JPH0498761A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0498761A
JPH0498761A JP2214179A JP21417990A JPH0498761A JP H0498761 A JPH0498761 A JP H0498761A JP 2214179 A JP2214179 A JP 2214179A JP 21417990 A JP21417990 A JP 21417990A JP H0498761 A JPH0498761 A JP H0498761A
Authority
JP
Japan
Prior art keywords
manganese dioxide
lithium
active material
treated
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2214179A
Other languages
Japanese (ja)
Other versions
JP2849183B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
日野 義久
Yoshiro Harada
吉郎 原田
Hideaki Nagura
名倉 秀哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2214179A priority Critical patent/JP2849183B2/en
Publication of JPH0498761A publication Critical patent/JPH0498761A/en
Application granted granted Critical
Publication of JP2849183B2 publication Critical patent/JP2849183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Safety Devices In Control Systems (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To form a nonaqueous electrolyte secondary battery of good performance by providing a negative electrode of lithium as an active material and a positive electrode of MnO2 as an active material, and causing MnO2 to have a peak near the predetermined angle with an X-ray diffraction using an Fe(kalpha) ray. CONSTITUTION:A nonaqueous electrolyte secondary battery has a negative electrode of lithium as an active material, and a positive electrode 2 of manganese dioxide as an active material. The manganese dioxide contains a barium ion, and is thermally treated at 200 deg.C to 450 deg.C after made to have a peak at least near 2theta=32 degrees, 47 degrees and 52 degrees with an X-ray diffraction using an Fe(kalpha) ray. Also, the manganese dioxide after treated with lithium salt water solution may be thermally treated, together with lithium salt at 200 deg.C to 450 deg.C. Or, a positive electrode after treated with dilute sulfuric acid solution may be thermally treated at 200 deg.C to 450 deg.C, together with lithium salt, for use as a positive electrode.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、二酸化マンガンを正極活物質とする、非水
電解液二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a non-aqueous electrolyte secondary battery using manganese dioxide as a positive electrode active material.

〈従来の技術〉 非水電解液二次電池では、非水系の電解液を用い、リチ
ウムを活物質とする負極(リチウム負極、リチウム合金
負極なと)をセパレータを介して正極と和合わせる構成
か、一般的に採られる。
<Conventional technology> Non-aqueous electrolyte secondary batteries use a non-aqueous electrolyte, and have a structure in which a negative electrode containing lithium as an active material (lithium negative electrode, lithium alloy negative electrode, etc.) is combined with a positive electrode through a separator. , commonly adopted.

正極活物質には、二酸化モリブデン、五酸化バナンウム
 あるいは二酸化マンガンなとか使用され、特に二酸化
マンガンは資源豊富で安価であるので好ましい材料であ
る。
Molybdenum dioxide, vananium pentoxide, or manganese dioxide is used as the positive electrode active material, and manganese dioxide is particularly preferred because it is an abundant resource and inexpensive.

二酸化マンガンとしては、例えば、特開昭62−108
455号公報や特開昭63−148550号公報なとに
記載されたような、化学二酸化マンガン(CMD)や電
解二酸化マンガン(EMD)にリチウノ、をトープし、
充放電サイクルにおける容量低下を抑え、サイクル特性
を改善したものが知られている。
As manganese dioxide, for example, JP-A-62-108
455 and Japanese Patent Application Laid-Open No. 63-148550, etc., chemical manganese dioxide (CMD) and electrolytic manganese dioxide (EMD) are topped with lithium,
There are known batteries that suppress capacity loss during charge/discharge cycles and have improved cycle characteristics.

〈発明が解決しようとする課題〉 し、かしなから、上記の1・−ブ処理をした二酸化マン
ガンを正極活物質に用いt:場合でも特性改善か図れる
度合いは少なく、充放電容量か小さく、またサイクル劣
化か大きいため、実用上十分なサイクル寿命を持たせる
こ吉かできない。
<Problem to be solved by the invention> However, even if manganese dioxide subjected to the above 1-b treatment is used as a positive electrode active material, the degree of improvement in characteristics is small and the charge/discharge capacity is small. Also, since cycle deterioration is large, Kokichi is the only way to ensure a practically sufficient cycle life.

この発明は、充放電容量か大きく、またサイクル特性の
良好な、非水電解液二次電池を提供することを目的とす
る。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that has a large charge/discharge capacity and good cycle characteristics.

く課題を解決するための1段〉 本発明者は上記問題を解決すべく鋭意研究の所、バリウ
ムイオンを含む二酸化マンガンのうち、X線回折で特定
のピークを有するものを用いた場合には所期の目的を達
成できることを知得し、本発明を完成した。
The first step to solving the problem> The present inventor has conducted extensive research to solve the above problem, and found that when using manganese dioxide containing barium ions, which has a specific peak in X-ray diffraction, Having learned that the intended purpose can be achieved, the present invention was completed.

この発明の非水電解液二次電池は、リチウムを活物質と
する負極と、二酸化マンガンを活物質とする正極を備え
、前記二酸化マンガンは、バリウムイオンを含み、Fe
(kα)線によるX線回折で少なくとも2θ=32°、
、、52°付近にピークを有する二酸化マンガンを、 
200〜450℃て熱処理したものである。
The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode using lithium as an active material and a positive electrode using manganese dioxide as an active material, the manganese dioxide containing barium ions and Fe.
At least 2θ=32° by X-ray diffraction using (kα) rays,
,, manganese dioxide having a peak around 52°,
It is heat treated at 200-450°C.

・リウムイオンを含み、前記ピークを有する二酸化マシ
ガンは天然二酸化マンガン鉱石として得られ、粉砕、水
洗処理を行って用いることができる。
- Masigan dioxide containing lithium ions and having the above peak is obtained as a natural manganese dioxide ore, and can be used after being crushed and washed with water.

上記ピークとしては、例えば第1図(A)、 (13)
に示したものか挙げられる。
The above peaks include, for example, Fig. 1 (A), (13)
The following can be mentioned.

本発明で用いる二酸化マンカンではバリウムイオンは化
合物の形で含まれるものと思われる。
It is thought that barium ions are contained in the form of a compound in the mancan dioxide used in the present invention.

そしてこの化合物は、X線回折で上記ピークを持たない
他のバリウムイオン含有二酸化マンカンに比べ、水(結
晶水)を多く持ち、その分結晶の格子間隔が広いものと
推測される。
It is presumed that this compound has more water (crystal water) than other barium ion-containing mancan dioxides that do not have the above-mentioned peak in X-ray diffraction, and the lattice spacing of the crystals is correspondingly wide.

本願で二酸化マンガンの熱処理温度を上記の範囲とした
のは、この熱処理は二酸化マンガン中の水分除去か主な
目的であり、このため200℃以下では水分の脱離が不
十分となるし、一方450℃以上では電気化学的活性度
が低化し、いずれも所望の性能か得られなくなるからで
ある。
The reason why the temperature for heat treatment of manganese dioxide is set in the above range in this application is that the main purpose of this heat treatment is to remove water from manganese dioxide, and for this reason, below 200°C, the removal of water will be insufficient. This is because at temperatures above 450° C., the electrochemical activity decreases, making it impossible to obtain the desired performance.

一方、上記ピークを有する二酸化マンガンをリチウム塩
水溶液で処理後、同しく200〜450℃ての熱処理を
しても良い。この処理により、二酸化マンノノン結晶中
のバリウムイオンとリチウムイオンとの置換かなされ、
特性か更に良好な二酸化マンカンを得ることかできる。
On the other hand, after treating manganese dioxide having the above peak with an aqueous lithium salt solution, it may be similarly heat-treated at 200 to 450°C. Through this treatment, the barium ions in the mannonone dioxide crystal are replaced with lithium ions,
It is possible to obtain mancan dioxide with even better properties.

またその際の処理温度を高めれば上記置換か早く進んで
処理時間の短縮か行える。更に、上記200〜450℃
での熱処理をリチウム塩とともに行うようにしても良く
、リチウムイオンの拡散による性能向上か期待てきる。
Moreover, if the processing temperature at that time is raised, the above-mentioned replacement will proceed faster and the processing time can be shortened. Furthermore, the above 200 to 450°C
It is also possible to perform the heat treatment together with lithium salt, and it is expected that the performance will improve due to the diffusion of lithium ions.

リチウム塩としては、硝酸リチウム、水酸化リチウム、
塩化リチウム、過塩素酸リチウム酢酸リチウム、臭化リ
チウムなとを用いることかできる。
Lithium salts include lithium nitrate, lithium hydroxide,
Lithium chloride, lithium perchlorate, lithium acetate, lithium bromide, etc. can be used.

更に、上記ピークを有する二酸化マンガンを希酸水溶液
に処理後、リチウム塩とともに200〜450℃て熱処
理することで、特性の良好な正極を得ることができる。
Furthermore, a positive electrode with good characteristics can be obtained by treating manganese dioxide having the above peak with a dilute acid aqueous solution and then heat-treating it with a lithium salt at 200 to 450°C.

希酸水溶液での処理により、二酸化マンガンの結晶中か
らバリウムイオンか抜出し、また続くリチウム塩と一緒
の熱処理の際にこの抜出した場所にリチウムイオンか置
換される。この場合も処理温度を高めることで処理時間
が短縮できる。
By treatment with a dilute acid aqueous solution, barium ions are extracted from the manganese dioxide crystal, and during the subsequent heat treatment with lithium salt, the extracted sites are replaced with lithium ions. In this case as well, the processing time can be shortened by increasing the processing temperature.

希酸水溶液としては、硝酸、塩酸、過塩素酸などを用い
ることができる。
As the dilute acid aqueous solution, nitric acid, hydrochloric acid, perchloric acid, etc. can be used.

また、本発明においては、負極にはリチウムないしリチ
ウム合金(例えぼりチウム−アルミニウム合金)が用い
られる。
Further, in the present invention, lithium or a lithium alloy (for example, a lithium-aluminum alloy) is used for the negative electrode.

〈作 用〉 バリウムイオンを含有した二酸化マンガンはその内部に
バリウムイオンによって支えられる大きな空間を持ち、
またこの大きな空間はリチウムイオンの出入りによる格
子の膨脂及び収縮が少なくて、サイクルに対して破壊さ
れ難い構造となる。
<Function> Manganese dioxide containing barium ions has a large space inside that is supported by barium ions,
In addition, this large space reduces the swelling and contraction of the lattice due to the entry and exit of lithium ions, resulting in a structure that is less likely to be destroyed by cycles.

そしてこのバリウムイオンを含む二酸化マンガンのうち
、Fe(kα)線によるX線回折で少なくとも2θ=3
2°、、、52°付近にピークを有する二酸化マンガン
は、他のものに比べて結晶構造上大きな空間を有し、充
放電に伴うリチウムの出入りによる構造変化が極めて小
さいものと考えられる。
Of this manganese dioxide containing barium ions, at least 2θ=3
Manganese dioxide, which has peaks around 2°, .

このためこの二酸化マンガンを正極の活物質に用いるこ
とて、特性の良好な非水電解液二次電池を得ることがで
きる。
Therefore, by using this manganese dioxide as the active material of the positive electrode, a non-aqueous electrolyte secondary battery with good characteristics can be obtained.

〈実施例〉 二酸化マンガンとして、バリウムを15重Ijkg7゜
含み、またFe(kα)線によるX回折において第1図
(^)の通り、2θ=32” 、 39°、47゜52
° 64° 75°にピークをそれぞれ示すものを用い
た。
<Example> Manganese dioxide contains 15 times Ijkg of barium at 7°, and as shown in Fig. 1 (^) in X diffraction using Fe (kα) rays, 2θ=32”, 39°, 47°52
Those showing peaks at 64° and 75° were used.

この二酸化マンガンに、以下の処理■〜■をそれぞれ行
い、本発明に係わる二酸化マンガン■〜■をそれぞれ作
製した。
This manganese dioxide was subjected to the following treatments (1) to (2), respectively, to produce manganese dioxide (1) to (4) according to the present invention.

*処理■・・・二酸化マンガンを350℃で熱処理を行
った。
*Treatment ■: Manganese dioxide was heat treated at 350°C.

*処理■・・・上記二酸化マンガンlOgを硝酸リチウ
ムの1  sol/J2水溶液1β中に浸漬し、90〜
100℃で5時間処理を行った。次いてこの処理液を濾
過し、濾残を100℃で2時間処理して乾燥し、その後
、350℃で5時間熱処理を行った。
*Processing ■: 10g of the above manganese dioxide was immersed in 1β of a 1 sol/J2 aqueous solution of lithium nitrate, and
The treatment was carried out at 100°C for 5 hours. Next, this treated solution was filtered, and the filtration residue was treated at 100° C. for 2 hours, dried, and then heat-treated at 350° C. for 5 hours.

*処理■・・・上記二酸化マンガンlOgを硝酸リチウ
ムの1  mol/1水溶液1β中に浸漬し、90〜1
00℃で5時間処理を行った。次いでこの処理液を濾過
し、濾残を100℃で2時間処理して乾燥した後、Li
0H1,8gとともに350℃で24時間加熱処理を行
った。
*Processing ■: 1Og of the above manganese dioxide is immersed in 1β of a 1 mol/1 aqueous solution of lithium nitrate,
The treatment was carried out at 00°C for 5 hours. Next, this treated solution was filtered, and the filtration residue was treated at 100°C for 2 hours and dried, followed by Li
Heat treatment was performed at 350° C. for 24 hours with 1.8 g of 0H.

*処理■・・・上記二酸化マンガンlOgをINの硝酸
水溶液1(中に浸漬し、60℃で1時間処理を行った。
*Treatment (1): 10 g of the above manganese dioxide was immersed in IN nitric acid aqueous solution 1 (1), and treated at 60° C. for 1 hour.

処理液の濾残を水洗いした後にLiOH水溶液に浸漬し
、次いで乾燥して水分を除去した後、350℃で10時
間熱処理を行った。
After washing the filtration residue of the treatment liquid with water, it was immersed in a LiOH aqueous solution, then dried to remove moisture, and then heat-treated at 350° C. for 10 hours.

一方、バリウムイオンを含み、Fe(kα)線によるX
線回折において、第1図(B)の通り、ピークが2θ=
36,1°、 47.3°、 52.5°にある二酸化
マンガンを用い、以下の処理1,2をそれぞれ行い、比
較用の二酸化マンガン1,2をそれぞれ作製した。
On the other hand, X containing barium ions and caused by Fe(kα) rays
In line diffraction, as shown in Figure 1 (B), the peak is 2θ=
Using manganese dioxide at 36.1°, 47.3°, and 52.5°, the following treatments 1 and 2 were performed, respectively, to produce comparative manganese dioxide 1 and 2, respectively.

*処理1・・・上記二酸化マンガン10gを硝酸リチウ
ムの1sol/J2水溶液1βに浸漬し、90〜100
℃で5時間処理を行った。次いて処理液を濾過し、濾残
を 100℃で2時間処理して乾燥した後、350℃で
5時間処理を行った。
*Processing 1: 10 g of the above manganese dioxide was immersed in 1β of a 1sol/J2 aqueous solution of lithium nitrate, and the
The treatment was carried out at ℃ for 5 hours. Next, the treated solution was filtered, and the filter residue was treated at 100°C for 2 hours, dried, and then treated at 350°C for 5 hours.

*処理2・・・上記二酸化マンガンIOgを硝酸リチウ
ムの1  mol/β水溶液1℃に浸漬し、90〜10
0℃で5時間処理を行った。次いて処理液を濾過し、濾
残を100℃で2時間処理して乾燥した後、Li0H1
,8gを加え、 350℃で24時間処理を行った。
*Treatment 2: The above manganese dioxide IOg was immersed in a 1 mol/β aqueous solution of lithium nitrate at 1°C, and the
The treatment was carried out at 0°C for 5 hours. Next, the treated solution was filtered, and the filtration residue was treated at 100°C for 2 hours and dried, followed by Li0H1
, 8g was added, and the mixture was treated at 350°C for 24 hours.

以上のようにして得られた各種の二酸化マンガンに、ア
セチレンブラック、並びにPTFEの各粉体を重量比8
:1:1の割合でそれぞれ混合し、またこれらの混合粉
末をそれぞれ直径15nuw。
Acetylene black and PTFE powders were added at a weight ratio of 8 to the various manganese dioxide obtained as described above.
: Mixed at a ratio of 1:1, and each of these mixed powders had a diameter of 15 nuw.

厚さ 0.6鰭に加圧成形して各種のコイン状の正極を
作製した。
Various coin-shaped positive electrodes were produced by pressure molding to a thickness of 0.6 fins.

上記各種の正極を、リチウムを活物質とする負極、ポリ
プロピレンカーボネートとジメトキシエタンの等体積比
の混合溶媒に過塩素酸リチウムを1  sol/J2溶
解した電解液、並びにポリプロピレン多孔膜セパレータ
を用いて、第2図に示した通りの、直径20mm、高さ
 2.5關のコイン形リチウム二次電池(本発明電池■
〜■、比較電池1.2)を作製した。図において1は電
池ケース、2は正極、3は負極、4はセパレタ、5は絶
縁ガスケット、6は端子板である。
The various positive electrodes described above are combined with a negative electrode containing lithium as an active material, an electrolytic solution in which 1 sol/J2 of lithium perchlorate is dissolved in a mixed solvent of polypropylene carbonate and dimethoxyethane in an equal volume ratio, and a porous polypropylene membrane separator. As shown in Figure 2, a coin-shaped lithium secondary battery (invention battery) with a diameter of 20 mm and a height of 2.5 mm
~■, Comparative battery 1.2) was produced. In the figure, 1 is a battery case, 2 is a positive electrode, 3 is a negative electrode, 4 is a separator, 5 is an insulating gasket, and 6 is a terminal board.

これらの電池について、2mAの電流で3.5Vまて充
電し、また同しく 2mAの電流で20■まて放電する
というサイクルを繰返し、放電容量比((放電容量m 
A h /本発明電池■の第1回目の放電容量mAh)
X  100(%))のサイクル変化を調べた。結果は
第3図に示した。
For these batteries, a cycle of charging to 3.5V with a current of 2mA and discharging for 20V with a current of 2mA was repeated, and the discharge capacity ratio ((discharge capacity m
A h /first discharge capacity of the battery according to the invention mAh)
The cycle change of X 100 (%) was investigated. The results are shown in Figure 3.

一方、本発明電池■と同し構成で、二酸化マンガン■に
おける熱処理温度を150〜500℃まで変化させた場
合における各電池の第1サイクル目(白丸)と第30サ
イクル目(黒丸)の放電容量比(%)は第4図の通りで
、処理温度を200〜450とすることて、第30サイ
クル目においても放電容量比が80%以上であり、よっ
て充放電容量が高く且つサイクル劣化を小さく抑えるこ
とができる。
On the other hand, the discharge capacity of each battery at the 1st cycle (white circles) and the 30th cycle (black circles) when the heat treatment temperature in manganese dioxide ■ was varied from 150 to 500°C with the same configuration as the invention battery ■. The ratio (%) is as shown in Figure 4, and by setting the treatment temperature to 200 to 450, the discharge capacity ratio is 80% or more even in the 30th cycle, so the charge and discharge capacity is high and cycle deterioration is small. It can be suppressed.

〈発明の効果〉 以上の通り、この発明によれば、充放電容量が大きく、
またサイクル特性の良好な非水電解液二次電池を提供す
ることかできる。
<Effects of the Invention> As described above, according to the present invention, the charge/discharge capacity is large;
Furthermore, it is possible to provide a non-aqueous electrolyte secondary battery with good cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、(B)は本発明に係わる二酸化マンガ
ンのX線回折パターンの説明図、第1図(C)は他の二
酸化マンガンのX線回折パターンの説明図、第2図は実
施例の電池の断面図、第3図は本発明電池、並びに比較
電池における放電容量比のサイクル変化を示したグラフ
、第4図は二酸化マンガンの熱処理温度による放電容量
比のサイクル変化を示したグラフである。 1・・−電池ケース、2・・・正極、3・・・負極、4
・・セパレータ、6・・端子板。 特 許 出 願 人  富士電気化学株式会社代  理
  人        尾   股   行   雄射
1 メ・(A) 47゜ 第1図(B) 第1 図(C) 1ノー  イ  り  ル (回) 第4図 2θ(FeKα) 第2図 熱処理11μ瓜(°C)
FIGS. 1(A) and (B) are explanatory diagrams of the X-ray diffraction pattern of manganese dioxide according to the present invention, FIG. 1(C) is an explanatory diagram of the X-ray diffraction pattern of other manganese dioxide, and FIG. A cross-sectional view of the battery of the example, FIG. 3 is a graph showing cycle changes in the discharge capacity ratio of the batteries of the present invention and comparative batteries, and FIG. 4 shows cycle changes in the discharge capacity ratio depending on the heat treatment temperature of manganese dioxide. It is a graph. 1...-Battery case, 2...Positive electrode, 3...Negative electrode, 4
... Separator, 6... Terminal board. Patent Applicant Fuji Electrochemical Co., Ltd. Agent Yuki Omata 1 Me (A) 47° Fig. 1 (B) Fig. 1 (C) 1 No. 1 (times) Fig. 4 2θ (FeKα) Figure 2 Heat treatment 11μ melon (°C)

Claims (1)

【特許請求の範囲】 1、リチウムを活物質とする負極と、二酸化マンガンを
活物質とする正極を備え、前記二酸化マンガンは、バリ
ウムイオンを含み、Fe(kα)線によるX線回折で少
なくとも2θ=32°、47°、52°付近にピークを
有する二酸化マンガンを、200〜450℃で熱処理し
たものであることを特徴とする非水電解液二次電池。 2、リチウムを活物質とする負極と、二酸化マンガンを
活物質とする正極を備え、前記二酸化マンガンは、バリ
ウムイオンを含み、Fe(kα)線によるX線回折で少
なくとも2θ=32°、47°、52°付近にピークを
有する二酸化マンガンを、リチウム塩水溶液で処理後、
200〜450℃で熱処理したものであることを特徴と
する非水電解液二次電池。 3、リチウムを活物質とする負極と、二酸化マンガンを
活物質とする正極を備え、前記二酸化マンガンは、バリ
ウムイオンを含み、Fe(kα)線によるX線回折で少
なくとも2θ=32°、47°、52°付近にピークを
有する二酸化マンガンを、リチウム塩水溶液で処理後、
リチウム塩とともに200〜450℃で熱処理したもの
であることを特徴とする非水電解液二次電池。 4、リチウムを活物質とする負極と、二酸化マンガンを
活物質とする正極を備え、前記二酸化マンガンは、バリ
ウムイオンを含み、Fe(kα)線によるX線回折で少
なくとも2θ=32°、52°付近にピークを有する二
酸 化マンガンを希酸溶液で処理後、リチウム塩とともに2
00〜450℃で熱処理した正極を用いたことを特徴と
する非水電解液二次電池。
[Claims] 1. A negative electrode using lithium as an active material and a positive electrode using manganese dioxide as an active material, the manganese dioxide containing barium ions and at least 2θ in X-ray diffraction using Fe (kα) rays. A non-aqueous electrolyte secondary battery characterized in that manganese dioxide having peaks around =32°, 47°, and 52° is heat-treated at 200 to 450°C. 2. A negative electrode having lithium as an active material and a positive electrode having manganese dioxide as an active material, the manganese dioxide containing barium ions and having at least 2θ=32° and 47° in X-ray diffraction using Fe(kα) rays. , after treating manganese dioxide having a peak around 52° with a lithium salt aqueous solution,
A non-aqueous electrolyte secondary battery, characterized in that it is heat-treated at 200 to 450°C. 3. A negative electrode using lithium as an active material and a positive electrode using manganese dioxide as an active material, the manganese dioxide containing barium ions and at least 2θ=32° and 47° in X-ray diffraction using Fe(kα) rays. , after treating manganese dioxide having a peak around 52° with a lithium salt aqueous solution,
A non-aqueous electrolyte secondary battery characterized by being heat-treated with a lithium salt at 200 to 450°C. 4. A negative electrode using lithium as an active material and a positive electrode using manganese dioxide as an active material, the manganese dioxide containing barium ions and at least 2θ=32° and 52° in X-ray diffraction using Fe(kα) rays. After treating manganese dioxide, which has a peak in the vicinity, with a dilute acid solution, 2
A nonaqueous electrolyte secondary battery characterized by using a positive electrode heat-treated at 00 to 450°C.
JP2214179A 1990-08-13 1990-08-13 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2849183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214179A JP2849183B2 (en) 1990-08-13 1990-08-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214179A JP2849183B2 (en) 1990-08-13 1990-08-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0498761A true JPH0498761A (en) 1992-03-31
JP2849183B2 JP2849183B2 (en) 1999-01-20

Family

ID=16651547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214179A Expired - Fee Related JP2849183B2 (en) 1990-08-13 1990-08-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2849183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273211A (en) * 2009-11-17 2011-12-07 索尼公司 Image transmission method, image reception method, image transmission device, image reception device, and image transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273211A (en) * 2009-11-17 2011-12-07 索尼公司 Image transmission method, image reception method, image transmission device, image reception device, and image transmission system

Also Published As

Publication number Publication date
JP2849183B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US4405699A (en) Manganese dioxide electrode for lithium batteries
US8313859B2 (en) Battery cathodes
JPS5834414B2 (en) MnO↓2 induced from LiM↓2O↓4
JP2007519210A (en) Cathode materials for lithium batteries
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH10182159A (en) Lithium manganate and its production and lithium secondary battery using lithium manganate as anode
JPS6319760A (en) Nonaqueous electrolyte battery and manufacture of its positive active material
US8137842B2 (en) Battery cathodes
JP2000340256A (en) Aqueous lithium ion battery
JP2849183B2 (en) Non-aqueous electrolyte secondary battery
JPH10302766A (en) Lithium ion secondary battery
JPS6151387B2 (en)
JP3009680B2 (en) Non-aqueous electrolyte secondary battery
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2001093527A (en) Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP2835436B2 (en) Method for producing lithium-doped α-manganese dioxide
JPH0367463A (en) Nonaqueous electrolyte secondary battery
JPH0393163A (en) Nonaqueous system secondary battery
JP2979641B2 (en) Non-aqueous electrolyte secondary battery
JPH03222265A (en) Recharging type electrochemical battery having lithium anode
JPS6352747B2 (en)
JPH1040900A (en) Positive electrode for lithium ion secondary battery
JPS59128765A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees