JP4501181B2 - Non-aqueous electrolyte battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte battery and manufacturing method thereof Download PDF

Info

Publication number
JP4501181B2
JP4501181B2 JP24654399A JP24654399A JP4501181B2 JP 4501181 B2 JP4501181 B2 JP 4501181B2 JP 24654399 A JP24654399 A JP 24654399A JP 24654399 A JP24654399 A JP 24654399A JP 4501181 B2 JP4501181 B2 JP 4501181B2
Authority
JP
Japan
Prior art keywords
positive electrode
magnesium
active material
electrode active
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24654399A
Other languages
Japanese (ja)
Other versions
JP2001076721A (en
Inventor
尚志 梶浦
潔 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24654399A priority Critical patent/JP4501181B2/en
Publication of JP2001076721A publication Critical patent/JP2001076721A/en
Application granted granted Critical
Publication of JP4501181B2 publication Critical patent/JP4501181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極活物質を含む負極と、正極活物質を含む正極と、非水電解質とを備える非水電解質電池に関するものであり、特に、マグネシウムイオンを電荷担体とする非水電解質電池に関するものである。
【0002】
【従来の技術】
非水電解質電池は、重負荷放電に耐え、充電による繰り返し使用が可能なことからポータブル用の電源としてカメラ一体型ビデオテープレコーダ、携帯電話、ラップトップコンピュータ等の様々な電子機器に用いられている。これら電子機器の小型化・軽量化が次々と実現されているのに伴い、ポータブル用の電源としての非水電解質電池に対しても、更なる小型化・軽量化・高エネルギー密度化の要求が高まってきている。
【0003】
これらの要求に応える非水電解質二次電池の中でも、とりわけリチウムイオン二次電池,ニッケル水素二次電池は、鉛電池,ニッケルカドミウム電池等と比較して高いエネルギー密度が得られるために広く用いられ、市場も著しく成長している。一方で、更なるエネルギー密度の向上を目指して、2価の電荷を持つマグネシウムイオンやカルシウムイオンを二次電池の電荷担体として用いる試みがなされている。
【0004】
カルシウムイオン二次電池の例として、負極材料に黒鉛,コークス等の炭素材料を用い、正極材料にCaCo24,Ca3Co49,Ca2Co25,Ca3Co26,CaFeO3,CaFeO2等のカルシウム含有金属酸化物を用いる非水電解質二次電池が、特開平6−163080号公報等に既に開示されている。また、カルシウムイオン正極の単位重量当たりの容量の向上を図るため、カルシウムの酸化物ではなく、カルシウムのケイ化物やゲルマニウム化物を正極材料とする非水電解質電池が、特開平8−321305号公報に開示されている。
【0005】
更に、マグネシウムイオン二次電池に関して、正極にTiS2,ZrS2,RuO2,Co34,V25等を用い、非水電解質としてアセトニトリルにMg(ClO42を溶解した電解液を用いた系で、約170mAh/gの電池容量を得たという報告がP.Novakらによってなされ、J.Electrochem.Soc.,Vol.140 No.1,Jan(1993)140に記載されている。更に、MoO3へMg2+イオンを吸蔵させたものを正極活物質として用いた例も、M.E.Spahr;J.Power Sources 54 (1995)346に報告されている。
【0006】
上述のように、これらマグネシウムイオン二次電池は、リチウムイオン二次電池を凌ぐ負荷特性を持つ電池として期待されている。
【0007】
【発明が解決しようとする課題】
ところが、正極活物質として、TiS2,ZrS2,RuO2,Co34,V25等を用いた非水電解質電池、或いは、MoO3へMg2+イオンを吸蔵させたものを用いた非水電解質電池では、正極活物質の結晶内におけるマグネシウムイオンパスが一次元的であるために、正極活物質内でのマグネシウムイオンの拡散が遅くなり、その結果として、負荷特性及びサイクル特性等が悪化するという問題点を生じる。
【0008】
また、正極活物質として、従来のTiS2,ZrS2,RuO2,Co34,V25,MoO3等以外に、リチウムイオン二次電池の正極活物質として用いられるLixMO2(ここで、MはNi,Coの何れか又は両方を含有する。)からリチウムを放出したものをマグネシウムイオン電池の正極として用いることが可能である。この方法で作製される正極は、マグネシウムイオンパスが二次元的であることから負荷特性及びサイクル特性が向上するが、この方法では、リチウムイオン二次電池に用いる正極を作製する工程と、更に、その作製した正極からリチウムイオンを放出する工程とが必要となるため製造工程が複雑となるという問題や、コストが高くなるという問題点を生じる。
【0009】
本発明は、このような従来の実情に鑑みて提案されたものであり、マグネシウムイオンを電荷担体として用い、マグネシウムイオンの拡散を円滑にし、負荷特性及びサイクル特性の向上を実現する非水電解質電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る非水電解質電池は、マグネシウム金属、マグネシウム合金又はマグネシウムを吸蔵放出可能な材料を含有する負極活物質を含む負極と、一般式MgMnで表されるマグネシウムマンガン複合酸化物を含有する正極活物質を含む正極と、非水電解質とを備え、上記正極活物質は、塩化マグネシウム及び塩化マンガンの混合液から得られるマグネシウム及びマンガンの水酸化物を濾液が中性になるまで洗浄した後、700〜900℃で焼成して得られるものである。また、非水電解質は、Mg(ClOで表される化合物を含有するものである。
また、本発明に係る非水電解質電池の製造方法は、マグネシウム金属、マグネシウム合金又はマグネシウムを吸蔵放出可能な材料を含有する負極活物質を含む負極と、一般式MgMnで表されるマグネシウムマンガン複合酸化物を含有する正極活物質を含む正極と、非水電解質とを備える非水電解質電池の製造方法であって、塩化マグネシウム及び塩化マンガンの混合液から得られるマグネシウム及びマンガンの水酸化物を濾液が中性になるまで洗浄した後、700〜900℃で焼成して正極活物質を得る工程を有するものである。
【0011】
以上のように構成された本発明に係るマグネシウムイオンを電荷担体とする非水電解質電池によれば、リチウムイオン電池の正極からリチウムを放出したものを正極として用いるのではなく、予めマグネシウムを含有する正極を用いることによって、正極を作製する工程が簡略化されるために、コストの削減が可能となる。また、上述の非水電解質電池は、正極内でのマグネシウムイオンのイオン伝導が二次元的に起こるため、マグネシウムイオンが効率よく拡散され、負荷特性及びサイクル特性等の向上が実現される。
【0012】
【発明の実施の形態】
以下、本発明に係る非水電解質電池の実施の形態について、図面を参考にして詳細に説明する。本発明を適用した非水電解質電池1は、図1にその具体的な構成を示すように、負極2と、負極2を収納する負極缶3と、正極4と、正極4を収納する正極缶5と、正極4と負極2との間に配されたセパレータ6と、ガスケット7とを備え、負極缶3及び正極缶5内に非水電解液が充填されてなるものである。
【0013】
負極2は、負極活物質となる金属マグネシウムを圧延した金属マグネシウム箔からなる。上述したもの以外にも、例えば、マグネシウム化合物の粉末と結着剤等を混合し、更にホルムアミドやN−メチルピロリドン等の有機溶媒を添加してペースト状の負極用合剤を調製して、これをアルミニウム箔等の負極集電体上に塗布し、乾燥したものを負極2として用いることもできる。上記結着剤には、従来公知の結着剤を用いることができる。
【0014】
また、負極活物質は、マグネシウムの吸蔵放出を可能とする材料であれば限定されることなく使用可能であり、例えば、金属マグネシウム単体、金属マグネシウムとアルカリ金属との合金及びマグネシウムが吸蔵された導電性高分子や層状化合物(炭素材料や金属酸化物等)を使用することができる。
【0015】
負極缶3は、負極2を収納するものであり、また、非水電解質電池1の外部負極を兼ねている。
【0016】
正極4は、正極活物質として一般式MgMn24で表されるマグネシウムマンガン複合酸化物を含有する。このマグネシウムマンガン複合酸化物は、溶液法若しくは固相法により調製することができる。
【0017】
溶液法の場合、塩化マグネシウム溶液と塩化マンガン溶液とを所定の割合で混合し、更に、この混合液にアンモニア水及び過酸化水素水を添加して常温下で一週間程度静置し、マグネシウム及びマンガンの水酸化物を沈澱させる。これらの沈殿物を濾別した後、濾液が中性になるまで十分に洗浄する。その後、この濾集した沈殿物を乾燥させ、700℃〜900℃にて3〜5時間焼成する。以上の工程を経ることによってMgMn24を得ることができる。
【0018】
固相法の場合、マンガン酸化物とマグネシウム化合物とを所定の割合で混合し、650℃〜1000℃の範囲で加熱処理を行って得られた生成物を温水で十分に洗浄することによってMgMn24を得ることができる。
【0019】
正極4は、上述の方法により得たMgMn24の粉末と、導電剤と、結着剤とを混練して調製された正極用合剤を圧縮成形することによりペレット状に加工して得られる。この他に、上記MgMn24の粉末と、導電剤と、結着剤とを混合し、更にホルムアミドやN−メチルピロリドン等の有機溶媒を添加してペースト状の正極用合剤を調製して、これをアルミニウム箔等の正極集電体上に塗布し、乾燥したものを正極4として用いることができる。
【0020】
上記導電剤には、例えばカーボンブラックやグラファイト等の炭素質材料を用いることができる。また、結着剤には、例えばポリフッ化ビニリデン等を用いることができる。
【0021】
正極缶5は、正極4を収納するものであり、また、非水電解質電池1の外部正極となる。
【0022】
セパレータ6は、正極4と、負極2とを離間させるものであり、この種の非水電解質電池のセパレータとして通常用いられる従来公知の材料を使用できる。セパレータ6には、例えば、ポリプロピレンなどの高分子フィルムを用いることができる。また、リチウムイオン伝導度とエネルギー密度との関係から、セパレータの厚みはできるだけ薄いことが必要とされる。具体的には、セパレータの厚みは、例えば50μm以下であることが好ましい。
【0023】
ガスケット7は、負極缶3に組み込まれ一体化されている。このガスケット7は、負極缶3及び正極缶5内に充填された非水電解液の漏出を防止するためのものである。
【0024】
非水電解液は、非水溶媒中に電解質を溶解されてなる。非水電解液の非水溶媒には、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチルラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等を使用することができる。特に、電圧安定性の点から、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような非水溶媒は、1種類を単独で用いても良いし、2種類以上を混合して用いても良い。
【0025】
また、非水電解液の電解質は、当該電解質自体が上記非水溶媒に可溶でイオン伝導性を示すものであれば良く、特に限定されるものではない。例えば、Mg(SO2CH32,Mg(BF42,Mg(CF3SO32,Mg(PF62等のマグネシウム塩を用いることができる。とりわけ、Mg(ClO42を用いることが好ましい。
【0026】
なお、上述の非水電解質電池において、電解質は、液状であることに限定されることなく、固体電解質であっても、溶媒によって膨潤しているゲル電解質であっても良い。また、電池缶、セパレータ、ガスケット等の非水電解質電池の構成要素及び電池の形状は、特に限定されない。電池の形状は、例えば、フィルム型,巻回型,積層型,円筒型,角型等の種々の形状で用いることができる。更に、上述の非水電解質電池は、一次電池であっても、二次電池であっても良い。
【0027】
【実施例】
発明の実施例及び比較例について詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下のようにして、マグネシウムイオンを電荷担体とする非水電解質電池1を作製し、その電池特性を評価した。
【0028】
<実施例1>
正極活物質として用いるMgMn24を、以下に示す溶液法によって作製した。まず、濃度が2mol/lの塩化マグネシウム溶液を500mlと、濃度が1mol/lの塩化マンガン溶液を500mlとの混合溶液中に、濃度が25%のアンモニア水を1000ml添加して十分に撹拌し、均一溶液とした。更に、この均一溶液中に、濃度が30%である過酸化水素水を260ml徐々に添加して水酸化物の沈澱を得た。この沈澱物を5日間静置した後、濾別し、濾液が中性になるまで蒸留水にて洗浄した。その後、この濾集した沈殿物を120℃に保持した恒温槽中で3時間乾燥させ、続いて800℃にて3時間焼成した。
【0029】
以上のようにして得られた試料のX線回折測定を行ったところ、図2に示す結果を得た。これは、JCPDSカードのカード番号23−392に示されるMgMn24のX線回折測定チャートとほぼ一致するため、上述の方法によって作製された試料は、MgMn24であると考えた。以上のようにして、スピネル型のMgMn24を得た。
【0030】
次に、上述した方法で得られたMgMn24の粉末と、黒鉛の粉末と、ポリフッ化ビニリデンとの混合量が、重量比で85:10:5となるように秤取し、これらをN−メチル−2−ピロリドン中で分散させて混練し、正極用合剤を調製した。この正極用合剤を60mgと、正極集電体であるアルミニウムメッシュとを圧縮成形することによって、直径15mmのペレット状の正極4を作製した。
【0031】
一方、負極2には、正極4と略同型になるように金属マグネシウムを圧延した円形のマグネシウム箔板を用いた。
【0032】
次に、非水電解質電池1の電解質として、エチレンカーボネートを50体積部と、ジメチルカーボネート50体積部とを混合した溶媒に、Mg(ClO42を1mol/lの濃度で溶解させることにより非水電解液を調製した。
【0033】
以上のようにして得られた正極4を正極缶5に収納し、負極2を負極缶3に収納し、負極2と正極4との間に多孔性ポリプロピレン膜のセパレータ6を配した。負極缶3及び正極缶5内に非水電解液を注入し、負極缶3と正極缶5とをかしめて固定することにより2025型のコイン型電池を作製した。
【0034】
参照例>正極活物質として用いるMgMnを、以下に示す固相法により作製したこと以外は、実施例1と同様に正極を作製し、同様の方法にてコイン型電池を作製した。まず、塩基性炭酸マグネシウムと二酸化マンガンとを、Mg:Mn=1:2の割合で混合し、800℃下で5時間の熱処理を行った。その後、この混合体を冷却し、再び混合した後、再度800℃下にて5時間の熱処理を行った。この作業を3回繰り返した後、蒸留水で洗浄して得られた試料のX線回折測定を行ったところ、図示しないが、実施例1の図2に示す結果と類似のX線回折結果を得た。従って、上述の方法によって作製された試料は、MgMn2O4である考えられる。以上のようにして、スピネル型のMgMnを得た。
【0035】
<比較例1>
正極に用いる正極活物質としてV25を用いたこと以外は、実施例1と同様に正極を作製し、同様の方法にてコイン型電池を作製した。
【0036】
<比較例2>
正極に用いる正極活物質としてMoO3を用いたこと以外は、実施例1と同様に正極を作製し、同様の方法にてコイン型電池を作製した。
【0037】
電池の評価
これらの非水電解質電池を、以下に示す試験方法によって評価した結果を図3に示した。上述のように作製した非水電解質電池を、23℃下にて100mA/cm2で定電流充電し、電池電圧が3.0V(対Mg2+/Mg)に達した後、3.0Vで定電流充電を行い、4時間経過した時点で満充電とした。続いて、0.0V(対Mg2+/Mg)になるまで定電流放電を行った。以上の工程を1サイクルとし、これを10サイクル繰り返し行って、それぞれのサイクル毎に放電容量を測定した。サイクル特性の評価には、1サイクル目の放電容量を定格容量C(1)とし、Nサイクル目の放電容量をC(N)としたときの容量維持率S(=C(N)/C(1))を用いた。
【0038】
図2から明らかなように、V25及びMoO3を正極活物質として用いた比較例1及び比較例2と比べて、スピネル型のMgMn24を正極活物質として用いた実施例1及び実施例2の非水電解質電池の方がサイクル特性に優れることが判る。また、正極活物質は、溶液法によって作製されるスピネル型のMgMn24が固相法によって作製されるものよりもサイクル特性が優れていることが判った。
【0039】
【発明の効果】
以上詳細に説明したように、本発明に係るマグネシウムイオンを電荷担体とする非水電解質電池によれば、正極内でのマグネシウムイオンのイオン伝導が二次元的に起こるため、マグネシウムイオンが効率よく拡散され、サイクル特性及び負荷特性等の向上が実現される。更に、正極を作製する工程を簡略化することによって、マグネシウムイオン電池を作製する際のコストを削減することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る非水電解質電池の一構成例を示す断面図である。
【図2】MgMn24のX線回折結果を示すX線回折図である。
【図3】実施例で作製した電池のサイクル数と容量維持率との関係を示すサイクル特性図である。
【符号の説明】
1 非水電解質電池、2 負極、3 負極缶、4 正極、5 正極缶、6 セパレータ、7 ガスケット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery including a negative electrode including a negative electrode active material, a positive electrode including a positive electrode active material, and a nonaqueous electrolyte, and particularly relates to a nonaqueous electrolyte battery using magnesium ions as a charge carrier. It is.
[0002]
[Prior art]
