puller

Also Published As

Publication number Publication date
JP2709310B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US3798007A (en) Method and apparatus for producing large diameter monocrystals
JPS581080B2 (en) Method for producing high-purity single crystals using Czyochralski&#39;s crucible pulling method
JPH02133389A (en) Production device of silicon single crystal
JP3128795B2 (en) Crystal manufacturing apparatus and manufacturing method by Czochralski method
JPH03153595A (en) Device for pulling single crystal
JP4097729B2 (en) Semiconductor single crystal manufacturing equipment
KR20100013854A (en) Manufacturing device for crystal ingot
KR930005408B1 (en) Apparatus for manufacturing silicon single crystals
JPS63315589A (en) Single crystal production apparatus
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
JPS6168389A (en) Apparatus for growing single crystal
KR102138455B1 (en) A heat shield member for single crystal growth and single crystal growth apparatus using the same
JPH05294783A (en) Silicon single crystal producing device
JP2013119500A (en) Single crystal growth method and apparatus thereof
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP2019043788A (en) Method and apparatus for growing single crystal
JPH01145391A (en) Device for pulling up single crystal
JP3812573B2 (en) Semiconductor crystal growth method
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH01100087A (en) Single crystal pulling-up device
RU2560402C1 (en) Method for monocrystal growing from molten metal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
KR20170081499A (en) Single crystal ingot growing apparatus and the anti-vibration plate applied to it
JPH0524964A (en) Production of compound semiconductor single crystal
JP4117813B2 (en) Method for producing compound semiconductor single crystal