JP2979641B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2979641B2
JP2979641B2 JP2401075A JP40107590A JP2979641B2 JP 2979641 B2 JP2979641 B2 JP 2979641B2 JP 2401075 A JP2401075 A JP 2401075A JP 40107590 A JP40107590 A JP 40107590A JP 2979641 B2 JP2979641 B2 JP 2979641B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
lithium
discharge capacity
battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2401075A
Other languages
Japanese (ja)
Other versions
JPH04215249A (en
Inventor
浩平 山本
義久 日野
吉郎 原田
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2401075A priority Critical patent/JP2979641B2/en
Publication of JPH04215249A publication Critical patent/JPH04215249A/en
Application granted granted Critical
Publication of JP2979641B2 publication Critical patent/JP2979641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、二酸化マンガンを正
極活物質とし、リチウムを負極活物質とする、非水電解
液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte secondary battery using manganese dioxide as a positive electrode active material and lithium as a negative electrode active material.

【0002】[0002]

【従来の技術】非水電解液二次電池では、非水系の電解
液を用い、またリチウムを活物質とする負極(リチウム
負極,リチウム合金負極など)をセパレータを介して正
極と組合わせる構成が、一般的に採られている。また、
正極活物質にはV2 5 ,MnO2 (二酸化マンガ
ン),TiO2 ,MoS2 等の酸化物や硫化物が用いら
れている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery uses a non-aqueous electrolyte and combines a negative electrode using lithium as an active material (a lithium negative electrode, a lithium alloy negative electrode, etc.) with a positive electrode via a separator. Is commonly adopted. Also,
Oxides and sulfides such as V 2 O 5 , MnO 2 (manganese dioxide), TiO 2 and MoS 2 are used as the positive electrode active material.

【0003】上記の二酸化マンガンとしては、二酸化マ
ンガンにリチウムイオンをドーピングしたリチウム含有
二酸化マンガンが知られている。この種の二酸化マンガ
ンは例えば次の1)〜3)のものがある。即ち1)特開平1-29
4359号公報に記載のように、リチウム塩の水溶液中に二
酸化マンガン粉末を浸漬し、水分を蒸発させて乾燥固化
した後に熱処理して得られた二酸化マンガン。2)特開昭
61-16473号公報のように、リチウム塩の水溶液中に二酸
化マンガン粉末を浸漬し、加圧下で熱処理したものを熱
処理して得られた二酸化マンガン。3)特開昭63- 114064
号公報のように、リチウム塩粉末と二酸化マンガン粉末
の混合物を熱処理して得られた二酸化マンガン。
As the manganese dioxide, lithium-containing manganese dioxide obtained by doping lithium ions into manganese dioxide is known. This type of manganese dioxide includes, for example, the following 1) to 3). That is, 1) JP-A-1-29
As described in Japanese Patent No. 4359, manganese dioxide obtained by immersing manganese dioxide powder in an aqueous solution of a lithium salt, evaporating water, drying and solidifying, and then heat-treating. 2) JP
Manganese dioxide obtained by immersing manganese dioxide powder in an aqueous solution of a lithium salt and heat-treating it under pressure, as described in JP-A-61-16473. 3) JP-A-63-114064
Manganese dioxide obtained by heat-treating a mixture of a lithium salt powder and a manganese dioxide powder as disclosed in Japanese Patent Application Publication

【0004】[0004]

【発明が解決しようとする課題】ところで、リチウム
塩,例えば水酸化リチウム(LiOH)は、その溶解度
が低いため、上記リチウム塩の水溶液におけるリチウム
イオンの濃度は小さい。
By the way, since lithium salts, for example, lithium hydroxide (LiOH) have low solubility, the concentration of lithium ions in the aqueous solution of the lithium salt is small.

【0005】このため、上記1)の二酸化マンガンの場
合、含浸によって二酸化マンガン中へリチウムイオンを
十分移動させることが難しい。そして乾燥した場合には
LiOHまたはLiCO3 の析出によって二酸化マンガ
ン表面のリチウム濃度が高くなり、不活性なLi2 Mn
3 が生成し易いため、これを用いた電池では充放電容
量が小さく、また実用上充放電可能なサイクル数が小さ
くてサイクル特性が良くない。
[0005] Therefore, in the case of manganese dioxide of the above 1), it is difficult to sufficiently transfer lithium ions into manganese dioxide by impregnation. When dried, LiOH or LiCO 3 precipitates to increase the lithium concentration on the surface of manganese dioxide, resulting in inactive Li 2 Mn.
Since O 3 is easily generated, the battery using this battery has a small charge / discharge capacity, and the number of cycles that can be charged / discharged in practice is small, and the cycle characteristics are not good.