Non-aqueous electrolyte batteries can withstand heavy load discharge and can be used repeatedly by charging, so they are used in various electronic devices such as camera-integrated video tape recorders, mobile phones, and laptop computers as portable power sources. . As these electronic devices have been reduced in size and weight one after another, non-aqueous electrolyte batteries as portable power sources have been required to be further reduced in size, weight, and energy density. It is increasing.
[0003]
Among nonaqueous electrolyte secondary batteries that meet these requirements, lithium ion secondary batteries and nickel metal hydride secondary batteries are widely used because of their high energy density compared to lead batteries and nickel cadmium batteries. The market is also growing significantly. On the other hand, attempts have been made to use magnesium ions and calcium ions having a divalent charge as charge carriers for secondary batteries with the aim of further improving energy density.
[0004]
As an example of a calcium ion secondary battery, a carbon material such as graphite and coke is used as a negative electrode material, and CaCo 2 O 4 , Ca 3 Co 4 O 9 , Ca 2 Co 2 O 5 , and Ca 3 Co 2 O 6 are used as a positive electrode material. Non-aqueous electrolyte secondary batteries using calcium-containing metal oxides such as CaFeO 3 and CaFeO 2 have already been disclosed in JP-A-6-163080. Further, in order to improve the capacity per unit weight of the calcium ion positive electrode, a non-aqueous electrolyte battery using, as a positive electrode material, calcium silicide or germanium instead of calcium oxide is disclosed in JP-A-8-321305. It is disclosed.
[0005]
Further, regarding a magnesium ion secondary battery, an electrolytic solution in which TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2 O 5 or the like is used as a positive electrode and Mg (ClO 4 ) 2 is dissolved in acetonitrile as a nonaqueous electrolyte. A report that a battery capacity of about 170 mAh / g was obtained in the system using Made by Novak et al. Electrochem. Soc. , Vol. 140 No. 1, Jan (1993) 140. Further, an example in which MoO 3 occluded Mg 2+ ions is used as the positive electrode active material is also described in M.S. E. Spahr; Power Sources 54 (1995) 346.
[0006]
As described above, these magnesium ion secondary batteries are expected as batteries having load characteristics surpassing those of lithium ion secondary batteries.
[0007]
[Problems to be solved by the invention]
However, as the positive electrode active material, a nonaqueous electrolyte battery using TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2 O 5 , or the like, or MoO 3 occluded with Mg 2+ ions is used. In the conventional non-aqueous electrolyte battery, since the magnesium ion path in the positive electrode active material crystal is one-dimensional, the diffusion of magnesium ions in the positive electrode active material is slowed. As a result, load characteristics, cycle characteristics, etc. Causes the problem of worsening.
[0008]
In addition to conventional TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2 O 5 , MoO 3 and the like as the positive electrode active material, Li x MO 2 used as the positive electrode active material of the lithium ion secondary battery. (Here, M contains one or both of Ni and Co.) The lithium released from lithium can be used as the positive electrode of the magnesium ion battery. The positive electrode produced by this method has improved load characteristics and cycle characteristics because the magnesium ion path is two-dimensional. In this method, the step of producing a positive electrode used for a lithium ion secondary battery, and Since a process for releasing lithium ions from the produced positive electrode is required, there arises a problem that the manufacturing process becomes complicated and a problem that the cost increases.
[0009]
The present invention has been proposed in view of such conventional circumstances, and uses non-aqueous electrolyte batteries that use magnesium ions as charge carriers, facilitate the diffusion of magnesium ions, and improve load characteristics and cycle characteristics. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a nonaqueous electrolyte battery according to the present invention includes a negative electrode including a negative electrode active material containing magnesium metal, a magnesium alloy, or a material capable of occluding and releasing magnesium, and a general formula MgMn 2 O 4 . A positive electrode containing a positive electrode active material containing a magnesium-manganese composite oxide and a non-aqueous electrolyte, and the positive electrode active material is a magnesium and manganese hydroxide obtained from a mixed solution of magnesium chloride and manganese chloride Is washed until the filtrate becomes neutral and then calcined at 700 to 900 ° C. The nonaqueous electrolyte contains a compound represented by Mg (ClO 4 ) 2 .
The nonaqueous electrolyte battery manufacturing method according to the present invention includes a negative electrode including a negative electrode active material containing magnesium metal, a magnesium alloy or a material capable of occluding and releasing magnesium, and a magnesium represented by the general formula MgMn 2 O 4. A method for producing a non-aqueous electrolyte battery comprising a positive electrode containing a positive electrode active material containing a manganese composite oxide and a non-aqueous electrolyte, the magnesium and manganese hydroxides obtained from a mixed solution of magnesium chloride and manganese chloride Is washed until the filtrate becomes neutral, and then fired at 700 to 900 ° C. to obtain a positive electrode active material.
[0011]
According to the nonaqueous electrolyte battery using magnesium ions as a charge carrier according to the present invention configured as described above, the lithium ion released from the positive electrode is not used as the positive electrode, but contains magnesium in advance. By using the positive electrode, the process for manufacturing the positive electrode is simplified, so that the cost can be reduced. In the above non-aqueous electrolyte battery, magnesium ions are ion-conducted two-dimensionally in the positive electrode, so that magnesium ions are efficiently diffused, and load characteristics and cycle characteristics are improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a nonaqueous electrolyte battery according to the present invention will be described in detail with reference to the drawings. A nonaqueous electrolyte battery 1 to which the present invention is applied includes a negative electrode 2, a negative electrode can 3 that houses the negative electrode 2, a positive electrode 4, and a positive electrode can that houses the positive electrode 4, as shown in FIG. 5, a separator 6 disposed between the positive electrode 4 and the negative electrode 2, and a gasket 7. The negative electrode can 3 and the positive electrode can 5 are filled with a nonaqueous electrolytic solution.
[0013]
The negative electrode 2 is made of a metal magnesium foil obtained by rolling metal magnesium serving as a negative electrode active material. In addition to the above, for example, a magnesium compound powder and a binder are mixed, and an organic solvent such as formamide or N-methylpyrrolidone is added to prepare a paste-like negative electrode mixture. Can be applied to a negative electrode current collector such as an aluminum foil and dried to be used as the negative electrode 2. A conventionally well-known binder can be used for the said binder.
[0014]
The negative electrode active material can be used without limitation as long as it is a material that can occlude and release magnesium. For example, metal magnesium alone, an alloy of metal magnesium and an alkali metal, and a conductive material in which magnesium is occluded. Polymer or layered compound (carbon material, metal oxide, etc.) can be used.
[0015]
The negative electrode can 3 accommodates the negative electrode 2 and also serves as the external negative electrode of the nonaqueous electrolyte battery 1.
[0016]
The positive electrode 4 contains a magnesium manganese composite oxide represented by the general formula MgMn 2 O 4 as a positive electrode active material. This magnesium manganese complex oxide can be prepared by a solution method or a solid phase method.
[0017]
In the case of the solution method, a magnesium chloride solution and a manganese chloride solution are mixed at a predetermined ratio, and further, ammonia water and hydrogen peroxide solution are added to this mixed solution and left at room temperature for about one week. Precipitate manganese hydroxide. These precipitates are filtered off and washed thoroughly until the filtrate is neutral. Thereafter, the collected precipitate is dried and fired at 700 to 900 ° C. for 3 to 5 hours. MgMn 2 O 4 can be obtained through the above steps.
[0018]
In the case of the solid phase method, manganese oxide and a magnesium compound are mixed at a predetermined ratio, and the product obtained by performing the heat treatment in the range of 650 ° C. to 1000 ° C. is sufficiently washed with warm water to make MgMn 2 O 4 can be obtained.
[0019]
The positive electrode 4 is obtained by processing into a pellet by compressing and molding a positive electrode mixture prepared by kneading the MgMn 2 O 4 powder obtained by the above method, a conductive agent, and a binder. It is done. In addition, the MgMn 2 O 4 powder, a conductive agent, and a binder are mixed, and an organic solvent such as formamide and N-methylpyrrolidone is added to prepare a paste-like positive electrode mixture. Then, this can be applied to a positive electrode current collector such as an aluminum foil and dried to be used as the positive electrode 4.
[0020]
As the conductive agent, for example, a carbonaceous material such as carbon black or graphite can be used. As the binder, for example, polyvinylidene fluoride can be used.
[0021]
The positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.
[0022]
The separator 6 separates the positive electrode 4 and the negative electrode 2, and a conventionally known material that is usually used as a separator for this type of nonaqueous electrolyte battery can be used. For the separator 6, for example, a polymer film such as polypropylene can be used. In addition, from the relationship between lithium ion conductivity and energy density, the separator needs to be as thin as possible. Specifically, the thickness of the separator is preferably 50 μm or less, for example.
[0023]
The gasket 7 is incorporated in and integrated with the negative electrode can 3. The gasket 7 is for preventing leakage of the non-aqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5.
[0024]
The nonaqueous electrolytic solution is obtained by dissolving an electrolyte in a nonaqueous solvent. Examples of the non-aqueous solvent for the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyllactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 2-methyl. Tetrahydrofuran, 3-methyl-1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used. In particular, from the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as propylene carbonate and vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and dipropyl carbonate. Moreover, such a non-aqueous solvent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
[0025]
The electrolyte of the non-aqueous electrolyte solution is not particularly limited as long as the electrolyte itself is soluble in the non-aqueous solvent and exhibits ion conductivity. For example, magnesium salts such as Mg (SO 2 CH 3 ) 2 , Mg (BF 4 ) 2 , Mg (CF 3 SO 3 ) 2 , Mg (PF 6 ) 2 can be used. In particular, Mg (ClO 4 ) 2 is preferably used.
[0026]
In the non-aqueous electrolyte battery described above, the electrolyte is not limited to being liquid, and may be a solid electrolyte or a gel electrolyte swollen with a solvent. Moreover, the components of the nonaqueous electrolyte battery such as a battery can, a separator, and a gasket and the shape of the battery are not particularly limited. The shape of the battery can be used in various shapes such as a film type, a wound type, a laminated type, a cylindrical type, and a rectangular type. Furthermore, the nonaqueous electrolyte battery described above may be a primary battery or a secondary battery.
[0027]
【Example】
Examples of the invention and comparative examples will be described in detail, but the present invention is not limited to these examples. A nonaqueous electrolyte battery 1 using magnesium ions as a charge carrier was produced as follows, and the battery characteristics were evaluated.
[0028]
<Example 1>
MgMn 2 O 4 used as the positive electrode active material was produced by the following solution method. First, in a mixed solution of 500 ml of a magnesium chloride solution having a concentration of 2 mol / l and 500 ml of a manganese chloride solution having a concentration of 1 mol / l, 1000 ml of 25% ammonia water was added and sufficiently stirred. A homogeneous solution was obtained. Further, 260 ml of hydrogen peroxide having a concentration of 30% was gradually added to the homogeneous solution to obtain a hydroxide precipitate. The precipitate was allowed to stand for 5 days, then filtered off, and washed with distilled water until the filtrate became neutral. Thereafter, the collected precipitate was dried in a constant temperature bath maintained at 120 ° C. for 3 hours, and then calcined at 800 ° C. for 3 hours.
[0029]
When the X-ray diffraction measurement of the sample obtained as described above was performed, the result shown in FIG. 2 was obtained. This is almost the same as the X-ray diffraction measurement chart of MgMn 2 O 4 shown in the card number 23-392 of the JCPDS card, so the sample produced by the above method was considered to be MgMn 2 O 4 . As described above, spinel-type MgMn 2 O 4 was obtained.
[0030]
Next, the MgMn 2 O 4 powder, the graphite powder, and the polyvinylidene fluoride obtained by the above-described method were weighed so that the weight ratio was 85: 10: 5. It was dispersed in N-methyl-2-pyrrolidone and kneaded to prepare a positive electrode mixture. By compressing 60 mg of this positive electrode mixture and an aluminum mesh as a positive electrode current collector, a pellet-shaped positive electrode 4 having a diameter of 15 mm was produced.
[0031]
On the other hand, for the negative electrode 2, a circular magnesium foil plate obtained by rolling metal magnesium so as to be substantially the same type as the positive electrode 4 was used.
[0032]
Next, Mg (ClO 4 ) 2 is dissolved at a concentration of 1 mol / l in a solvent in which 50 parts by volume of ethylene carbonate and 50 parts by volume of dimethyl carbonate are mixed as the electrolyte of the nonaqueous electrolyte battery 1. A water electrolyte was prepared.
[0033]
The positive electrode 4 obtained as described above was accommodated in the positive electrode can 5, the negative electrode 2 was accommodated in the negative electrode can 3, and a porous polypropylene film separator 6 was disposed between the negative electrode 2 and the positive electrode 4. A non-aqueous electrolyte was poured into the negative electrode can 3 and the positive electrode can 5 and the negative electrode can 3 and the positive electrode can 5 were caulked and fixed to produce a 2025 type coin-type battery.
[0034]
< Reference Example > A positive electrode was produced in the same manner as in Example 1 except that MgMn 2 O 4 used as a positive electrode active material was produced by the solid phase method shown below, and a coin-type battery was produced in the same manner. . First, basic magnesium carbonate and manganese dioxide were mixed at a ratio of Mg: Mn = 1: 2, and heat treatment was performed at 800 ° C. for 5 hours. Thereafter, the mixture was cooled and mixed again, and then heat-treated again at 800 ° C. for 5 hours. After repeating this operation three times, an X-ray diffraction measurement was performed on a sample obtained by washing with distilled water. As a result, although not shown, an X-ray diffraction result similar to the result shown in FIG. Obtained. Therefore, the sample prepared by the above method is considered to be MgMn2O4. As described above, spinel-type MgMn 2 O 4 was obtained.
[0035]
<Comparative Example 1>
A positive electrode was produced in the same manner as in Example 1 except that V 2 O 5 was used as the positive electrode active material used for the positive electrode, and a coin-type battery was produced in the same manner.
[0036]
<Comparative example 2>
A positive electrode was produced in the same manner as in Example 1 except that MoO 3 was used as the positive electrode active material used for the positive electrode, and a coin-type battery was produced in the same manner.
[0037]
Evaluation of batteries The results of evaluating these nonaqueous electrolyte batteries by the following test method are shown in Fig. 3. The nonaqueous electrolyte battery produced as described above was charged at a constant current of 100 mA / cm 2 at 23 ° C., and after the battery voltage reached 3.0 V (vs. Mg 2+ / Mg), A constant current charge was performed, and the battery was fully charged when 4 hours had passed. Subsequently, constant current discharge was performed until the voltage became 0.0 V (vs. Mg 2+ / Mg). The above process was made into 1 cycle, this was repeated 10 cycles, and the discharge capacity was measured for each cycle. For the evaluation of the cycle characteristics, the capacity retention rate S (= C (N) / C () where the discharge capacity at the first cycle is the rated capacity C (1) and the discharge capacity at the Nth cycle is C (N). 1)) was used.
[0038]
As is clear from FIG. 2, compared to Comparative Example 1 and Comparative Example 2 using V 2 O 5 and MoO 3 as the positive electrode active material, Example 1 using spinel type MgMn 2 O 4 as the positive electrode active material. It can also be seen that the nonaqueous electrolyte battery of Example 2 is superior in cycle characteristics. In addition, it was found that the positive electrode active material has better cycle characteristics than those in which a spinel type MgMn 2 O 4 produced by a solution method is produced by a solid phase method.
[0039]
【The invention's effect】
As described above in detail, according to the non-aqueous electrolyte battery using magnesium ions as a charge carrier according to the present invention, magnesium ions are diffused efficiently because ion conduction of magnesium ions in the positive electrode occurs two-dimensionally. Thus, improvement in cycle characteristics and load characteristics is realized. Furthermore, by simplifying the process of manufacturing the positive electrode, it is possible to reduce the cost for manufacturing the magnesium ion battery.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration example of a nonaqueous electrolyte battery according to the present invention.
FIG. 2 is an X-ray diffraction diagram showing an X-ray diffraction result of MgMn 2 O 4 .
FIG. 3 is a cycle characteristic diagram showing the relationship between the number of cycles and the capacity retention rate of a battery manufactured in an example.
[Explanation of symbols]
1 Nonaqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4 positive electrode, 5 positive electrode can, 6 separator, 7 gasket

Claims (3)

マグネシウム金属、マグネシウム合金又はマグネシウムを吸蔵放出可能な材料を含有する負極活物質を含む負極と、
一般式MgMnで表されるマグネシウムマンガン複合酸化物を含有する正極活物質を含む正極と、
非水電解質とを備え、
上記正極活物質は、塩化マグネシウム及び塩化マンガンの混合液から得られるマグネシウム及びマンガンの水酸化物を濾液が中性になるまで洗浄した後、700〜900℃で焼成して得られる非水電解質電池。
A negative electrode including a negative electrode active material containing magnesium metal, a magnesium alloy or a material capable of occluding and releasing magnesium; and
A positive electrode including a positive electrode active material containing a magnesium manganese composite oxide represented by the general formula MgMn 2 O 4 ;
With a non-aqueous electrolyte,
The positive electrode active material is a non-aqueous electrolyte battery obtained by washing magnesium and manganese hydroxide obtained from a mixed solution of magnesium chloride and manganese chloride until the filtrate becomes neutral, and then firing at 700 to 900 ° C. .
上記非水電解質は、Mg(ClOで表される化合物を含有する請求項1記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 1, wherein the nonaqueous electrolyte contains a compound represented by Mg (ClO 4 ) 2 . マグネシウム金属、マグネシウム合金又はマグネシウムを吸蔵放出可能な材料を含有する負極活物質を含む負極と、一般式MgMnで表されるマグネシウムマンガン複合酸化物を含有する正極活物質を含む正極と、非水電解質とを備える非水電解質電池の製造方法であって、
塩化マグネシウム及び塩化マンガンの混合液から得られるマグネシウム及びマンガンの水酸化物を濾液が中性になるまで洗浄した後、700〜900℃で焼成して正極活物質を得る工程を有する非水電解質電池の製造方法。
A negative electrode including a negative electrode active material containing a magnesium metal, a magnesium alloy or a material capable of occluding and releasing magnesium, and a positive electrode including a positive electrode active material containing a magnesium manganese composite oxide represented by the general formula MgMn 2 O 4 ; A non-aqueous electrolyte battery manufacturing method comprising a non-aqueous electrolyte,
A nonaqueous electrolyte battery comprising a step of washing a magnesium and manganese hydroxide obtained from a mixed solution of magnesium chloride and manganese chloride until the filtrate becomes neutral, and then firing at 700 to 900 ° C. to obtain a positive electrode active material. Manufacturing method.
JP24654399A 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof Expired - Fee Related JP4501181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24654399A JP4501181B2 (en) 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24654399A JP4501181B2 (en) 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001076721A JP2001076721A (en) 2001-03-23
JP4501181B2 true JP4501181B2 (en) 2010-07-14

Family

ID=17149983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24654399A Expired - Fee Related JP4501181B2 (en) 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4501181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100344A (en) * 2000-09-22 2002-04-05 Sony Corp Positive electrode and battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067115B1 (en) * 2010-02-04 2011-09-22 삼성전기주식회사 Cathode active material having magnesium and magnesium secondary battery having same
EP2577780B1 (en) * 2010-05-25 2018-05-30 Pellion Technologies Inc. Electrode materials for magnesium batteries
US8877383B2 (en) 2010-06-21 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Magnesium-based battery
JP2012134082A (en) 2010-12-24 2012-07-12 Hitachi Ltd Cathode active material for secondary battery and magnesium secondary battery using the same
KR101334186B1 (en) * 2010-12-30 2013-11-28 삼성전자주식회사 Electrolyte Solution and magnesium battery using the same
CN102651485B (en) * 2011-02-28 2016-03-30 丰田自动车株式会社 The application in rechargeable magnesium cell of rechargeable magnesium cell, electrolyte and the electrolyte for rechargeable magnesium cell
WO2012160587A1 (en) * 2011-05-20 2012-11-29 株式会社 日立製作所 Magnesium secondary battery, and battery system equipped therewith
US10615452B2 (en) * 2011-06-22 2020-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. High voltage rechargeable magnesium cell
US9246170B2 (en) 2013-03-27 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. MgMn2O4 with a crystal structure analogue to CaFe2O4, CaMn2O4, or CaTi2O4 as rechargeable magnesium battery cathode
KR102156318B1 (en) 2013-09-23 2020-09-16 삼성전자주식회사 cathode active material for magnesium secondary battery and cathode and magnesium secondary battery using the same
KR102196363B1 (en) * 2013-10-29 2020-12-30 삼성전자주식회사 Electrode active material for magnesium battery, electrode and magnesium battery comprising the same, and electrode active material preparation method for magnesium battery
JP6493913B2 (en) * 2015-03-06 2019-04-03 学校法人東京理科大学 Method for producing magnesium composite oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324741B2 (en) * 1979-11-06 1991-04-04 South African Inventions
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649577B2 (en) * 1989-04-25 1994-06-29 工業技術院長 Novel manganese compound and method for producing the same
JP3092823B2 (en) * 1991-10-22 2000-09-25 日本電信電話株式会社 Lithium battery
JP3232790B2 (en) * 1992-07-29 2001-11-26 東ソー株式会社 Novel manganese oxide, its production method and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324741B2 (en) * 1979-11-06 1991-04-04 South African Inventions
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100344A (en) * 2000-09-22 2002-04-05 Sony Corp Positive electrode and battery

Also Published As

Publication number Publication date
JP2001076721A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
JP3873717B2 (en) Positive electrode material and battery using the same
JPH1173962A (en) Nonaqueous system secondary battery
JP4501181B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JPWO2014155988A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2005060162A (en) Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same
JPWO2012002365A1 (en) Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery equipped with the same
JP2014186937A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP4232277B2 (en) Non-aqueous electrolyte battery
JP2001076720A (en) Magnesium compound, nonaqueous electrolyte battery using it, synthetic method of magnesium compound, and manufacturing method of nonaqueous electrolyte battery using it
JP4370638B2 (en) Non-aqueous electrolyte battery
JP4742412B2 (en) Positive electrode and battery
JP2005008461A (en) Method for producing compound oxide, compound oxide, and battery
JP2004362934A (en) Positive electrode material and battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US7638240B2 (en) Cathode material, method of manufacturing the same, and battery using the same
JPH03108261A (en) Nonaqueous solvent secondary battery
JP3670895B2 (en) Lithium secondary battery
JPH11144730A (en) Lithium battery
JP4244427B2 (en) Non-aqueous electrolyte battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
KR20110011497A (en) Cathode active material, cathode comprising the same and lithium battery using the cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees