JPH05294783A - Silicon single crystal producing device - Google Patents

Silicon single crystal producing device

Info

Publication number
JPH05294783A
JPH05294783A JP9531292A JP9531292A JPH05294783A JP H05294783 A JPH05294783 A JP H05294783A JP 9531292 A JP9531292 A JP 9531292A JP 9531292 A JP9531292 A JP 9531292A JP H05294783 A JPH05294783 A JP H05294783A
Authority
JP
Japan
Prior art keywords
single crystal
heat
heat shield
crucible
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9531292A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneda
洋 金田
Katsumi Nishizaki
克己 西崎
Masahiro Murakami
雅宏 村上
Yasuyuki Seki
康之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9531292A priority Critical patent/JPH05294783A/en
Publication of JPH05294783A publication Critical patent/JPH05294783A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To stably pull up a silicon single crystal at a low speed and to decrease the oxygen concn. in the single crystal in the production of the single crystal by moderating the temp. gradient and lowering the temp. of the wall of a crucible. CONSTITUTION:A conical heat shield is set to disturb the radiation of heat from a silicon single crystal 5 to the wall 13 of a chamber and fixed to a silicon single crystal lifting shaft, and a cylindrical heat shielding wall consisting of a heat reflecting plate 17, a heat shielding plate 16 and a support 15 is erected on the upper edge of a crucible 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCZ法により製造される
シリコン単結晶内の温度勾配を緩和し、安定した低速引
き上げを可能にした、シリコン単結晶の製造装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a silicon single crystal which relaxes a temperature gradient in a silicon single crystal produced by the CZ method and enables stable low speed pulling.

【0002】[0002]

【従来の技術】シリコン単結晶の製造では、通常CZ
(チョクラルスキー)法が用いられる。CZ法では、チ
ャンバ内に設置した石英製のるつぼに単結晶用原料を投
入し、これをヒータで加熱溶融した後、この融液中に種
結晶を浸して回転しながら上方に引き上げ、種結晶下端
に単結晶を成長させる。
2. Description of the Related Art CZ is commonly used in the production of silicon single crystals.
(Czochralski) method is used. In the CZ method, a raw material for a single crystal is put into a quartz crucible installed in a chamber, this is heated and melted by a heater, and then a seed crystal is immersed in this melt and pulled upward while being rotated. Grow a single crystal at the bottom.

【0003】近年、LSIの高密度化と共に、半導体結
晶、中でもシリコン単結晶に要求される品質は厳しくな
ってきている。例えば、引き上げ時に単結晶中に取り込
まれる微小欠陥やSiO微粒子等を、より一層低減する
ことなどが該当する。これは、その後のシリコンウエハ
製造時において、例えば、熱酸化膜の耐性等の品質低下
の原因として問題となるからである。
In recent years, as the density of LSIs has increased, the quality required for semiconductor crystals, especially silicon single crystals, has become severe. For example, further reduction of minute defects, SiO fine particles, and the like taken into the single crystal during pulling is applicable. This is because, during the subsequent manufacturing of the silicon wafer, it causes a problem such as deterioration of quality such as resistance of the thermal oxide film.

【0004】このため、シリコン単結晶を徐々に引き上
げる技術(特開昭57−71894号公報)、引き上げ
速度を0.3〜1.5mm/minの低速にして、上記
の悪影響を防ぐ技術(特開平3−275586号公
報)、装置上部に蒸発後析出したSiO微粒子の落下混
入を防ぐために、ネック部に保護カバーを設置する技術
(特開平3−271198号公報)が知られている。
Therefore, a technique for gradually pulling up a silicon single crystal (Japanese Patent Laid-Open No. 57-71894) and a technique for preventing the above-mentioned adverse effects by reducing the pulling speed to a low speed of 0.3 to 1.5 mm / min (special feature: (Kaihei 3-275586), there is known a technique (Japanese Patent Laid-Open No. 3-271198) in which a protective cover is installed on the neck portion in order to prevent SiO fine particles deposited on the upper part of the apparatus after evaporation from falling.

【0005】また、るつぼ上部に熱遮蔽体を設置し、減
圧下、雰囲気ガスを流通させることにより、SiO微粒
子の発生を防ぐ技術(特開平57−40119号公
報)、熱遮蔽体の他に、るつぼ内に仕切り部材を設置す
る技術(特開平3−271187号公報)が知られてい
る。さらに、るつぼ壁温度より低い温度で加熱する冷却
機構をるつぼ上部に設置して、単結晶の熱履歴を制御し
て、品質の安定化を図る技術(特開昭57−20539
7号公報)、SiO微粒子の落下混入の防止及び排出促
進のために、熱遮蔽体として、るつぼ直上部へ蓋を設置
する技術(特開昭55−113693号公報)、隔壁を
設置する技術(特開昭57−123890号公報)、ガ
スガイド治具を設置する技術(特開昭59−14149
4号公報)等が知られている。
Further, in addition to the heat shield, a technique for preventing the generation of SiO fine particles by installing a heat shield on the upper part of the crucible and circulating an atmospheric gas under reduced pressure (Japanese Patent Laid-Open No. 57-40119), A technique of installing a partition member in the crucible (Japanese Patent Laid-Open No. 3-271187) is known. Further, a technology for stabilizing the quality by installing a cooling mechanism for heating at a temperature lower than the crucible wall temperature above the crucible to control the thermal history of the single crystal (JP-A-57-20539).
No. 7), a technique of installing a lid directly above the crucible as a heat shield (Japanese Unexamined Patent Publication No. 55-113693), and a technique of installing partition walls as a heat shield in order to prevent falling of SiO fine particles and promote discharge. JP-A-57-123890), a technique for installing a gas guide jig (JP-A-59-14149).
No. 4) is known.

【0006】[0006]

【発明が解決しようとする課題】特開昭57−7189
4号公報に記載の技術では、るつぼの耐用寿命が短く、
また、膜の成分による融液の汚染等の問題がある。特開
平3−275586号公報に記載の技術では、装置上の
改善がないため、引き上げの安定化に問題がある。特開
平3−271198号公報及び特開平3−271187
号公報に記載の技術ではSiO微粒子の落下混入は抑え
られるが、多結晶の析出等の問題がある。特公昭57−
40119号公報及び特開昭55−113693号公報
に記載の技術では、るつぼ直上部への設置のため、Si
O微粒子の付着及び析出が避けられない。特開昭57−
205397号公報に記載の技術では、引き上げ時の加
熱による、結晶成長速度の高速化により、結晶の激しい
変形が生じる等の問題がある。特開昭57−12389
0号公報及び特開昭59−141494号公報に記載の
技術では、SiO2 微粒子の落下混入は抑えられるが、
保温効果が不十分なため、安定的な引き上げに問題があ
る。
Problems to be Solved by the Invention JP-A-57-7189
In the technique described in Japanese Patent No. 4, the crucible has a short service life,
In addition, there are problems such as contamination of the melt due to the components of the film. In the technique disclosed in Japanese Patent Laid-Open No. 3-275586, there is no improvement in the device, and thus there is a problem in stabilizing pulling. JP-A-3-271198 and JP-A-3-271187
Although the technique described in Japanese Patent Laid-Open Publication No. 2004-126242 suppresses the mixing of SiO fine particles by dropping, it has a problem such as precipitation of polycrystals. Japanese Patent Publication 57-
According to the techniques disclosed in Japanese Patent No. 40119 and Japanese Patent Laid-Open No. 55-113693, since Si is installed directly above the crucible, Si is used.
Adhesion and precipitation of O fine particles cannot be avoided. JP-A-57-
The technique disclosed in Japanese Patent No. 205397 has a problem in that the crystal is severely deformed due to the increase in the crystal growth rate due to the heating during pulling. JP-A-57-12389
According to the techniques described in JP-A No. 0 and JP-A-59-141494, mixing of SiO 2 particles by dropping is suppressed,
Insulation effect is insufficient, so there is a problem in stable pulling.

【0007】本発明は、前記問題点を解決し、シリコン
単結晶内の温度勾配を緩和し、安定した低速引き上げを
可能にした製造技術を提供することを目的とする。
An object of the present invention is to provide a manufacturing technique which solves the above problems, relaxes the temperature gradient in a silicon single crystal, and enables stable low-speed pulling.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題点を
解消したシリコン単結晶の製造装置として次の技術手段
から構成される。 (a)CZ法製造装置のシリコン単結晶の引き上げ軸
に、傘状の熱遮蔽体を介装する。 (b)熱反射板、熱遮蔽板及び支持材からなり、引き上
げ結晶を取り囲んでいる円筒状の熱遮蔽壁をるつぼ上縁
に立設する。
The present invention comprises the following technical means as an apparatus for producing a silicon single crystal that solves the above problems. (A) An umbrella-shaped heat shield is provided on the pulling shaft of the silicon single crystal of the CZ method manufacturing apparatus. (B) A cylindrical heat-shielding wall, which is composed of a heat-reflecting plate, a heat-shielding plate, and a support material and surrounds the pulled crystal, is provided upright on the upper edge of the crucible.

【0009】[0009]

【作用】結晶成長は、温度に極めて敏感であり、例え
ば、温度が上ると多結晶化し易く、また、温度が下る
と、成長速度の増大により結晶が激しく変形する。この
ため、CZ法によるシリコン単結晶の引上時において
は、単結晶内の温度勾配(温度分布)が重要な意味をも
つことになる。
The crystal growth is extremely sensitive to temperature. For example, when the temperature rises, it is likely to be polycrystallized, and when the temperature falls, the crystal is severely deformed due to the increase in growth rate. Therefore, when the silicon single crystal is pulled up by the CZ method, the temperature gradient (temperature distribution) in the single crystal has an important meaning.

【0010】本発明者らは、単結晶の上方を覆う傘状の
熱遮蔽体及びるつぼ上縁に立設した円筒状熱遮蔽壁を設
けると、シリコン単結晶内の温度勾配を緩和させるのに
極めて有効であることを見出し本発明を完成した。傘状
の熱遮蔽体は、熱遮蔽板とこれをシリコン結晶の引上軸
に取りつける断熱材取付具からなっている。熱遮蔽板は
放射率が低く、単結晶上端面を覆っているので、単結晶
上端面から、水冷されたチャンバ壁への輻射による放冷
を抑える。また、この熱遮蔽板は、引上軸に断熱材を介
して取付けるため、熱遮蔽板から引上軸への熱伝導によ
る冷却が抑えられ、高温に保たれる。したがって、保温
効果により、単結晶上端面から熱遮蔽板への輻射による
冷却を抑えることができる。以上により、単結晶から上
方への熱の放散が抑えられるので、単結晶は保温され、
単結晶内の温度勾配が緩和される。
The inventors of the present invention can reduce the temperature gradient in the silicon single crystal by providing an umbrella-shaped heat shield covering the upper part of the single crystal and a cylindrical heat shield wall standing on the upper edge of the crucible. The present invention has been completed by finding that it is extremely effective. The umbrella-shaped heat shield is composed of a heat shield plate and a heat insulating material mounting tool for attaching the heat shield plate to the pulling shaft of the silicon crystal. Since the heat shield plate has a low emissivity and covers the upper end surface of the single crystal, cooling from the upper end surface of the single crystal to the chamber wall cooled by water is suppressed. Further, since this heat shield plate is attached to the pull-up shaft via the heat insulating material, cooling due to heat conduction from the heat shield plate to the pull-up shaft is suppressed, and the heat shield plate is kept at a high temperature. Therefore, due to the heat retaining effect, it is possible to suppress the cooling due to the radiation from the upper end surface of the single crystal to the heat shield plate. From the above, since the heat dissipation from the single crystal upward is suppressed, the single crystal is kept warm,
The temperature gradient in the single crystal is relaxed.

【0011】次に、円筒状の熱遮蔽壁として、単結晶の
周囲を取り囲む熱反射板が、融液表面及び単結晶表面か
らの輻射を単結晶側面へ向けて反射するので、単結晶側
面からの輻射による冷却が抑えられ、単結晶は保温され
る。また、単結晶の周囲を取り囲む熱反射板は、融液表
面からの輻射熱を吸収する熱遮蔽板を介して、融液表面
からの熱により保温されるので、単結晶側面から熱反射
板への輻射による冷却は抑えられる。
Next, as a cylindrical heat shield wall, a heat reflection plate surrounding the periphery of the single crystal reflects radiation from the melt surface and the single crystal surface toward the single crystal side surface. The cooling of the single crystal is suppressed and the single crystal is kept warm. Further, the heat reflection plate surrounding the single crystal is kept warm by the heat from the melt surface through the heat shield plate that absorbs the radiant heat from the melt surface, so that the single crystal side face to the heat reflection plate Cooling due to radiation is suppressed.

【0012】前記熱反射板と熱遮蔽板からなる熱遮蔽壁
は、るつぼ壁上端の支持材の上に設置するため、常にる
つぼ壁上端より上方にあり、るつぼ壁面から単結晶への
熱輻射熱による保温効果を妨げることなく、るつぼ壁上
端より上方における、単結晶から水冷されたチャンバ壁
への熱輻射による単結晶の冷却を効果的に抑えることが
できる。
Since the heat shield wall composed of the heat reflection plate and the heat shield plate is installed on the support member at the upper end of the crucible wall, it is always above the upper end of the crucible wall, and is radiated by the heat radiated from the crucible wall surface to the single crystal. It is possible to effectively suppress the cooling of the single crystal above the upper end of the crucible wall due to heat radiation from the single crystal to the water-cooled chamber wall without impeding the heat retaining effect.

【0013】前記傘状の熱遮蔽体及び円筒状の熱遮蔽壁
の設置により、単結晶の上端面及び側面の両方からの輻
射による冷却を抑えるだけでなく、単結晶を効果的に保
温することにより、単結晶内の温度勾配を緩和すること
ができる。最近になって、シリコン単結晶の品質を満足
させるために、生産性が低下するにも拘らず、、引上速
度を低速化することが要求されるようになってきた。一
般に、単結晶内の温度勾配と引上速度との関係式とし
て、以下の式が知られている。
By providing the umbrella-shaped heat shield and the cylindrical heat shield wall, not only the cooling due to the radiation from both the upper and side surfaces of the single crystal is suppressed but also the single crystal is effectively kept warm. Thereby, the temperature gradient in the single crystal can be relaxed. Recently, in order to satisfy the quality of a silicon single crystal, it has been required to slow down the pulling speed despite the decrease in productivity. Generally, the following equation is known as a relational expression between the temperature gradient in the single crystal and the pulling rate.

【0014】 V=(1/ρH)×(Ks×(dTs/dZ) −KL ×(dTL /dZ)) ただし、 V:引上速度 ρ:単結晶の密度 H:凝固潜熱 Ks:単結晶の熱伝導率 KL :融液の熱伝導率 Ts:単結晶の温度 TL :融液の温度 Z:引上軸方向の距離 上式において、引上速度を低速にするためには、右辺の
第1項を小さくし、第2項を大きくする必要がある。具
体的には、単結晶内の温度勾配の緩和と、融液内の温度
勾配の急激化が該当するが、従来の操業条件で制御でき
るのは、融液内の温度勾配のみである。この温度勾配を
急激にするために、ヒータ温度を上げると、以下の問題
点が生じるため、好ましくない。
[0014] V = (1 / ρH) × (Ks × (dTs / dZ) -K L × (dT L / dZ)) However, V: pulling speed [rho: Single crystal density H: latent heat of solidification Ks: Single the thermal conductivity of the crystal K L: thermal conductivity of the melt Ts: single crystal temperature T L: temperature of the melt Z: in pulling axis direction distance above equation, to the pulling speed to a low speed, the It is necessary to reduce the first term on the right side and increase the second term. Specifically, the relaxation of the temperature gradient in the single crystal corresponds to the sharpening of the temperature gradient in the melt, but the conventional operating conditions can control only the temperature gradient in the melt. Raising the heater temperature in order to make this temperature gradient steep causes the following problems, which is not preferable.

【0015】(1)自然対流が強く、温度変動が激しく
なり、結晶成長が安定しない。 (2)るつぼ周辺の温度を上げるため、るつぼ壁から融
液への酸素、及び不純物等の溶け込みが大きくなり、単
結晶の品質が制御できない。 (3)ヒータの消費電力が大きくなり、チャンバ内部品
の損耗も激しくなり、全体のコストが上昇する。
(1) Natural convection is strong, temperature fluctuations are severe, and crystal growth is not stable. (2) Since the temperature around the crucible is increased, the penetration of oxygen, impurities, etc. from the crucible wall into the melt becomes large, and the quality of the single crystal cannot be controlled. (3) The power consumption of the heater is large, the parts in the chamber are heavily worn, and the overall cost is increased.

【0016】本発明によれば、傘状の熱遮蔽体及び円筒
状の熱遮蔽壁の設置により、シリコン単結晶内の温度勾
配が緩和されるため、特に上式の右辺の第1項を小さく
する効果により、引上速度の低速化が可能となる。
According to the present invention, since the temperature gradient in the silicon single crystal is relaxed by the installation of the umbrella-shaped heat shield and the cylindrical heat shield wall, the first term on the right side of the above equation is reduced particularly. The pulling speed can be reduced due to the effect.

【0017】[0017]

【実施例】図1は本発明の実施例を示すチャンバ内の概
略断面図である。直径16インチの石英るつぼ7に原料
シリコンを45kg装入して溶融させ、シリコン融液6
から直径6インチの単結晶5を引き上げた。このとき、
傘状の熱遮蔽体として、引上軸1と結晶ホルダ4の間に
多孔質のアルミナ製の断熱材2を介して、モリブデン製
の円錐形(底面:直径7インチ、縦断面の頂角:100
°)の熱遮蔽板3を用いた。断熱材2の材質について
は、これに限るものではなく、耐熱性を有し、熱伝導率
の低い材質であればよい。熱遮蔽板3についても、材質
・形状・大きさはこれに限るものではなく、耐熱性、低
放射率の材質を用いて、上部からの不活性ガス流を乱さ
ない形状で、単結晶5の直径よりも大きい外径を有する
ものであれば良い。通常、材質として、モリブデンの他
にタンタルを用いることができる。
1 is a schematic sectional view of the inside of a chamber showing an embodiment of the present invention. 45 kg of raw material silicon was charged into a quartz crucible 7 having a diameter of 16 inches and melted to obtain a silicon melt 6
A single crystal 5 having a diameter of 6 inches was pulled from the. At this time,
As an umbrella-shaped heat shield, a molybdenum conical shape (bottom: diameter 7 inches, vertical cross-section apex angle: between a pull-up shaft 1 and a crystal holder 4 with a porous alumina heat insulating material 2 interposed therebetween. 100
The heat shield plate 3 of (°) was used. The material of the heat insulating material 2 is not limited to this, and any material having heat resistance and low thermal conductivity may be used. The material, shape, and size of the heat shield plate 3 are not limited to those described above, and a material having heat resistance and low emissivity is used so that the inert gas flow from the upper portion is not disturbed and the single crystal 5 Any material having an outer diameter larger than the diameter may be used. Normally, tantalum can be used as the material in addition to molybdenum.

【0018】さらに、円筒状の熱遮蔽壁として、チャン
バ内に、図2に示したリング14と支持台15からなる
支持材を設置し、この上に図3に示した熱遮蔽板16と
熱反射板17からなる保温材を設置した。リング14
は、カーボンるつぼ8の上端に形状を合わせ、支持台1
5は、熱反射板17の下端が石英るつぼ7の上端に合う
ように、るつぼ中心の上端を調節して、設置した。リン
グ14と支持台15の材質として、共にモリブデンを用
いたが、形状を維持できる耐熱性があれば、他の材質を
用いても良い。
Further, as a cylindrical heat shield wall, a support member composed of the ring 14 and the support base 15 shown in FIG. 2 is installed in the chamber, and the heat shield plate 16 and the heat shield plate shown in FIG. A heat insulating material composed of the reflector 17 was installed. Ring 14
Match the shape to the top of the carbon crucible 8
No. 5 was installed by adjusting the upper end of the center of the crucible so that the lower end of the heat reflection plate 17 fits the upper end of the quartz crucible 7. Although molybdenum was used as the material of both the ring 14 and the support 15, another material may be used as long as it has heat resistance capable of maintaining its shape.

【0019】熱遮蔽板16は、外径14インチ、厚さ5
mmのグラファイト製としたが、石英るつぼ壁及び融液
表面からのSiO等のガスが十分に流れるように、溝を
有して設置され、材質として、高放射率・高熱伝導率の
材質であればよい。また、熱反射板17は、内径12イ
ンチ、厚さ2mm・高さ200mmのモリブデン製の円
筒であり、熱遮蔽板16の上に設置されるが、これは石
英るつぼ7とチャンバ13の間に入る高さで、低放射率
の材質であれば良く、通常材質として、モリブデンの他
にタンタルを用いることができる。内径は、単結晶6イ
ンチに対して8インチよりも大きい方が、単結晶の保温
性が良く、好ましい。
The heat shield plate 16 has an outer diameter of 14 inches and a thickness of 5
Although it is made of graphite of mm, it is installed with a groove so that the gas such as SiO from the quartz crucible wall and the surface of the melt flows sufficiently, and the material should have high emissivity and high thermal conductivity. Good. The heat reflection plate 17 is a molybdenum cylinder having an inner diameter of 12 inches, a thickness of 2 mm, and a height of 200 mm, and is installed on the heat shield plate 16. This is located between the quartz crucible 7 and the chamber 13. Any material may be used as long as it is high enough to enter and has a low emissivity, and tantalum can be used as a normal material in addition to molybdenum. It is preferable that the inner diameter is larger than 8 inches with respect to 6 inches of the single crystal because the heat retention of the single crystal is good.

【0020】以上の傘状の熱遮蔽体及び円筒状の熱遮蔽
壁を設置し、引き上げた単結晶の温度を、従来技術と比
較した結果を図4に示す。例えば結晶長300mmにお
いて、結晶の上下端の温度差が従来、約750℃であっ
たものが実施例では上下温度差が約500℃となり、約
250℃の差がある。本発明によれば、単結晶内の温度
勾配が緩和される。
FIG. 4 shows the results of comparison of the temperature of the single crystal pulled up with the above-mentioned umbrella-shaped heat shield and cylindrical heat shield wall with those of the prior art. For example, when the crystal length is 300 mm, the temperature difference between the upper and lower ends of the crystal is conventionally about 750 ° C., but in the embodiment, the upper and lower temperature difference is about 500 ° C., which is about 250 ° C. According to the present invention, the temperature gradient in the single crystal is relaxed.

【0021】また、本発明により、単結晶の直径を制御
しながら、引上速度を目標値20mm/hrの低速とし
た。このときの引上速度の変動幅を、従来技術と比較し
た結果を図5に示す。本発明によれば、特に結晶成長前
半における速度変動幅が減少し、低速引き上げの安定化
が可能となる。さらに、本発明によれば、傘状の熱遮蔽
体及び円筒状の熱遮蔽壁の保温効果により、るつぼ壁の
温度を約10℃下げることができ、るつぼ壁から融液へ
の酸素の溶け込みが抑えられるため、低速引き上げにお
ける単結晶の酸素濃度を約2.5ppma低下させるこ
とができた。
Further, according to the present invention, the pulling speed is set to the low speed of the target value of 20 mm / hr while controlling the diameter of the single crystal. FIG. 5 shows the result of comparison of the fluctuation range of the pulling speed at this time with that of the conventional technique. According to the present invention, the fluctuation range of the velocity is reduced particularly in the first half of the crystal growth, and the slow pulling can be stabilized. Furthermore, according to the present invention, the temperature of the crucible wall can be lowered by about 10 ° C. by the heat retaining effect of the umbrella-shaped heat shield and the cylindrical heat shield wall, and the melting of oxygen from the crucible wall into the melt can be achieved. Since it was suppressed, the oxygen concentration of the single crystal in the slow pulling could be reduced by about 2.5 ppma.

【0022】[0022]

【発明の効果】本発明は、傘状の熱遮蔽体を引上軸に設
け、さらにるつぼ上方に熱反射板、熱遮蔽板及び支持材
で構成される円筒状の熱遮蔽壁を設置することにより、
シリコン単結晶内の温度勾配を緩和し、安定した低速引
き上げが可能になった。また、傘状の熱遮蔽体及び円筒
状の熱遮蔽壁の保温効果により、るつぼ壁の温度を下げ
ることができ、単結晶の酸素濃度を低減化する効果もあ
る。
According to the present invention, an umbrella-shaped heat shield is provided on the pulling shaft, and a cylindrical heat shield wall composed of a heat reflection plate, a heat shield plate and a supporting member is installed above the crucible. Due to
The temperature gradient in the silicon single crystal was relaxed, and stable low-speed pulling became possible. Further, the temperature of the crucible wall can be lowered by the heat retaining effect of the umbrella-shaped heat shield and the cylindrical heat shield wall, and the oxygen concentration of the single crystal can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示すチャンバ内の概略断面
図である。
FIG. 1 is a schematic sectional view of the inside of a chamber showing an embodiment of the present invention.

【図2】本発明の支持材の一例を示す上面図及び縦断面
図である。
FIG. 2 is a top view and a vertical cross-sectional view showing an example of a support material of the present invention.

【図3】本発明の熱遮蔽板及び熱反射板の一例を示す上
面図及び縦断面図である。
FIG. 3 is a top view and a vertical sectional view showing an example of a heat shield plate and a heat reflector plate of the present invention.

【図4】本発明の一例により引き上げた単結晶の温度
を、従来技術と比較した図である。
FIG. 4 is a diagram comparing the temperature of a single crystal pulled according to an example of the present invention with that of a conventional technique.

【図5】本発明の一例により、単結晶の直径を制御しな
がら、引上速度を目標値20mm/hrの低速とした時
の、引上速度の変動幅を従来技術と比較した図である。
FIG. 5 is a diagram comparing the fluctuation range of the pulling speed when the pulling speed is set to a low speed of a target value of 20 mm / hr while controlling the diameter of the single crystal according to an example of the present invention, in comparison with the related art. ..

【符号の説明】[Explanation of symbols]

1 引上軸 2 断熱材 3 熱遮蔽板 4 結晶ホルダ 5 シリコン単結晶 6 シリコン融液 7 石英るつぼ 8 カーボンるつぼ 9 ヒータ 10 断熱材 11 断熱材 13 チャンバ 14 リング 15 支持台 16 熱遮蔽板 17 熱反射板 DESCRIPTION OF SYMBOLS 1 Pull-up shaft 2 Heat insulating material 3 Heat shielding plate 4 Crystal holder 5 Silicon single crystal 6 Silicon melt 7 Quarts crucible 8 Carbon crucible 9 Heater 10 Heat insulating material 11 Heat insulating material 13 Chamber 14 Ring 15 Support stand 16 Heat shielding plate 17 Heat reflection plate Board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 雅宏 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 関 康之 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Murakami 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Yasuyuki Seki 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Co., Ltd. Research headquarters

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 傘状の熱遮蔽体をシリコン単結晶の引き
上げ軸に介装すると共に、熱反射板、熱遮蔽板及び支持
材からなり、引き上げ結晶を囲繞する円筒状の熱遮蔽壁
をるつぼ上縁に立設したことを特徴とするシリコン単結
晶の製造装置。
1. A crucible having a cylindrical heat-shielding wall surrounding a pull-up crystal, which comprises an umbrella-shaped heat shield mounted on a pull-up shaft of a silicon single crystal and which comprises a heat-reflecting plate, a heat-shielding plate and a supporting material. An apparatus for producing a silicon single crystal, which is erected on the upper edge.
JP9531292A 1992-04-15 1992-04-15 Silicon single crystal producing device Withdrawn JPH05294783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9531292A JPH05294783A (en) 1992-04-15 1992-04-15 Silicon single crystal producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9531292A JPH05294783A (en) 1992-04-15 1992-04-15 Silicon single crystal producing device

Publications (1)

Publication Number Publication Date
JPH05294783A true JPH05294783A (en) 1993-11-09

Family

ID=14134244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9531292A Withdrawn JPH05294783A (en) 1992-04-15 1992-04-15 Silicon single crystal producing device

Country Status (1)

Country Link
JP (1) JPH05294783A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667584A (en) * 1994-12-05 1997-09-16 Shin-Etsu Handotai Co., Ltd. Method for the preparation of a single crystal of silicon with decreased crystal defects
US6015460A (en) * 1995-12-15 2000-01-18 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Method and apparatus for pulling a monocrystal
WO2004007814A1 (en) * 2002-07-12 2004-01-22 Komatsu Denshi Kinzoku Kabushiki Kaisha Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
JP2007326730A (en) * 2006-06-07 2007-12-20 Tokuyama Corp Apparatus for pulling metal fluoride single crystal
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
JP2017523951A (en) * 2014-08-04 2017-08-24 エルジー シルトロン インコーポレイテッド Seed chuck and ingot growth apparatus including the same
KR20200138082A (en) * 2019-05-29 2020-12-09 포슝스베르분드 베를린 에.베. Method and setup for growing bulk single crystals

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667584A (en) * 1994-12-05 1997-09-16 Shin-Etsu Handotai Co., Ltd. Method for the preparation of a single crystal of silicon with decreased crystal defects
US6015460A (en) * 1995-12-15 2000-01-18 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Method and apparatus for pulling a monocrystal
WO2004007814A1 (en) * 2002-07-12 2004-01-22 Komatsu Denshi Kinzoku Kabushiki Kaisha Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
US7235128B2 (en) 2002-07-12 2007-06-26 Komatsu Denshi Kinzoku Kabushiki Kaisha Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
JP2007326730A (en) * 2006-06-07 2007-12-20 Tokuyama Corp Apparatus for pulling metal fluoride single crystal
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
JP2017523951A (en) * 2014-08-04 2017-08-24 エルジー シルトロン インコーポレイテッド Seed chuck and ingot growth apparatus including the same
KR20200138082A (en) * 2019-05-29 2020-12-09 포슝스베르분드 베를린 에.베. Method and setup for growing bulk single crystals
US11591712B2 (en) 2019-05-29 2023-02-28 Forschungsverbund Berlin E.V. Method and setup for growing bulk single crystals

Similar Documents

Publication Publication Date Title
US6197111B1 (en) Heat shield assembly for crystal puller
US7291225B2 (en) Heat shield and crystal growth equipment
EP0538048B1 (en) A single crystal pulling apparatus
US5714004A (en) Process for producing polycrystalline semiconductors
US20100162946A1 (en) System for continuous growing of monocrystalline silicon
US3798007A (en) Method and apparatus for producing large diameter monocrystals
US6579362B2 (en) Heat shield assembly for crystal puller
US20210340691A1 (en) Crystal pulling system and methods for producing monocrystalline ingots with reduced edge band defects
US6071341A (en) Apparatus for fabricating single-crystal silicon
KR101381326B1 (en) Method for producing semiconductor wafers composed of silicon
US20110056427A1 (en) Single-crystal manufacturing apparatus and single-crystal manufacturing method
US5824152A (en) Semiconductor single-crystal pulling apparatus
JPH05294783A (en) Silicon single crystal producing device
JPS63315589A (en) Single crystal production apparatus
US20210140064A1 (en) Semiconductor crystal growth apparatus
EP1538242B1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
KR19990082507A (en) Crystal production apparatus, crystal production method and crystals produced therefrom by the Chokoralsky method
JPH0761889A (en) Semiconductor single crystal pull device and method fir pulling semiconductor single crystal
KR100467836B1 (en) A Graphite heater of a Grower for single crystalline silicon ingot
KR960006262B1 (en) Apparatus for making silicon single crystal
JPH11240790A (en) Apparatus for producing single crystal
JPH046195A (en) Production apparatus for silicon single crystal
JP2939603B2 (en) Manufacturing method of semiconductor single crystal
JPH08325090A (en) Device for pulling up single crystal
KR100488903B1 (en) An apparatus for growing silicon single crystals

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706