【0006】2)の二酸化マンガンの場合、1)の場合と同
様に二酸化マンガン中のリチウム濃度が低いため、加圧
下で熱処理したとしても差程の効果はなく、良好な結晶
構造を形成することができない。
In the case of manganese dioxide of 2), since the lithium concentration in manganese dioxide is low as in 1), even if heat treatment is performed under pressure, the effect is not so different, and a good crystal structure is formed. Can not.

【0007】3)の場合、リチウムの分布が二酸化マンガ
ンの表面のみであるため同様にLi2 MnO3 が生成さ
れ、また熱処理によって二酸化マンガンの中心部が活性
度の低いβ型二酸化マンガンに変化してしまうので、上
記同様に電池のサイクル特性が良くないという問題があ
る。
In the case of 3), Li 2 MnO 3 is similarly produced since the distribution of lithium is only on the surface of manganese dioxide, and the central portion of manganese dioxide is changed to β-type manganese dioxide having low activity by heat treatment. Therefore, there is a problem that the cycle characteristics of the battery are not good as described above.

【0008】この発明は、充放電容量が大きく、サイク
ル特性の良好な、非水電解液二次電池を提供することを
目的とする。
It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having a large charge / discharge capacity and good cycle characteristics.

【0009】[0009]

【課題を解決するための手段】この発明の非水電解液二
次電池は、リチウムを活物質とする負極と、二酸化マン
ガンを活物質とする正極とを備えてなり、前記二酸化マ
ンガンが、二酸化マンガン粉末とリチウム塩粉末との混
合粉体に前記混合粉体の空孔体積の 100%以下の水分を
加え、密閉状態にて60〜90℃で保存し、次いで 200〜 4
30℃で熱処理して得られたものであることを要旨とす
る。
A non-aqueous electrolyte secondary battery according to the present invention includes a negative electrode using lithium as an active material and a positive electrode using manganese dioxide as an active material. manganese powder and 100% or less of water pore volume of the mixed powder to the mixed powder of a lithium salt powder was added, and stored at 60 to 90 ° C. in a sealed state, then 200-4
The gist is that it is obtained by heat treatment at 30 ° C.

【0010】リチウム塩としては、硝酸リチウム,水酸
化リチウム,塩化リチウム,酢酸リチウム,臭化リチウ
ムなどを用いることができる。
As the lithium salt, lithium nitrate, lithium hydroxide, lithium chloride, lithium acetate, lithium bromide and the like can be used.

【0011】上記の混合粉体における二酸化マンガンと
リチウム塩との混合割合は、重量比で、二酸化マンガン
1に対してリチウム塩を 0.015〜0.05程度とすれば良
い。
The mixing ratio of manganese dioxide and lithium salt in the above mixed powder may be such that the lithium salt is about 0.015 to 0.05 per manganese dioxide by weight.

【0012】混合粉体に加える水分の下限は特に限定さ
れず、例えば30%ないしそれ以下でも良好な結果が得ら
れる。
The lower limit of the water content to be added to the mixed powder is not particularly limited. For example, good results can be obtained at 30% or less.

【0013】上記密閉状態での保存は、その温度にもよ
るが、24時間程度行えば良い。
The storage in the closed state may be performed for about 24 hours, depending on the temperature.

【0014】[0014]

【作用】上記のように二酸化マンガン粉末とリチウム塩
粉末との混合粉体にこの混合粉体の空孔体積の 100%以
下の水分を加え、密閉状態にて60〜90℃で保存すること
で、二酸化マンガン粉末の中心部までリチウムイオンが
均一に分布したリチウム含有二酸化マンガンを得ること
ができる。
[Function] As described above, a water content of 100% or less of the pore volume of the mixed powder is added to the mixed powder of the manganese dioxide powder and the lithium salt powder, and the mixed powder is stored at 60 to 90 ° C in a closed state. Thus, lithium-containing manganese dioxide in which lithium ions are uniformly distributed up to the center of the manganese dioxide powder can be obtained.

【0015】これは、混合粉体に加える水分を 100%以
下にしたので、リチウムイオンが二酸化マンガンに取込
まれる反応が進行してもリチウム塩水溶液の液相は常に
リチウム塩で飽和した状態になり、このためリチウムイ
オンは二酸化マンガン粉末の表面の液相を通して二酸化
マンガン粉末の内部にまでスムーズに移動することによ
ると考えられる。
[0015] This is because the water added to the mixed powder is reduced to 100% or less, so that the liquid phase of the aqueous lithium salt solution is always saturated with the lithium salt even when the reaction of incorporating lithium ions into manganese dioxide proceeds. Therefore, it is considered that lithium ions move smoothly to the inside of the manganese dioxide powder through the liquid phase on the surface of the manganese dioxide powder.

【0016】また、リチウム塩が全部溶解した後は、二
酸化マンガンは溶液の膜で覆われた状態となる。
After all of the lithium salts have been dissolved, the manganese dioxide is covered with a solution film.

【0017】そして、この状態で 200〜 430℃で熱処理
した場合にはリチウムイオンが二酸化マンガン表面から
内部に侵入し、これによりリチウムイオンは不活性なL
2MnO3 を形成することなく、二酸化マンガンに対
して充放電に有効な結晶構造を形成するようになる。
When heat treatment is performed at 200 to 430 ° C. in this state, lithium ions enter the inside of the manganese dioxide from the surface thereof, whereby the lithium ions become inactive L
Without forming i 2 MnO 3 , the manganese dioxide forms a crystal structure effective for charging and discharging.

【0018】[0018]

【実施例】以下に実施例を説明する。Embodiments will be described below.

【0019】電解二酸化マンガン 180gと水酸化リチウ
ム(LiOH・H2 O)40gを混合して混合粉体を得
た。この混合粉体の一部を容器に入れ、フッ素系溶剤を
用い、含浸法によってその空孔率を求めたところ、混合
粉体の体積の22%であった。
A mixed powder was obtained by mixing 180 g of electrolytic manganese dioxide and 40 g of lithium hydroxide (LiOH.H 2 O). A part of the mixed powder was placed in a container, and its porosity was determined by impregnation using a fluorine-based solvent. The porosity was 22% of the volume of the mixed powder.

【0020】上記の混合粉体30ml(空孔体積は30ml×0.
22= 6.6ml)を採り、これに4mlの純水を加えた後、ポ
リプロピレン製容器に入れ、更にステンレス製の密閉容
器に入れ、密閉して90℃で72時間静置した。その後、ル
ツボに移し、 350℃で20時間加熱を行ない、本願発明に
係わる二酸化マンガンを作った。
The above mixed powder 30 ml (pore volume is 30 ml × 0.
22 = 6.6 ml), 4 ml of pure water was added thereto, and the mixture was placed in a polypropylene container, further placed in a stainless steel closed container, sealed and allowed to stand at 90 ° C for 72 hours. Thereafter, the mixture was transferred to a crucible and heated at 350 ° C. for 20 hours to produce manganese dioxide according to the present invention.

【0021】この二酸化マンガン8に対し、重量比でア
セチレンブラック1、PTFE粉末1をそれぞれ混合し、ま
たこの混合粉末を直径φ15mm、厚さ 0.4mmのペレットに
加圧成形して、正極合剤とした。
The manganese dioxide 8 was mixed with acetylene black 1 and PTFE powder 1 in a weight ratio, and the mixed powder was pressed into a pellet having a diameter of 15 mm and a thickness of 0.4 mm to form a positive electrode mixture. did.

【0022】そして、図1に示したように、底面にステ
ンレスネット1をスポット溶接した電池缶2に上記で得
た正極合剤3を圧着し、またリチウムを活物質とする負
極4と、プロピレンカーボネイトとジメトキシエタンの
等体積比混合溶媒にLiClO4 を1 mol/l溶解して
作った非水電解液を用いて、CR2016型のコイン形リチウ
ム2次電池(実施例)を作製した。図1で5〜7はそれ
ぞれセパレータ、絶縁ガスケット、端子板である。
Then, as shown in FIG. 1, the positive electrode mixture 3 obtained above is pressed into a battery can 2 having a stainless steel net 1 spot-welded to the bottom surface, and a negative electrode 4 using lithium as an active material and a propylene Using a non-aqueous electrolyte prepared by dissolving LiClO 4 at 1 mol / l in a mixed solvent of carbonate and dimethoxyethane in an equal volume ratio, a CR2016 type coin-type lithium secondary battery (Example) was manufactured. In FIG. 1, reference numerals 5 to 7 denote a separator, an insulating gasket, and a terminal plate, respectively.

【0023】以下の〜の処理をして、各種の二酸化
マンガンを作った。
Various manganese dioxides were prepared by the following processes.

【0024】水酸化リチウム(LiOH・H2 O)40
gを純水 200mlに溶解した水溶液に電解二酸化マンガン
180gを浸漬し、水分を蒸発させた後 350℃で熱処理を
行って得た二酸化マンガン。
Lithium hydroxide (LiOH.H 2 O) 40
g manganese dioxide in an aqueous solution of
Manganese dioxide obtained by immersing 180 g and evaporating water and then performing heat treatment at 350 ° C.

【0025】上記水溶液に電解二酸化マンガン 180g
を浸漬し、オートクレーブにて加圧下で 200℃で加熱し
た後、濾過し、次いで 350℃で熱処理を行って得た二酸
化マンガン。
In the above aqueous solution, electrolytic manganese dioxide 180 g
Manganese dioxide obtained by immersing, heating at 200 ° C under pressure in an autoclave, filtering, and then performing a heat treatment at 350 ° C.

【0026】水酸化リチウム(LiOH・H2 O)40
gと電解二酸化マンガン 180gの混合粉体を、 350℃で
加熱を行って得た二酸化マンガン。
Lithium hydroxide (LiOH.H 2 O) 40
manganese dioxide obtained by heating a mixed powder of g and electrolytic manganese dioxide at 180 g at 350 ° C.

【0027】これら3種類の二酸化マンガン〜をそ
れぞれ用いた他は上記実施例と同様にして、同形のコイ
ン形リチウム2次電池(比較例〜)を作製した。
A coin-type lithium secondary battery having the same shape (Comparative Example) was prepared in the same manner as in the above example except that each of these three types of manganese dioxide was used.

【0028】以上の実施例,並びに比較例1〜3の電池
を、1mAの電流で 3.4Vまで充電し、また1mAの電流で
2.5Vまで放電するという充放電サイクルを繰返し、放
電容量比{(放電容量 mAH/各電池の第1サイクル目の放
電容量)× 100(%)}のサイクル変化を調べた。結果
は図2の通りである。
The batteries of the above Examples and Comparative Examples 1 to 3 were charged to 3.4 V at a current of 1 mA, and charged at a current of 1 mA.
A charge / discharge cycle of discharging to 2.5 V was repeated, and a cycle change of a discharge capacity ratio {(discharge capacity mAH / discharge capacity of the first cycle of each battery) × 100 (%)} was examined. The result is as shown in FIG.

【0029】また、上記実施例で、混合粉体への水分添
加量を1〜9mlの範囲でそれぞれ変えた他は同様にして
作った二酸化マンガンを用いた以外は同じコイン形リチ
ウム2次電池を作製し、これらを上記同様に充放電させ
た。
In the above embodiment, the same coin-type lithium secondary battery was used except that manganese dioxide was similarly prepared except that the amount of water added to the mixed powder was changed in the range of 1 to 9 ml. They were prepared and charged and discharged in the same manner as described above.

【0030】これらの電池の第50サイクル目における放
電容量比{(第50サイクル目の放電容量 mAH/各電池の第
1サイクル目の放電容量 mAH)× 100(%)}から、図
3(A) のような結果を得た。
From the discharge capacity ratio of these batteries in the 50th cycle {{(discharge capacity mAH in the 50th cycle / discharge capacity mAH in the first cycle of each battery) × 100 (%)}, FIG. ) Was obtained.

【0031】更に、上記実施例で、電解二酸化マンガン
180gに混合する水酸化リチウム(LiOH・H2 O)
の量を0〜80gの間で適宜変えた混合粉末をそれぞれ作
り、またこれら混合粉体30mlに純水を2ml添加した他は
同様にしてそれぞれ作った二酸化マンガンを用いた以外
は同様なコイン形リチウム2次電池を作製し、これらを
上記同様に充放電させた。
Further, in the above embodiment, electrolytic manganese dioxide was used.
Lithium hydroxide (LiOH.H 2 O) mixed with 180g
The same coin shape was prepared except that manganese dioxide was prepared in the same manner except that manganese dioxide was prepared in the same manner except that 30 ml of these mixed powders and 2 ml of pure water were added. Lithium secondary batteries were prepared and charged and discharged in the same manner as described above.

【0032】これらの電池の第1,並びに2サイクル目
における放電容量比{(放電容量 mAH/各電池の第1サイ
クル目の放電容量)× 100(%)}は、図3(B) のよう
であった。
The discharge capacity ratio of these batteries in the first and second cycles {(discharge capacity mAH / discharge capacity in the first cycle of each battery) × 100 (%)} is as shown in FIG. 3 (B). Met.

【0033】また、上記実施例で、混合粉体30mlに純水
を3ml添加し、また密閉状態での保存温度を40〜90℃の
範囲で適宜変えた他は同様にして作った二酸化マンガン
を用いた以外は同様なコイン形リチウム2次電池を作製
し、これらを上記同様に充放電させた。
In the above example, manganese dioxide was prepared in the same manner except that 3 ml of pure water was added to 30 ml of the mixed powder , and the storage temperature in the closed state was appropriately changed in the range of 40 to 90 ° C. A coin-type lithium secondary battery was prepared in the same manner except that the battery was used, and charged and discharged in the same manner as above.

【0034】これらの電池の第10サイクル目における放
電容量比{(第10サイクル目の放電容量 mAH/保存温度60
℃の二酸化マンガンを用いた電池の第1サイクル目の放
電容量)× 100(%)}から、図3(C) のような結果を
得た。
The discharge capacity ratio of these batteries in the 10th cycle {(discharge capacity in the 10th cycle mAH / storage temperature 60
3 (C) was obtained from the discharge capacity in the first cycle of the battery using manganese dioxide at 100 ° C.) × 100 (%).

【0035】尚、保存温度40℃、50℃の二酸化マンガ
ンは 350℃での熱処理後に二酸化マンガンの表面に白い
膜が生成していた。
In the case of manganese dioxide at a storage temperature of 40 ° C. and 50 ° C., a white film was formed on the surface of the manganese dioxide after the heat treatment at 350 ° C.

【0036】上記実施例で、熱処理温度を 150〜 500℃
の範囲でそれぞれ変えた以外は同様にして作った二酸化
マンガンを用いた他は同様にしてコイン形リチウム2次
電池を作製し、これらを上記同様に充放電させた。
In the above embodiment, the heat treatment temperature was set to 150 to 500 ° C.
, A coin-shaped lithium secondary battery was produced in the same manner except that manganese dioxide produced in the same manner was used, except that these were charged and discharged in the same manner as described above.

【0037】これらの電池の第50サイクル目における放
電容量比{(第50サイクル目の放電容量 mAH/各電池の第
1サイクル目の放電容量)× 100(%)}から、図3
(D) のような結果を得た。
From the discharge capacity ratio of these batteries in the 50th cycle {(discharge capacity in the 50th cycle mAH / discharge capacity in the first cycle of each battery) × 100 (%)}, FIG.
(D) was obtained.

【0038】この結果より、熱処理の温度は 200〜 430
の範囲が好ましいことが判る。これは 430℃を越える
LiMn2 4 が生成して容量が低下し、また 200℃
未満では水分が十分に取り除けないためと考えられる。
From these results, it was found that the heat treatment temperature was 200 to 430.
It turns out that the range of ° C is preferable. This exceeds 430 ° C
And LiMn 2 O 4 are generated to reduce the capacity,
Moisture in less than is believed to be due to not except to take in enough.

【0039】[0039]

【発明の効果】以上の通り、この発明によれば、充放電
容量が大きくて、サイクル特性が良好な、非水電解液二
次電池を提供することができる。
As described above, according to the present invention, a non-aqueous electrolyte secondary battery having a large charge / discharge capacity and good cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電池の断面図である。FIG. 1 is a sectional view of a battery according to an embodiment of the present invention.

【図2】実施例の電池と比較例の電池における放電容量
比のサイクル変化を示したグラフである。
FIG. 2 is a graph showing a cycle change of a discharge capacity ratio in a battery of an example and a battery of a comparative example.

【図3】(A) は混合粉末への水分添加量に対する電池の
放電容量比の変化を示したグラフ、(B) は混合粉末にお
ける水酸化リチウム量に対する電池の放電容量比の変化
を示したグラフ、(C) は密閉状態での保存温度に対する
電池の放電容量比の変化を示したグラフ、(D) は熱処理
温度に対する電池の放電容量比の変化を示したグラフで
ある。
FIG. 3 (A) is a graph showing the change in the discharge capacity ratio of the battery with respect to the amount of water added to the mixed powder, and (B) shows the change in the discharge capacity ratio of the battery with respect to the amount of lithium hydroxide in the mixed powder. In the graph, (C) is a graph showing the change in the discharge capacity ratio of the battery with respect to the storage temperature in the sealed state, and (D) is a graph showing the change in the discharge capacity ratio of the battery with the heat treatment temperature.

【符号の説明】[Explanation of symbols]

1 ステンレスネット 2 電池缶 3 正極合剤 4 負極 5 セパレータ 6 絶縁ガスケット 7 端子板 DESCRIPTION OF SYMBOLS 1 Stainless steel net 2 Battery can 3 Positive electrode mixture 4 Negative electrode 5 Separator 6 Insulating gasket 7 Terminal plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平2−139860(JP,A) 特開 平4−115459(JP,A) 特開 平3−219556(JP,A) 特開 平3−127453(JP,A) 特開 平2−183963(JP,A) 特開 平2−170353(JP,A) 特開 平2−139862(JP,A) 特開 平1−294359(JP,A) 特開 平1−234331(JP,A) 特開 昭63−114064(JP,A) 特開 昭62−160657(JP,A) 特開 昭61−16473(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/50 H01M 4/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hidenori Nakura 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-2-139860 (JP, A) JP Japanese Unexamined Patent Publication No. Hei 4-115459 (JP, A) Japanese Unexamined Patent Publication No. Hei 3-219556 (JP, A) Japanese Unexamined Patent Publication No. Hei 3-127453 (JP, A) Japanese Unexamined Patent Publication No. Hei 2-183396 (JP, A) Japanese Unexamined Patent Publication No. Hei 2-170353 (JP, A) , A) JP-A-2-139862 (JP, A) JP-A-1-294359 (JP, A) JP-A-1-234331 (JP, A) JP-A-63-114064 (JP, A) 62-160657 (JP, A) JP-A-61-16473 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/50 H01M 4/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムを活物質とする負極と、二酸化マ
ンガンを活物質とする正極とを備えてなり、 前記二酸化マンガンが、二酸化マンガン粉末とリチウム
塩粉末との混合粉体に前記混合粉体の空孔体積の 100%
以下の水分を加え、密閉状態にて60〜90℃で保存し、次
いで 200〜 430℃で熱処理して得られたものであること
を特徴とする非水電解液二次電池。
1. A negative electrode comprising lithium as an active material and a positive electrode comprising manganese dioxide as an active material, wherein the manganese dioxide is a mixed powder of a manganese dioxide powder and a lithium salt powder. 100% of the pore volume of
A non-aqueous electrolyte secondary battery obtained by adding the following water, storing in a sealed state at 60 to 90 ° C. , and then heat-treating at 200 to 430 ° C.
JP2401075A 1990-12-10 1990-12-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2979641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2401075A JP2979641B2 (en) 1990-12-10 1990-12-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401075A JP2979641B2 (en) 1990-12-10 1990-12-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04215249A JPH04215249A (en) 1992-08-06
JP2979641B2 true JP2979641B2 (en) 1999-11-15

Family

ID=18510935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401075A Expired - Fee Related JP2979641B2 (en) 1990-12-10 1990-12-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2979641B2 (en)

Also Published As

Publication number Publication date
JPH04215249A (en) 1992-08-06

Similar Documents

Publication Publication Date Title
KR100582614B1 (en) Secondary Cell
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP3456181B2 (en) Lithium manganese composite oxide and non-aqueous electrolyte secondary battery using the same
JP2000182618A (en) Positive electrode active material for lithium secondary battery
JPH1027626A (en) Lithium secondary battery
US6514638B2 (en) Non-aqueous electrolyte secondary battery including positive and negative electrodes
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
JPH07335261A (en) Lithium secondary battery
JP4501181B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2001023617A (en) Manufacture of lithium secondary battery
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP4370638B2 (en) Non-aqueous electrolyte battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2979641B2 (en) Non-aqueous electrolyte secondary battery
JPH10302766A (en) Lithium ion secondary battery
JP3132504B2 (en) Non-aqueous electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP3670895B2 (en) Lithium secondary battery
JPH06111820A (en) Nonaqueous battery
JPS6151387B2 (en)
JPH1145742A (en) Nonaqueous electrolytic secondary battery
JPH0367463A (en) Nonaqueous electrolyte secondary battery
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it
JPH0495362A (en) Nonaqueous electrolytic battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees