JPH0367463A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0367463A
JPH0367463A JP1204171A JP20417189A JPH0367463A JP H0367463 A JPH0367463 A JP H0367463A JP 1204171 A JP1204171 A JP 1204171A JP 20417189 A JP20417189 A JP 20417189A JP H0367463 A JPH0367463 A JP H0367463A
Authority
JP
Japan
Prior art keywords
active material
electrode active
discharge capacity
cycle
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1204171A
Other languages
Japanese (ja)
Other versions
JP3110738B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
日野 義久
Yoshiro Harada
吉郎 原田
Masanori Nakanishi
正典 中西
Hideaki Nagura
名倉 秀哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP01204171A priority Critical patent/JP3110738B2/en
Publication of JPH0367463A publication Critical patent/JPH0367463A/en
Application granted granted Critical
Publication of JP3110738B2 publication Critical patent/JP3110738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve cycle characteristics by using a negative electrode active material made of Li or Li alloy and a positive electrode active material containing an element selected among Li, Al, Ce or the like in MnO2. CONSTITUTION:A nonaqueous electrolyte secondary battery uses a negative electrode active material made of Li or Li alloy and a positive electrode active material containing at least one kind of element selected among La, Al, Ce, Se, Er and Mg in MnO2. This positive electrode active material can be obtained by heat-treating a compound of at least one kind of element selected among La, Al, Ce, Se, Er and Mg together with MnO2. The temperature for this heat treatment is preferably 250-450 deg.C. A nonaqueous electrolyte secondary battery with good cycle characteristics and a large capacity can be obtained even when MnO2 is mainly used for the active material.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この考案は、非水電解液二次電池に関し、詳しくは、リ
チウムまたはリチウム合金を活物質とする負極と、二酸
化マンガンを主な活物質とする正極を用いて構成される
、非水電解液二次電池に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention relates to a non-aqueous electrolyte secondary battery, and more specifically, it uses a negative electrode using lithium or a lithium alloy as an active material, and manganese dioxide as the main active material. This invention relates to a non-aqueous electrolyte secondary battery configured using a positive electrode.

〈従来の技術〉 この種の非水電解液二次電池では、通常、上記のように
リチウムあるいはリチウム合金(例えばリチウム−アル
ミニウム合金、リチウムマグネシウム合金)などを活物
質とする負極が用いられており、この負極を、セパレー
タを介して正極と組合せ、また非水系の電解液を用いる
構成が採られている。
<Prior Art> This type of nonaqueous electrolyte secondary battery usually uses a negative electrode containing lithium or a lithium alloy (for example, lithium-aluminum alloy, lithium-magnesium alloy) as an active material, as described above. This negative electrode is combined with a positive electrode via a separator, and a non-aqueous electrolyte is used.

正極に用いる正極活物質としては二酸化マンガンが広く
知られており、また例えば時開R[3−24554号公
報、特開昭63−114065号公報、特開昭63−1
26165号公報などに記載されているように、カルシ
ウムイオンをドーピングした二酸化マンガン、あるいは
リチウムとの複合酸化物であるLiMn2O4を主体と
するもの、二酸化マンガンに硫酸チタニウムを混合した
後加熱して得たものなどを用いることでサイクル性の改
善を図るようにした技術が知られている。
Manganese dioxide is widely known as a positive electrode active material used in the positive electrode, and for example, manganese dioxide is disclosed in Jikai R [3-24554, JP 63-114065, JP 63-1]
As described in Publication No. 26165, etc., manganese dioxide doped with calcium ions, or those mainly composed of LiMn2O4, which is a composite oxide with lithium, are obtained by mixing titanium sulfate with manganese dioxide and then heating. A technique is known in which the cycleability is improved by using a material such as a material.

また、負極活物質に用いられるリチウムが水との反応性
に富むことから、適当な熱処理を施して正極活物質から
の水分を除去することが広く行われている。
Furthermore, since lithium used in the negative electrode active material is highly reactive with water, it is widely practiced to perform appropriate heat treatment to remove moisture from the positive electrode active material.

〈発明が角ダ決しようとする課題〉 ところで、この非水電解液二次電池で上記の二酸化マン
ガンなどを正極活物質として用いた場合、サイクル条件
にもよるが、実用上使用可能な電池寿命は30サイクル
程度と少ない。
<Problem to be solved by the invention> By the way, when the above-mentioned manganese dioxide or the like is used as a positive electrode active material in this non-aqueous electrolyte secondary battery, the battery life that can be used practically is limited depending on the cycle conditions. is as small as about 30 cycles.

このようにサイクル性が悪い理由としては、充放電に伴
うリチウムイオンの出入りの際に二酸化マンガンの結晶
が彫版・収縮を繰返すのでその結晶構造が変化し、この
結果充放電サイクルにより結晶が緩んだり崩壊したりす
ることや、充電の際にリチウムイオンが安定な形で結晶
中に取込まれてしまい、このため次の充電の際に正極か
らのリチウムイオンの放出が旨くおこなわれなくなるこ
となどが考えられている。
The reason for this poor cycle performance is that the crystal structure of manganese dioxide changes as the manganese dioxide crystals repeat engraving and contraction when lithium ions move in and out during charging and discharging, and as a result, the crystals loosen during charging and discharging cycles. In addition, during charging, lithium ions are incorporated into the crystal in a stable form, which prevents the release of lithium ions from the positive electrode during the next charging. is considered.

また、例えば正極活物質を上記のようにLiMn2Q4
を主体とする構成とした場合、サイクル特性は比較的良
好であるものの、二酸化マンガンを用いた場合に比べて
絶対容量が小さくなり、このため電池の放電容量自体が
かなり低下してしまうこともある。
For example, the positive electrode active material may be LiMn2Q4 as described above.
Although the cycle characteristics are relatively good when the structure is made mainly of manganese dioxide, the absolute capacity is smaller than when manganese dioxide is used, and the discharge capacity of the battery itself may be considerably reduced. .

この発明は、二酸化マンガンを主な正極活物質として用
いる場合において、容量が大きく且つサイクル特性の優
れた非水電解液二次電池を提供することを目的とする。
An object of the present invention is to provide a nonaqueous electrolyte secondary battery that has a large capacity and excellent cycle characteristics when manganese dioxide is used as the main positive electrode active material.

く課題を躬決するための手段〉 この発明の非水電解液二次電池は、リチウムやリチウム
合金を負極活物質としまた二酸化マンガンに、La、A
ll、Ce、Se、Er。
Means for overcoming the problem> The non-aqueous electrolyte secondary battery of the present invention uses lithium or a lithium alloy as a negative electrode active material, and manganese dioxide, La, A
ll, Ce, Se, Er.

Mgから選ばれた少なくとも1種の元素を含んでなる正
極活物質を用いることを要旨とする。
The gist is to use a positive electrode active material containing at least one element selected from Mg.

上記の正極活物質は、例えば、La、Al。The above-mentioned positive electrode active material is, for example, La or Al.

Ce、Se、Er、Mgから選ばれた少なくとも1種の
元素の化合物(酸化物、水酸化物、塩など)のを、二酸
化マンガンとともに熱処理して得ることができる。
It can be obtained by heat-treating a compound (oxide, hydroxide, salt, etc.) of at least one element selected from Ce, Se, Er, and Mg together with manganese dioxide.

この熱処理の温度は250〜450℃が好ましい。The temperature of this heat treatment is preferably 250 to 450°C.

250℃より低い場合には性能向上の度合が小さい。こ
れは、熱処理温度が250℃より低いと以下に説明する
ような複合酸化物が形成されたりあるいはドーピングが
行われるための反応が十分には行われず、また二酸化マ
ンガンからの水分除去が不十分になることが原因と考え
られる。
When the temperature is lower than 250°C, the degree of performance improvement is small. This is because if the heat treatment temperature is lower than 250°C, reactions such as the formation of complex oxides or doping, which will be explained below, will not take place sufficiently, and moisture removal from manganese dioxide will be insufficient. This is thought to be the cause.

一方、熱処理温度が450℃より高いと、二酸化マンガ
ンの活性度が低下して電池の性能低下を招く虞がある。
On the other hand, if the heat treatment temperature is higher than 450° C., the activity of manganese dioxide may decrease, leading to a decrease in battery performance.

上記熱処理としては、この他、高温高湿下でのオートク
レーブ処理や水溶液中でのマイクロ波加熱処理などを適
宜用いることもできる〇そして、上記のような熱処理に
よって、上記元素が二酸化マンガン中にマンガンとの複
酸化物(例えばLaMn0.やM g b M n O
s )として含有されたり、あるいは上記元素が二酸化
マンガン中にドーピングされた状態になると考えられる
In addition to the above heat treatment, autoclave treatment under high temperature and high humidity, microwave heat treatment in an aqueous solution, etc. can also be used as appropriate. Then, by the above heat treatment, the above elements become manganese in manganese dioxide. (e.g. LaMn0. and M g b M n O
It is thought that the above elements may be contained as s), or the above elements may be doped into manganese dioxide.

即ち、上記熱処理により得られた正極活物質をX線回折
すると、原料である二酸化マンガンや上記化合物などの
ピークはあるが、新しいピークが明確にでてこない。し
かしながら、この得られた正極活物質を用いた電池の特
性(放電特性やサイクル特性)は、二酸化マンガンのも
のとは異なるしまた上記複酸化物のものでもなく、従っ
て、上記元素が二酸化マンガンに同等かの作用をしてい
ることは確かである。
That is, when the positive electrode active material obtained by the above heat treatment is subjected to X-ray diffraction, there are peaks of the raw material manganese dioxide, the above-mentioned compounds, etc., but no new peaks clearly appear. However, the characteristics (discharge characteristics and cycle characteristics) of a battery using this obtained positive electrode active material are different from those of manganese dioxide, nor are they those of the above-mentioned double oxide, and therefore, the above elements are different from those of manganese dioxide. It is certain that they have the same effect.

本発明者の考察によれば、これは、正極活物質内に微量
でも上記のような複合酸化物が結晶の状態で形成されて
いること、及び/または、二酸化マンガン中に上記元素
がはいりこんで二酸化マンガン結晶の一部でMnが上記
元素に置換されていたり、二酸化マンガン中に上記元素
とMnと酸素とが部分的に結合した領域があること、つ
まり上記元素が二酸化マンガン中にドーピングされてい
る状態となっていることなどによるものと思われる。
According to the inventor's considerations, this is due to the fact that even a small amount of the above-mentioned complex oxide is formed in a crystalline state in the positive electrode active material, and/or that the above-mentioned elements are present in manganese dioxide. Therefore, Mn is substituted with the above element in a part of the manganese dioxide crystal, or there is a region in the manganese dioxide where the above element, Mn, and oxygen are partially combined, that is, the above element is doped into the manganese dioxide. This seems to be due to the fact that the situation is

一方、正極活物質中において、Mnに対するLa、AJ
、Ce、Se、Er、Mgから選ばれた少なくとも1種
の元素の添加ffi(Mn/La、AJ、Ce、Se、
Er、Mg)は、0.05〜0.25程度が好適であり
、これにより電池の放電容量が高く且つサイクル性が良
好となることが確認されている。
On the other hand, in the positive electrode active material, La, AJ with respect to Mn
, Ce, Se, Er, Mg addition ffi (Mn/La, AJ, Ce, Se,
(Er, Mg) is preferably about 0.05 to 0.25, and it has been confirmed that this increases the discharge capacity of the battery and improves the cycleability.

尚、二酸化マンガンとしては、電解二酸化マンガン、化
学二酸化マンガンなどを用いることができる。
In addition, as manganese dioxide, electrolytic manganese dioxide, chemical manganese dioxide, etc. can be used.

く作用〉 上記元素がトンネル構造を形成しているとされる二酸化
マンガンの結晶構造に作用して以下の■、■のような影
響を与える結果、電池の性能向上が図れるものと推測さ
れる。
Effects> It is presumed that the above elements act on the crystal structure of manganese dioxide, which is said to form a tunnel structure, and have the following effects (1) and (2), thereby improving the performance of the battery.

■リチウムイオンの拡散経路が広がって充放電における
リチウムイオンのスムーズな移動が可能になるため、電
池の放電容量及びサイクル性が良好になる。
■Diffusion paths for lithium ions are expanded, allowing smooth movement of lithium ions during charging and discharging, resulting in better discharge capacity and cycle performance of the battery.

■二酸化マンガンの結晶構造が強固となり、充放電に伴
う二酸化マンガンの膨脂、収縮に対する抵抗力が高まっ
て廂れ難くなり、電池のサイクル性が向上する。
■The crystal structure of manganese dioxide becomes stronger, increasing the resistance to swelling and shrinkage of manganese dioxide during charging and discharging, making it difficult to tear, and improving the cycleability of the battery.

〈実施例〉 以下に実施例を説明する。<Example> Examples will be described below.

実施例1 比較品とのサイクル性の比較 電解二酸化マンガン1モルと酸化ランタンL a、 0
.0.15モルとを混合し、またこの混合物を温度30
0〜450℃で10時間焼成を行ない正極活物質を得た
Example 1 Comparison of cyclability with comparative products 1 mol of electrolytic manganese dioxide and lanthanum oxide La, 0
.. 0.15 mol, and this mixture was heated to a temperature of 30 mol.
Firing was performed at 0 to 450°C for 10 hours to obtain a positive electrode active material.

この正極活物質8重量部に黒鉛1重量部、 PTFC粉
末1重量部を混合したものを円盤状に加圧成形し、直径
15+m、厚さ0.6I1mの正極合剤を作製した。
A mixture of 8 parts by weight of this positive electrode active material, 1 part by weight of graphite, and 1 part by weight of PTFC powder was pressure-molded into a disk shape to produce a positive electrode mixture having a diameter of 15+ m and a thickness of 0.6I1 m.

そして第1図のように、上記で得た正極合剤1の上面に
、多孔質ポリプロピレンフィルムからなるセパレータ2
を介して、リチウム−アルミニウム合金を活物質とする
負極3を重ね合せ、またプロピレンカーボネイトとジメ
トキシエタンとを容量比1:1で混合した有機溶媒中に
LiCρ04を1  sol/j!溶解したものを電解
波として用い、更に以上の発電要素を、電池伯4と端子
板5をそれらの周縁部に介在させた絶縁ガスケット6を
挟持させてなる電池ケース内に収納して、直径20m+
*、厚さ 1.8mmのコイン形リチウム二次電池(本
発明品1)を作製した。
Then, as shown in FIG. 1, a separator 2 made of a porous polypropylene film is placed on the top surface of the positive electrode mixture 1 obtained above.
A negative electrode 3 having a lithium-aluminum alloy as an active material is superimposed via a lithium-aluminum alloy, and LiCρ04 is added at 1 sol/j! in an organic solvent containing a mixture of propylene carbonate and dimethoxyethane at a volume ratio of 1:1. The melted material was used as an electrolytic wave, and the above power generating element was housed in a battery case consisting of a battery case 4 and a terminal plate 5 sandwiched between an insulating gasket 6 and a diameter of 20 m+.
*A coin-shaped lithium secondary battery (invention product 1) with a thickness of 1.8 mm was produced.

一方、電解二酸化マンガンに水酸化リチウムLiOHを
二酸化マンガン1モルに対して0.5モル混合したもの
を400℃で熱処理し、こうして得たものを正極活物質
とした以外は本発明品1と同様にして、直径20sn、
厚さ 1.B+smのコイン形リチウム二次電池(比較
品)を作製した。
On the other hand, the same as Invention Product 1 except that a mixture of electrolytic manganese dioxide and 0.5 mol of lithium hydroxide LiOH per 1 mol of manganese dioxide was heat-treated at 400°C, and the thus obtained material was used as the positive electrode active material. and diameter 20sn,
Thickness 1. A B+sm coin-shaped lithium secondary battery (comparative product) was manufactured.

これらの電池を、2■^の電流で電池電圧2.2Vまで
放電し、また1■^の電流で電池電圧3.5Vまで充電
するという条件で充放電サイクルを繰返した。
These batteries were repeatedly charged and discharged under the conditions of discharging to a battery voltage of 2.2V with a current of 2■^ and charging to a battery voltage of 3.5V with a current of 1^^.

本発明品1の初度の放電容量を1とした防の各サイクル
における各電池の放電容量を、容量比(そのサイクルの
放電容量/本発明品1の初度の放電容量1)として第2
図(^〉に示した。
The discharge capacity of each battery in each cycle with the initial discharge capacity of product 1 of the present invention as 1 is calculated as the capacity ratio (discharge capacity of that cycle/initial discharge capacity of product 1 of the present invention 1).
It is shown in the figure (^〉).

ランタンの添加量の検討 二酸化マンガンと酸化ランタンとの混合モル比を適宜調
整してマンガンに対するランタンの添加量(La/Mn
)を0〜0.25の範囲で種々変え、またこれらを温度
400℃で10時間熱処理したものを正極活物質とした
他は本発明品1と同じコイン形リチウム二次電池を種々
作製した。
Examination of the amount of lanthanum added The amount of lanthanum added to manganese (La/Mn
) was varied in the range of 0 to 0.25, and a variety of coin-shaped lithium secondary batteries were produced that were the same as Inventive Product 1, except that these were heat-treated at 400° C. for 10 hours and used as positive electrode active materials.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第 100サイクルロの放
電容量/第1Oサイクル目の放電容量)、並びに、正極
活物質に電解二酸化マンガンを小独で用いた以外は同一
構成のコイン形すチウムー次電池の放電容量を1とした
時の、これら電池の第 100サイクルにおける容量比
(各電池の第 100サイクル目の放電容量/コイン形
すチウムー次電池の放電容量)をそれぞれ調べた。
For these batteries, the capacity change ratio (100th cycle RO discharge capacity/10th cycle discharge capacity) when charging and discharging cycles were performed under the same conditions as above, and the ratio of electrolytic manganese dioxide to the positive electrode active material. The capacity ratio of these batteries at the 100th cycle (discharge capacity at the 100th cycle of each battery/coin-type lithium-ion battery with the same configuration except for those used in The discharge capacity of each battery was investigated.

これらの結果は第2図(B)の通りで、ランタンの添加
量を0.05〜0.25の範囲とすればサイクルでの容
量低下が少なく且つ容量の高い電池とすることができる
。尚、図において実線は容量変化比を、また点線は容量
比をそれぞれ示す。
These results are shown in FIG. 2(B), and if the amount of lanthanum added is in the range of 0.05 to 0.25, it is possible to obtain a battery with high capacity and less capacity loss during cycles. In the figure, the solid line indicates the capacitance change ratio, and the dotted line indicates the capacitance ratio.

熱処理温度の検討 マンガンに対するランタンの添加In(La/M n 
)が0.15となるように二酸化マンガンと酸化ランタ
ンとの混合モル比を調整し、また熱処理温度を200〜
500℃の範囲で種々変えて得たものを正極活物質とし
た他は本発明品1と同様なコイン形リチウム二次電池を
種々作製した。
Study of heat treatment temperature Addition of lanthanum to manganese In (La/M n
) was 0.15, the mixing molar ratio of manganese dioxide and lanthanum oxide was adjusted, and the heat treatment temperature was adjusted to 200~
Various coin-shaped lithium secondary batteries similar to Product 1 of the present invention were fabricated, except that positive electrode active materials obtained at various temperatures within the range of 500°C were used.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第100サイクル目のhk
電電容量第1Oサイクルロの放電容量)をそれぞれ調べ
た。
For these batteries, the capacity change ratio (hk at the 100th cycle) when charging and discharging cycles were performed under the same conditions as above
The capacitance (discharge capacity of the first O cycle) was investigated.

結果は第2図(C)の通りで、この結果より熱処理温度
を250〜450℃程度とすればサイクルでの容量低下
を少なく抑えることができる。
The results are shown in FIG. 2(C), and from this result, if the heat treatment temperature is set to about 250 to 450°C, the capacity decrease during the cycle can be suppressed to a small level.

他の実施例 電解二酸化マンガン1モルに対し水酸化ランタンLa(
OH)tを0.5モル混合した物を温度400℃で72
時間熱処理を行なって得たものを正極活物質とした他は
本発明品1と同様なコイン形リチウム二次電池を作製し
、またこの電池を上記と同様な条件で充放電させ、第2
0サイクル[1の放電容量を調べた所、本発明品1の第
20サイクル目の放電容量を100とした場合、放電容
量は 103であった。
Other Examples Lanthanum hydroxide La (
A mixture of 0.5 mol of OH)t at a temperature of 400°C
A coin-shaped lithium secondary battery similar to Invention Product 1 was prepared except that the positive electrode active material obtained by the time heat treatment was used, and this battery was charged and discharged under the same conditions as above.
When the discharge capacity at 0 cycle [1 was investigated, the discharge capacity was 103, assuming that the discharge capacity at the 20th cycle of product 1 of the present invention was 100.

電解二酸化マンガン1モルに対し炭酸ランタンLa2 
(CO3)3 ・8H20を0.1モル混合した物を温
度400℃で72時間熱処理を行なって得たものを正極
活物質とした他は本発明品1と同様なコイン形リチウム
二次電池を作製し、またこの電池を上記と同様な条件で
充放電させ、第20サイクルロの放電容量を調べた所、
本発明品1の第20サイクル目の放電容量を100とし
た場合、放電容量は110であった。
Lanthanum carbonate La2 per mole of electrolytic manganese dioxide
A coin-shaped lithium secondary battery similar to Invention Product 1 was used, except that the positive electrode active material was obtained by heat-treating a mixture of 0.1 mol of (CO3)3.8H20 at a temperature of 400°C for 72 hours. The battery was prepared and charged and discharged under the same conditions as above, and the discharge capacity at the 20th cycle was examined.
When the discharge capacity of the product 1 of the present invention at the 20th cycle was set as 100, the discharge capacity was 110.

実施例2 比較品とのサイクル性の比較 電解二酸化マンガン1モルと酸化アルミニウムAN 2
0* 0.15モルとを混合し、またこの混合物を温度
300〜450℃で10時間焼成を行なって得た正極活
物質を用いた他は本発明品1と同様にして、コイン形リ
チウム二次電池(本発明品2)を作製した。
Example 2 Comparison of cyclability with comparative products 1 mol of electrolytic manganese dioxide and aluminum oxide AN 2
A coin-shaped lithium diode was prepared in the same manner as Invention Product 1, except that a positive electrode active material obtained by mixing 0*0.15 mol and firing this mixture at a temperature of 300 to 450°C for 10 hours was used. A second battery (invention product 2) was produced.

この本発明品2と前記比較品とを上記と同じ条件で充放
電させた。本発明品2の初度の放電容量を1とした侍の
各サイクルにおけるこれらの電池の放電容量を、容量比
(そのサイクルの放電容量/本発明品2の初度の放電容
量)として第3図(^〉に示した。
This invention product 2 and the comparative product were charged and discharged under the same conditions as above. Figure 3 ( Shown in ^〉.

二酸化マンガンと酸化アルミニウムとの混合モル比を適
宜調整してマンガンに対するアルミニウムの添加11(
AfI/Mn)を0〜0.25の範囲で種々変え、また
これらを温度400℃で10時間熱処理したものを正極
活物質とした以外は本発明品2と同様なコイン形リチウ
ム二次電池をそれぞれ作製した。
Addition of aluminum to manganese 11 (by adjusting the mixing molar ratio of manganese dioxide and aluminum oxide as appropriate)
A coin-shaped lithium secondary battery similar to Invention Product 2 was used, except that the positive electrode active material was obtained by varying the ratio of AfI/Mn) in the range of 0 to 0.25 and heat-treating these at a temperature of 400°C for 10 hours. Each was created.

これらの電池を上記と同じ条件で充放電させた時の容量
変化比(第100サイクル目の放電容量/第1Oサイク
ルロの放電容量)、並びに前記コイン形すチウムー次電
池の放電容量を1とした時のこれらの電池の第 100
サイクルにおける容量比(各電池の第100サイクルロ
の放電容量/コイン形すチウムー次電池の放電容量)を
それぞれ調べた。
The capacity change ratio (discharge capacity at 100th cycle/discharge capacity at 1st O cycle) when these batteries were charged and discharged under the same conditions as above, and the discharge capacity of the coin-shaped battery were set to 1. 100th of these batteries of the time
The capacity ratio in each cycle (discharge capacity of each battery at 100th cycle/discharge capacity of coin-shaped lithium battery) was investigated.

これらの結果は第3図(B)の通りで、ランタンの添加
量を0.05〜0.25の範囲とすればサイクルでの容
量低下が少なく且つ容量の高い電池とすることができる
。図において実線は容量変化比を、また点線は容量比を
それぞれ示す。
These results are shown in FIG. 3(B), and if the amount of lanthanum added is in the range of 0.05 to 0.25, it is possible to obtain a battery with high capacity and less capacity loss during cycles. In the figure, the solid line indicates the capacitance change ratio, and the dotted line indicates the capacitance ratio.

熱処理温度の検討 マンガンに対するアルミニウムの添加量(Aj?/Mn
)が0.15となるように二酸化マンガンと酸化アルミ
ニウムとの混合モル比を調整し、また熱処理温度を20
0〜500℃の範囲で種々変えたものを正極活物質とし
た以外は本発明品2と同様なコイン形リチウム二次電池
をそれぞれ作製した。
Examination of heat treatment temperature Addition amount of aluminum to manganese (Aj?/Mn
) was 0.15, the mixing molar ratio of manganese dioxide and aluminum oxide was adjusted, and the heat treatment temperature was adjusted to 20
Coin-shaped lithium secondary batteries similar to Inventive Product 2 were produced, except that the positive electrode active materials were used with various temperatures ranging from 0 to 500°C.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第100サイクルロの放電
容量/第1Oサイクル1」の放電容量)をそれぞれ調べ
た。
For these batteries, the capacity change ratio (discharge capacity of 100th cycle RO/discharge capacity of 1st O cycle 1) when charging and discharging cycles were performed under the same conditions as above was investigated.

結果は第3図(C)の通りで、この結果より熱処理温度
を250〜450℃程度とすればサイクルでの容量低下
を少なく抑えることができる。
The results are shown in FIG. 3(C), and from this result, if the heat treatment temperature is set to about 250 to 450° C., the capacity decrease during the cycle can be suppressed to a small level.

他の実施例 電解二酸化マンガン1モルに対して水酸化アルミニウム
Al  (OH)sを0.15モル混合した物を温度4
00℃で48時間熱処理を行なって得たものを正極活物
質とした他は本発明品2と同様なコイン形リチウム二次
電池を作製し、またこの電池を上記と同様な条件で充放
電させ、第20サイクルロの放電容量を調べた所、本発
明品2の第20サイクルロの放電容量を100とした場
合、放電容量は 105であった。
Other Examples A mixture of 0.15 mol of aluminum hydroxide Al(OH)s to 1 mol of electrolytic manganese dioxide was prepared at a temperature of 4.
A coin-shaped lithium secondary battery similar to Invention Product 2 was prepared except that the material obtained by heat treatment at 00°C for 48 hours was used as the positive electrode active material, and this battery was charged and discharged under the same conditions as above. When the discharge capacity at the 20th cycle was investigated, the discharge capacity was 105, assuming that the discharge capacity at the 20th cycle of the product 2 of the present invention was 100.

実施例3 比較品とのサイクル性の比較 電解二酸化マンガン1モルと酸化セリウムCeO20,
1モルとを混合し、またこの混合物を温度300〜45
0℃で10時間焼成を行なって得た正極活物質を用いた
他は上記本発明品1と同様にして、コイン形リチウム二
次電池(本発明品3)を作製した。
Example 3 Comparison of cyclability with comparative products Electrolytic manganese dioxide 1 mol and cerium oxide CeO20,
1 mol of
A coin-shaped lithium secondary battery (Invention Product 3) was produced in the same manner as Invention Product 1, except that a positive electrode active material obtained by baking at 0° C. for 10 hours was used.

この本発明品3と前記比較品とを上記と同じ条件で充放
電させた。本発明品3の初度のhrtm容量を1とした
時の各サイクルにおける各電池の放電容量を、容量比(
そのサイクルの放電容量/本発明品3の初度の放電容f
f1)として第4図(A)に示した。
This invention product 3 and the comparative product were charged and discharged under the same conditions as above. The discharge capacity of each battery in each cycle when the initial hrtm capacity of invention product 3 is 1 is calculated as the capacity ratio (
Discharge capacity of that cycle/initial discharge capacity f of invention product 3
f1) in FIG. 4(A).

二酸化マンガンと酸化セリウムとの混合モル比を適宜調
整してマンガンに対するセリウムの添加Jl (Ce 
/ M n )をO〜0.25の範囲で種々変え、また
これらを温度400℃で10時間熱処理したものを正極
活物質とした以外は本発明品3と同様なコイン形リチウ
ム二次電池をそれぞれ作製した。
Addition of cerium to manganese by adjusting the mixing molar ratio of manganese dioxide and cerium oxide Jl (Ce
Coin-shaped lithium secondary batteries similar to Invention Product 3 were used, except that the positive electrode active material was obtained by varying the value of /Mn) in the range of O to 0.25 and heat-treating these at a temperature of 400°C for 10 hours. Each was created.

これらの電池を上記と同じ条件で充放電させた時の容量
変化比(第100サイクルロの放電容ffi/第1Oサ
イクルロの放電容It)、並びに上記コイン形すチウム
ー次電池の放電容量を1とした時のこれら電池の第 1
00サイクルにおける容量比(各電池の第 100サイ
クルロの放電容量/コイン形すチウムー次電池の放電容
量)をそれぞれ調べた。
The capacity change ratio when these batteries are charged and discharged under the same conditions as above (100th cycle RO discharge capacity ffi/10th cycle RO discharge capacity It) and the discharge capacity of the above coin-shaped lithium battery are 1. The first of these batteries when
The capacity ratio at 00 cycles (discharge capacity at 100th cycle of each battery/discharge capacity of coin-shaped lithium battery) was investigated.

これらの結果は第4図(B)の通りで、セリウムの添加
量を0.05〜0.25の範囲とすればサイクルでの容
量低下が少なく且つ容量の高い電池とすることができる
。尚、図において実線は容量変化比を、また点線は容量
比をそれぞれ示す。
These results are shown in FIG. 4(B), and if the amount of cerium added is in the range of 0.05 to 0.25, a battery with high capacity and less capacity loss during cycles can be obtained. In the figure, the solid line indicates the capacitance change ratio, and the dotted line indicates the capacitance ratio.

熱処理温度の検討 マンガンに対するセリウムの添加II(Ce/M n 
)が0.1となるように二酸化マンガンと酸化セリウム
との混合モル比を調整し、また熱処理温度を200〜5
00℃の範囲でいろいろ変えたものを正極活物質とした
他は本発明品3と同様なコイン形リチウム二次電池を種
々作製した。
Study of heat treatment temperature Addition of cerium to manganese II (Ce/M n
) was 0.1, the mixing molar ratio of manganese dioxide and cerium oxide was adjusted, and the heat treatment temperature was adjusted to 200-5
Various coin-shaped lithium secondary batteries similar to Invention Product 3 were produced, except that the positive electrode active materials were used with various temperatures within the range of 00°C.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第 100サイクル目の放
電容量/第10サイクルロの放電容13k)をそれぞれ
調べた。
For these batteries, the capacity change ratio (discharge capacity at 100th cycle/discharge capacity at 10th cycle 13k) when charging and discharging cycles were performed under the same conditions as above was investigated.

結果は第4図(C)の通りで、この結果より熱処理温度
を250〜450@C程度とすればサイクルでの容量低
下を少なく抑えることができる。
The results are shown in FIG. 4(C), and from this result, if the heat treatment temperature is set to about 250 to 450@C, the decrease in capacity during the cycle can be suppressed to a small level.

他の実施例 電解二酸化マンガン1モルに対して炭酸セリウムCe 
(COi ) 3 ” 5H20を0.1モル混合した
物を温度400℃で72時間熱処理を行なって得たもの
を正極活物質とした他は本発明品3と同様なコイン形リ
チウム二次電池を作製し、またこの電池を上記と同様な
条件で充放電させ、第20サイクル目の放電容量を調べ
た所、本発明品3の第20サイクルロの放電容量を10
0とした場合、放電容量は97であった。
Other Examples Cerium carbonate Ce per 1 mol of electrolytic manganese dioxide
A coin-shaped lithium secondary battery similar to Invention Product 3 was used, except that a mixture of 0.1 mol of (COi) 3'' 5H20 was heat-treated at a temperature of 400°C for 72 hours, and the positive electrode active material was used. This battery was also charged and discharged under the same conditions as above, and the discharge capacity at the 20th cycle was examined.
When set to 0, the discharge capacity was 97.

電解二酸化マンガン1モルに対して水酸化セリウムCe
 (OH)3を(1,1モル混合した物を温度400℃
で72時間熱処理を行なって得たものを正極活物質とし
た他は本発明品3と同様なコイン形リチウム二次電池を
作製し、またこの電池を上記と同様な条件で充放電させ
、第20サイクルロの放電容量を調べた所、本発明品2
の第20サイクルロの放電容量を 100とした場合、
放電容量は 107であった。
Cerium hydroxide Ce per 1 mole of electrolytic manganese dioxide
A mixture of (1.1 moles of (OH)3) was heated to 400°C.
A coin-shaped lithium secondary battery similar to Invention Product 3 was prepared except that the positive electrode active material obtained by heat treatment for 72 hours was used, and this battery was charged and discharged under the same conditions as above. When we investigated the discharge capacity after 20 cycles, the present invention product 2
When the discharge capacity of the 20th cycle is 100,
The discharge capacity was 107.

実施例4 比較品とのサイクル性の比較 電解二酸化マンガン1モルと酸化セレンS e 020
.15モルとを混合し、またこの混合物を温度300〜
450℃で10時間焼成を行なって得た正極活物質を用
いた他は上記本発明品1と同様にして、コイン形リチウ
ム二次電池(木発門品4)を作製した。
Example 4 Comparison of cycleability with comparative product 1 mol of electrolytic manganese dioxide and selenium oxide S e 020
.. 15 mol, and this mixture was heated to a temperature of 300~
A coin-shaped lithium secondary battery (Kihamon product 4) was produced in the same manner as the product 1 of the present invention, except that a positive electrode active material obtained by firing at 450° C. for 10 hours was used.

この本発明品4と前記比較品とを上記と同じ条件で充放
電させた。本発明品4の初度の放電容量を1とした時の
サイクルにおける各電池の放電容量を、容量比(そのサ
イクルの放電容量/本発明品4の初度の放電容量l)と
して第5図(A)に示した。
This invention product 4 and the comparative product were charged and discharged under the same conditions as above. Figure 5 (A )It was shown to.

セレンの添加量の検討 二酸化マンガンと酸化セレンとの混合モル比を適宜調整
してマンガンに対するセレンの添加ffi (S e/
Mn)を0〜0.25の範囲で種々変え、またこれらを
温度400℃で10時間熱処理したものを正極活物質と
した他は本発明品4と同(、lなコイン形リチウム二次
電池を種々作製した。
Consideration of the amount of selenium added By adjusting the mixing molar ratio of manganese dioxide and selenium oxide as appropriate, add selenium to manganese ffi (S e/
A coin-shaped lithium secondary battery was produced which was the same as Invention Product 4, except that the positive electrode active material was obtained by varying Mn) in the range of 0 to 0.25 and heat-treating these at a temperature of 400°C for 10 hours. Various types were prepared.

これらの電池を上記と同じ条件で充放電させた時の容量
変化比(第100サイクル目の放電容量/第1Oサイク
ル目の放電容量)、並びに上記コイン形すチウムー次r
rK池の放電容量を1とした時のこれら電池の第 10
0サイクルにおける容量比(各電池の第100サイクル
ロの放電容量/コイン形すチウムー次電池の放電容量)
をそれぞれ調べた。
The capacity change ratio (100th cycle discharge capacity/10th cycle discharge capacity) when these batteries were charged and discharged under the same conditions as above, and the above coin-shaped battery
The 10th of these batteries when the discharge capacity of the rK battery is 1
Capacity ratio at 0 cycle (discharge capacity at 100th cycle of each battery/discharge capacity of coin-shaped lithium battery)
were investigated respectively.

これらの結果は第5図(B)の通りで、セレンの添加量
を0.05〜0.25の範囲とすればサイクルでの容量
低下が少なく且つ容量の高い電池とすることができる。
These results are shown in FIG. 5(B), and if the amount of selenium added is in the range of 0.05 to 0.25, a battery with high capacity and less capacity loss during cycles can be obtained.

尚、図において実線は容量変化比を、また点線は容量比
をそれぞれ示す。
In the figure, the solid line indicates the capacitance change ratio, and the dotted line indicates the capacitance ratio.

熱処理温度の検討 マンガンに対するセレンの添加Et(Se/M n )
が0.15となるように二酸化マンガンと酸化セレンと
の混合モル比を調整し、また熱処理温度を200〜50
0℃の範囲で種々変えたものを正極活物質とした他は本
発明品4と同様なコイン形リチウム二次電池をそれぞれ
作製した。尚、熱処理温度が350℃以上の条件では二
酸化マンガン中のセレンの含有率は5重量%以下であっ
た。
Study of heat treatment temperature Addition of selenium to manganese Et (Se/M n )
The mixing molar ratio of manganese dioxide and selenium oxide was adjusted so that the
Coin-shaped lithium secondary batteries similar to Invention Product 4 were produced, except that the positive electrode active materials were variously changed within the range of 0°C. Note that when the heat treatment temperature was 350° C. or higher, the content of selenium in manganese dioxide was 5% by weight or less.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第 lOOサイクルロの放
電容量/第10サイクル目の放電容量)をそれぞれ調べ
た。
For these batteries, the capacity change ratio (discharge capacity at 10th cycle/discharge capacity at 10th cycle) when charging and discharging cycles were performed under the same conditions as above was investigated.

結果は第5図(C)の通りで、この結果より熱処理温度
を250〜450℃とすればサイクルでの容量低下を少
なく抑えることができる。
The results are shown in FIG. 5(C), and from this result, if the heat treatment temperature is set to 250 to 450°C, the capacity decrease during the cycle can be suppressed to a small level.

他の実施例 電力q二酸化マンガン30gとH2S e 0410g
を水20m1に溶解した溶液を混合し、また温度60℃
で水分除去を行った後、温度400℃で10特開熱処理
を行なって得たものを正極活物質とした他は本発明品4
と同様なコイン形リチウム二次電池を作製し、またこの
電池を上記と同様な条件で充放電させ、第20サイクル
ロの放電容量を調べた所、本発明品4の第20サイクル
l」の放電容量を1口0とした場合、放電容量は11g
であった。
Other examples Power q Manganese dioxide 30g and H2S e 0410g
was dissolved in 20ml of water, and the temperature was 60°C.
Inventive product 4 except that the cathode active material was obtained by performing JP-A No. 10 heat treatment at a temperature of 400° C.
A coin-shaped lithium secondary battery similar to the above was prepared, and this battery was charged and discharged under the same conditions as above, and the discharge capacity at the 20th cycle was examined. If the capacity is 0 per mouth, the discharge capacity is 11g.
Met.

実施例5 比較品とのサイクル性の比較 電解二酸化マンガン1モルと酸化エルビウムE r 2
0.0.15モルとを混合し、またこの混合物を温度3
00〜450℃で10時間焼成を行なって得た正極活物
質を用いた他は上記本発明品1と同様にして、コイン形
リチウム二次電池(本発明品5)を作製した。
Example 5 Comparison of cyclability with comparative products 1 mol of electrolytic manganese dioxide and erbium oxide E r 2
0.0.15 mol, and this mixture was heated to a temperature of 3.
A coin-shaped lithium secondary battery (Invention Product 5) was produced in the same manner as Invention Product 1, except that a positive electrode active material obtained by baking at 00 to 450° C. for 10 hours was used.

この本発明品5と前記比較品とを上記と同し条件で充放
電させた。本発明品5の初度のhk電電量量lとした時
の各サイクルにおける各電池の放電容量を、容量比(そ
のサイクルの放電容量/本発明品5の初度の放電室ff
1)として第6図(^〉に示した。
This invention product 5 and the comparative product were charged and discharged under the same conditions as above. The discharge capacity of each battery in each cycle is determined by the capacity ratio (discharge capacity of the cycle/initial discharge chamber ff of the invention product 5) when the initial hk electricity amount of the invention product 5 is 1.
1) is shown in Figure 6 (^).

エルビウムの添加量の検討 二酸化マンガンと酸化エルビウムとの混合モル比を適宜
調整してマンガンに対するエルビウムの添加ffi (
E r / M n )を0〜0.25の範囲で種々変
え、またこれらを温度400℃で10時間熱処理したも
のを正極活物質とした以外は本発明品5と同様なコイン
形リチウム二次電池をそれぞれ作製した。
Consideration of the amount of erbium added by adjusting the mixing molar ratio of manganese dioxide and erbium oxide as appropriate, and adding erbium to manganese ffi (
A coin-shaped lithium secondary material similar to Inventive Product 5 was used, except that E r / M n ) was varied in the range of 0 to 0.25, and the positive electrode active material was obtained by heat-treating these at a temperature of 400°C for 10 hours. Each battery was manufactured.

これらの電池を上記と同し条件で充放電させた時の容量
変化比(第100サイクル目の放電容量/第10サイク
ルロの放電容量)、並びに上記コイン形すチウムー次電
池の放電容量を1とした時のこれら電池の第 100サ
イクルにおける容量比(各電池の第100サイクル目の
放電容量/コイン形すチウムー次電池の放電容量)をそ
れぞれ調べた。
The capacity change ratio (discharge capacity at 100th cycle/discharge capacity at 10th cycle) when these batteries are charged and discharged under the same conditions as above, and the discharge capacity of the above coin-shaped battery are 1. The capacity ratio of these batteries at the 100th cycle (discharge capacity of each battery at the 100th cycle/discharge capacity of the coin-shaped lithium battery) was investigated.

これらの結果は第6図([3)の通りで、エルビウムの
添加量を0.05〜0.25の範囲とすればサイクルで
の容量低下が少なく且つ容量の高い電池とすることがで
きる。尚、図において実線は容量変化比を、また点線は
容量比をそれぞれ示す。
These results are shown in FIG. 6 ([3)], and if the amount of erbium added is in the range of 0.05 to 0.25, a battery with high capacity and less capacity loss during cycles can be obtained. In the figure, the solid line indicates the capacitance change ratio, and the dotted line indicates the capacitance ratio.

熱処理温度の検討 マンガンに対するエルビウムの添加ff1(Se/ M
 n )が0.2となるように二酸化マンガンと酸化エ
ルビウムとの混合モル比を調整し、また熱処理温度を2
00〜500℃の範囲で種々変えたものを正極活物質と
した以外は本発明品5と同様なコイン形リチウム二次電
池をそれぞれ作製した。
Consideration of heat treatment temperature Addition of erbium to manganeseff1 (Se/M
The mixing molar ratio of manganese dioxide and erbium oxide was adjusted so that n) was 0.2, and the heat treatment temperature was adjusted to 2.
Coin-shaped lithium secondary batteries similar to Inventive Product 5 were produced, except that the positive electrode active materials were variously changed in the range of 00 to 500°C.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第100サイクル目の放電
容量/第1Oサイクルロの放電容量)をそれぞれ調べた
For these batteries, the capacity change ratio (discharge capacity at 100th cycle/discharge capacity at 1st O cycle) when charging and discharging cycles were performed under the same conditions as above was investigated.

結果は第6図(e)の通りで、この結果より熱処理温度
を250〜450℃程度とすればサイクルでの容量低下
を少なく抑えることができる。
The results are shown in FIG. 6(e), and from this result, if the heat treatment temperature is set to about 250 to 450°C, the capacity decrease during the cycle can be suppressed to a small level.

他の実施例 電解二酸化マンガン1モルと硝酸エルビウムE r (
NO3) 、’ 582 oatgを水100 mlに
溶HL、た溶液を50m1づつ2回に分けて混合し、ま
た温度70℃で乾燥して水分除去を行った後、温度40
0℃で72時間熱処理を行なって得たものを正極活物質
とした他は本発明品5と同様なコイン形リチウム二次電
池を作製し、またこの電池を上記と同様な条件で充放電
させ、第20サイクル「1の放電容量を調べた所、本発
明品5の第20サイクルロの放電容量を100とした場
合、放電容量は 115てあった。
Other Examples 1 mol of electrolytic manganese dioxide and erbium nitrate E r (
NO3), '582 oatg was dissolved in 100 ml of water and the solution was mixed in two 50 ml portions, and after drying at a temperature of 70°C to remove water, the mixture was heated to a temperature of 40°C.
A coin-shaped lithium secondary battery similar to Invention Product 5 was prepared except that the material obtained by heat treatment at 0°C for 72 hours was used as the positive electrode active material, and this battery was charged and discharged under the same conditions as above. When the discharge capacity of the 20th cycle 1 was investigated, the discharge capacity was 115, assuming that the discharge capacity of the 20th cycle 1 of the product 5 of the present invention was 100.

電力q二酸化マンガン30gと炭酸エルビウムE r 
2  (C03) i legを混合し、また温度40
0℃で72時間熱処理を行なって得たものを正極活物質
とした他は本発明品5と同様なコイン形リチウム二次電
池を作製し、またこの電池を上記と同様な条件で充放電
させ、第20サイクル11の放電容量を調べた所、本発
明品5の第20サイクルロの放電容量を100とした場
合、放電容量は 103であった。
Electricity q Manganese dioxide 30g and Erbium carbonate E r
2 (C03) i leg and also at a temperature of 40
A coin-shaped lithium secondary battery similar to Invention Product 5 was prepared except that the material obtained by heat treatment at 0°C for 72 hours was used as the positive electrode active material, and this battery was charged and discharged under the same conditions as above. When the discharge capacity at the 20th cycle 11 was investigated, the discharge capacity was 103, assuming that the discharge capacity at the 20th cycle 11 of the product 5 of the present invention was 100.

実施例6 比較品とのサイクル性の比較 電解二酸化マンガン1モルと酸化マグネシウムMg0O
,15モルとを混合し、またこの混合物を温度300〜
450℃で10時間焼成を行なって得た正極活物質を用
いた他は上記本発明品1と同様にして、コイン形リチウ
ム二次電池(本発明品6)を作製した。
Example 6 Comparison of cycleability with comparison product 1 mol of electrolytic manganese dioxide and magnesium oxide Mg0O
, 15 mol, and this mixture was heated to a temperature of 300~
A coin-shaped lithium secondary battery (Invention Product 6) was produced in the same manner as Invention Product 1, except that a positive electrode active material obtained by baking at 450° C. for 10 hours was used.

この本発明品6と前記比較品とを上記と同じ条件で充放
電させた。本発四品6の初度のhIi、電容量を1とし
た峙の各サイクルにおける各電池の放電容量を、容量比
(そのサイクルの放電容量/本発明品6の初度の放電容
Jl)として第7図(A)に示した。
This invention product 6 and the comparative product were charged and discharged under the same conditions as above. The discharge capacity of each battery in each cycle with the initial hIi of the product 6 of the present invention and the capacitance as 1 is calculated as the capacity ratio (discharge capacity of that cycle/initial discharge capacity Jl of the product 6 of the present invention). It is shown in Figure 7 (A).

マグネシウムの添加量の検討 二酸化マンガンと酸化マグネシウムとの混合モル比を適
宜調整してマンガンに対するマグネシウムの添加量(M
 g / M n )を0〜0.25の範囲で種々変え
、またこれらを温度400℃で10時間熱処理したもの
を正極活物質とした以外は本発明品6と同様なコイン形
リチウム二次電池をそれぞれ作製した。
Examination of the amount of magnesium added The amount of magnesium added to manganese (M
Coin-shaped lithium secondary batteries similar to Invention Product 6, except that the positive electrode active material was obtained by varying g/M n ) in the range of 0 to 0.25 and heat-treating these at a temperature of 400°C for 10 hours. were prepared respectively.

これらの電池を上記と同じ条件で充放電させた時の容量
変化比(第100サイクルロの放電容量/第1Oサイク
ルロの放電容量)、並びに上記コイン形すチウムー次電
池の放電容量を1とした時のこれら電池の第 100サ
イクルにおける容量比(各電池の第 100サイクルロ
の放電容量/コイン形すチウムー次電池の放電容量)を
それぞれ調べた。
The capacity change ratio when these batteries are charged and discharged under the same conditions as above (100th cycle RO discharge capacity/10th cycle RO discharge capacity), and when the discharge capacity of the above coin-shaped battery is set to 1 The capacity ratio of these batteries at the 100th cycle (discharge capacity at the 100th cycle of each battery/discharge capacity of the coin-shaped lithium battery) was investigated.

これらの結果は第7図(11)の通りで、エルビウムの
添加量を0.05〜0.25の範囲とすればサイクルで
の容量低下が少なく且つ容量の高いrrlothとする
ことができる。図において実線は容量変化比を、また点
線は容量比をそれぞれ示す。
These results are as shown in FIG. 7 (11), and if the amount of erbium added is in the range of 0.05 to 0.25, it is possible to obtain a high capacity rrloth with little capacity loss during cycles. In the figure, the solid line indicates the capacitance change ratio, and the dotted line indicates the capacitance ratio.

熱処理温度の検討 マンガンに対するマグネシウムの添加量(M g / 
M n )が0.15となるように二酸化マンガンと酸
化マグネシウムとの混合モル比を調整し、また熱処理温
度を200〜500℃の範囲で種々変えたものを正極活
物質とした以外は本発明品6と同様なコイン形リチウム
二次電池をそれぞれ作製した。
Consideration of heat treatment temperature Amount of magnesium added to manganese (M g /
The present invention except that the mixed molar ratio of manganese dioxide and magnesium oxide was adjusted so that M n ) was 0.15, and the positive electrode active material was used with various heat treatment temperatures in the range of 200 to 500°C. Coin-shaped lithium secondary batteries similar to Product 6 were manufactured.

これらの電池について、上記と同じ条件で充放電サイク
ルを行った時の容量変化比(第 100サイクル目の放
電容量/第1Oサイクルロの放電容量)をそれぞれ調べ
た。
For these batteries, the capacity change ratio (discharge capacity at 100th cycle/discharge capacity at 1st O cycle) when charging and discharging cycles were performed under the same conditions as above was investigated.

結果は第7図(C)の通りで、この結果より熱処理温度
を250〜450℃とすればサイクルにおける容量低下
を少なく抑えることができる。
The results are shown in FIG. 7(C), and from this result, if the heat treatment temperature is set to 250 to 450°C, the capacity decrease during the cycle can be suppressed to a small level.

他の実施例 電解二酸化マンガン1モルに対し水酸化マグネシウムM
g(OH)zを0.25モル混合した物を温度400℃
で72峙間熱処理を行なって得たものを正極活物質とし
た他は本発明品6と同様なコイン形リチウム二次電池を
作製し、またこの電池を上記と同様な条件で充放電させ
、第20サイクルロの放電容量を調べた所、本発明品6
の第20サイクルロの放電容量を 100とした場合、
放電容量は 101であった。
Other Examples Magnesium hydroxide M per 1 mol of electrolytic manganese dioxide
A mixture of 0.25 mol of g(OH)z at a temperature of 400°C
A coin-shaped lithium secondary battery similar to Invention Product 6 was prepared except that the material obtained by heat treatment for 72 hours was used as the positive electrode active material, and this battery was charged and discharged under the same conditions as above. When the discharge capacity of the 20th cycle was investigated, the present invention product 6
When the discharge capacity of the 20th cycle is 100,
The discharge capacity was 101.

電解二酸化マンガン1モルに対し炭酸マグネシウムMg
C0,を0.25モル混合した物を温度400℃で72
時間熱処理を行なって得たものを正極活物質とした他は
本発明品6と同様なコイン形リチウム二次電池を作製し
、またこの電池を上記と同様な条件で充放電させ、第2
0サイクル[1の放電容量を調べた所、本発明品6の第
20サイクルロの放電容量を100とした場合、放電容
量は98であった。
Magnesium carbonate Mg per mol of electrolytic manganese dioxide
A mixture of 0.25 mol of C0 and 72
A coin-shaped lithium secondary battery similar to Invention Product 6 was prepared except that the positive electrode active material obtained by the time heat treatment was used, and this battery was charged and discharged under the same conditions as above.
When the discharge capacity of the 0th cycle [1 was investigated, the discharge capacity was 98, assuming that the discharge capacity of the 20th cycle of the present invention product 6 was 100.

電力lに酸化マンガン30gと硝酸マグネシウムMg 
(NO3)3  ・6H2022gを水60m1に溶解
した溶液を2回に分けて浸漬−温度70℃で乾燥して水
分除去を行った後、温度400℃で48時間熱処理を行
なって得たものを正極活物質とした他は本発明品6と同
様なコイン形リチウム二次電池を作製し、またこの電池
を上記と同様な条件で充放電させ、第20サイクル目の
放電容量を調べた所、本発明品6の第20サイクルロの
放電容量を100とした場合、放電容量は105であっ
た。
30g of manganese oxide and Mg of magnesium nitrate per electric power
(NO3)3 A solution of 2022 g of 6H dissolved in 60 ml of water was immersed twice and dried at a temperature of 70°C to remove moisture, followed by heat treatment at a temperature of 400°C for 48 hours. A coin-shaped lithium secondary battery similar to Invention Product 6 except that the active material was used was prepared, and this battery was charged and discharged under the same conditions as above, and the discharge capacity at the 20th cycle was examined. When the discharge capacity of invention product 6 at the 20th cycle was set as 100, the discharge capacity was 105.

以上はLa、All、Ce、Se、Er、Mgなどの元
素を単体で用いた例であるが、これらの元素を2F!以
上組会わせて用いても良いこともでき、同様な効果が得
られる。
The above is an example of using elements such as La, All, Ce, Se, Er, Mg alone, but these elements are used in 2F! The above may be used in combination, and similar effects can be obtained.

〈発明の効果〉 以上のようにこの発明によれば、二酸化マンガンを主な
正極活物質とするものであって、サイクル特性が良好で
nつ容量が大きな非水型角//液二次電池を提供するこ
とができる。
<Effects of the Invention> As described above, the present invention provides a non-aqueous prismatic/liquid secondary battery that uses manganese dioxide as the main positive electrode active material, has good cycle characteristics, and has a large capacity. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の電池の断面図、第2図(A)。 第3図(A〉、第4図(^)、第5図(^)、第6図(
^)、第7図(^)は実施例の電池と比較電池のサイク
ル特性を示したグラフ、第2図(B)、第3図(B)、
第4図(n)、第5図(B)、第6図(B)、第7図(
B)は正極における各元素の添加量と容量変化比並びに
容量比の関係を示したグラフ、第2図(C)、第3図(
C)、第4図(C)。 第5図(C)、第6図(C)、第7図(C)は正極活物
質の処理温度と容量変化比の関係を示したグラフである
。 1・・・正極合剤、3・・・負極、4・・・電池fli
、5・・・端子板。 特許出廓人 富士電気化学株式会社 代 理 人 尾 股 1丁 雄
FIG. 1 is a sectional view of the battery of the example, and FIG. 2 (A). Figure 3 (A), Figure 4 (^), Figure 5 (^), Figure 6 (
^), Figure 7 (^) is a graph showing the cycle characteristics of the example battery and comparative battery, Figure 2 (B), Figure 3 (B),
Figure 4 (n), Figure 5 (B), Figure 6 (B), Figure 7 (
B) is a graph showing the relationship between the amount of each element added, the capacity change ratio, and the capacity ratio in the positive electrode, Figure 2 (C), Figure 3 (
C), Figure 4 (C). FIG. 5(C), FIG. 6(C), and FIG. 7(C) are graphs showing the relationship between the treatment temperature of the positive electrode active material and the capacity change ratio. 1... Positive electrode mixture, 3... Negative electrode, 4... Battery fli
, 5...terminal board. Patent distributor: Fuji Electrochemical Co., Ltd. Agent: Ichio Omata

Claims (1)

【特許請求の範囲】 1、リチウムやリチウム合金を負極活物質としまた二酸
化マンガン中にLa、Al、Ce、Se、Er、Mgか
ら選ばれた少なくとも1種の元素を含んでなる正極活物
質を用いることを特徴とする非水電解液二次電池。 2、リチウムやリチウム合金を負極活物質としまた二酸
化マンガンが主成分で且つマンガンとLa、Al、Ce
、Se、Er、Mgから選ばれた少なくとも1種の元素
との複酸化物を含んでなる正極活物質を用いることを特
徴とする非水電解液二次電池。 3、リチウムやリチウム合金を負極活物質とし、また二
酸化マンガン中にLa、Al、Ce、Se、Er、Mg
から選ばれた少なくとも1種の元素がドーピングされて
なる正極活物質を用いることを特徴とする非水電解液二
次電池。 4、リチウムやリチウム合金を負極活物質とし、また二
酸化マンガンと、La、Al、Ce、Se、Er、Mg
から選ばれた少なくとも1種の元素の化合物を250〜
450℃で熱処理してなる正極活物質を用いることを特
徴とする非水電解液二次電池。
[Claims] 1. A positive electrode active material comprising lithium or a lithium alloy as a negative electrode active material and manganese dioxide containing at least one element selected from La, Al, Ce, Se, Er, and Mg. A non-aqueous electrolyte secondary battery characterized in that it is used. 2. Lithium or lithium alloy is used as the negative electrode active material, and manganese dioxide is the main component, and manganese and La, Al, Ce
A non-aqueous electrolyte secondary battery characterized by using a positive electrode active material comprising a double oxide with at least one element selected from , Se, Er and Mg. 3. Lithium or lithium alloy is used as the negative electrode active material, and La, Al, Ce, Se, Er, Mg is used in manganese dioxide.
A non-aqueous electrolyte secondary battery characterized by using a positive electrode active material doped with at least one element selected from the following. 4. Lithium or lithium alloy is used as a negative electrode active material, and manganese dioxide and La, Al, Ce, Se, Er, Mg
A compound of at least one element selected from 250 to
A nonaqueous electrolyte secondary battery characterized by using a positive electrode active material heat-treated at 450°C.
JP01204171A 1989-08-07 1989-08-07 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3110738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01204171A JP3110738B2 (en) 1989-08-07 1989-08-07 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01204171A JP3110738B2 (en) 1989-08-07 1989-08-07 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0367463A true JPH0367463A (en) 1991-03-22
JP3110738B2 JP3110738B2 (en) 2000-11-20

Family

ID=16486012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01204171A Expired - Fee Related JP3110738B2 (en) 1989-08-07 1989-08-07 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3110738B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030124A1 (en) * 2002-09-26 2004-04-08 Mitsui Mining & Smelting Co., Ltd. Active substance of positive electrode for battery, process for producing the same and battery therefrom
WO2010004973A1 (en) * 2008-07-09 2010-01-14 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2010108899A (en) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd Cathode active material of nonaqueous electrolyte secondary battery, manufacturing method for the same, cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010165657A (en) * 2008-07-09 2010-07-29 Sanyo Electric Co Ltd Positive electrode active substance for nonaqueous electrolyte secondary battery, method of manufacturing the positive electrode active substance for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2010245016A (en) * 2008-12-03 2010-10-28 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method of producing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103864A (en) * 1980-01-21 1981-08-19 Matsushita Electric Ind Co Ltd Battery
JPS5750768A (en) * 1980-09-12 1982-03-25 Fuji Elelctrochem Co Ltd Battery
JPH02283621A (en) * 1989-04-25 1990-11-21 Agency Of Ind Science & Technol New manganese compound and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103864A (en) * 1980-01-21 1981-08-19 Matsushita Electric Ind Co Ltd Battery
JPS5750768A (en) * 1980-09-12 1982-03-25 Fuji Elelctrochem Co Ltd Battery
JPH02283621A (en) * 1989-04-25 1990-11-21 Agency Of Ind Science & Technol New manganese compound and production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030124A1 (en) * 2002-09-26 2004-04-08 Mitsui Mining & Smelting Co., Ltd. Active substance of positive electrode for battery, process for producing the same and battery therefrom
WO2010004973A1 (en) * 2008-07-09 2010-01-14 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2010165657A (en) * 2008-07-09 2010-07-29 Sanyo Electric Co Ltd Positive electrode active substance for nonaqueous electrolyte secondary battery, method of manufacturing the positive electrode active substance for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2012142304A (en) * 2008-07-09 2012-07-26 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8741483B2 (en) 2008-07-09 2014-06-03 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery having rare earth hydroxide and/or oxyhydroxide
US9929401B2 (en) 2008-07-09 2018-03-27 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery having rare earth hydroxide and/or oxyhydroxide
JP2010108899A (en) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd Cathode active material of nonaqueous electrolyte secondary battery, manufacturing method for the same, cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012169289A (en) * 2008-09-30 2012-09-06 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010245016A (en) * 2008-12-03 2010-10-28 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method of producing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012169290A (en) * 2008-12-03 2012-09-06 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3110738B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
JP5441328B2 (en) Cathode active material and lithium battery employing the same
JP4574877B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
JPWO2018198410A1 (en) Positive electrode active material and battery
KR100490613B1 (en) A positive active material for a lithium secondary battery and a method of preparing the same
JP2012529741A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JPH01209663A (en) Nonaqueous secondary battery
US11888157B2 (en) Cathode active material, cathode comprising same, and secondary battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4232277B2 (en) Non-aqueous electrolyte battery
US6482546B1 (en) Rechargeable lithium battery
JPH0367463A (en) Nonaqueous electrolyte secondary battery
JP3671531B2 (en) Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
KR100794168B1 (en) Positive active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JP2001257003A (en) Lithium secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH05242889A (en) Manufacture of positive electrode active material for non-aqueous electrolyte secondary battery
JP2001143704A (en) Method of manufacturing positive electrode material for lithiun secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees