JP2001076721A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2001076721A
JP2001076721A JP24654399A JP24654399A JP2001076721A JP 2001076721 A JP2001076721 A JP 2001076721A JP 24654399 A JP24654399 A JP 24654399A JP 24654399 A JP24654399 A JP 24654399A JP 2001076721 A JP2001076721 A JP 2001076721A
Authority
JP
Japan
Prior art keywords
positive electrode
magnesium
negative electrode
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24654399A
Other languages
Japanese (ja)
Other versions
JP4501181B2 (en
Inventor
Hisashi Kajiura
尚志 梶浦
Kiyoshi Yamaura
潔 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24654399A priority Critical patent/JP4501181B2/en
Publication of JP2001076721A publication Critical patent/JP2001076721A/en
Application granted granted Critical
Publication of JP4501181B2 publication Critical patent/JP4501181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the diffusion of magnesium ions smooth, enhance load characteristics and cycle characteristics, and reduce the manufacturing cost of a magnesium ion battery. SOLUTION: This nonaqueous electrolyte battery has a negative electrode 2 including a negative electrode active material; a positive electrode 3 including a positive electrode active material; and a nonaqueous electrolyte, and a magnesium manganese composite oxide represented by general formula, MgMn2O4 is included in the positive electrode 3. In the nonaqueous electrolyte battery using magnesium ions as a charge carrier, since ion conduction of magnesium ions in the positive electrode occurs two-dimensionally, magnesium ions are efficiently diffused, and cycle characteristics and load characteristics are enhanced. By simplifying the manufacturing process of the positive electrode, the production cost of a magnesium ion battery can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極活物質を含む
負極と、正極活物質を含む正極と、非水電解質とを備え
る非水電解質電池に関するものであり、特に、マグネシ
ウムイオンを電荷担体とする非水電解質電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery comprising a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】非水電解質電池は、重負荷放電に耐え、
充電による繰り返し使用が可能なことからポータブル用
の電源としてカメラ一体型ビデオテープレコーダ、携帯
電話、ラップトップコンピュータ等の様々な電子機器に
用いられている。これら電子機器の小型化・軽量化が次
々と実現されているのに伴い、ポータブル用の電源とし
ての非水電解質電池に対しても、更なる小型化・軽量化
・高エネルギー密度化の要求が高まってきている。
2. Description of the Related Art Non-aqueous electrolyte batteries withstand heavy load discharge,
Since it can be repeatedly used by charging, it is used as a portable power supply in various electronic devices such as a camera-integrated video tape recorder, a mobile phone, and a laptop computer. As the miniaturization and weight reduction of these electronic devices have been realized one after another, there is a demand for non-aqueous electrolyte batteries as portable power supplies to be further reduced in size, weight and energy density. Is growing.

【0003】これらの要求に応える非水電解質二次電池
の中でも、とりわけリチウムイオン二次電池,ニッケル
水素二次電池は、鉛電池,ニッケルカドミウム電池等と
比較して高いエネルギー密度が得られるために広く用い
られ、市場も著しく成長している。一方で、更なるエネ
ルギー密度の向上を目指して、2価の電荷を持つマグネ
シウムイオンやカルシウムイオンを二次電池の電荷担体
として用いる試みがなされている。
[0003] Among the non-aqueous electrolyte secondary batteries that meet these demands, lithium ion secondary batteries and nickel hydride secondary batteries have a higher energy density than lead batteries, nickel cadmium batteries, and the like. It is widely used and the market is growing significantly. On the other hand, in order to further improve the energy density, attempts have been made to use divalent magnesium ions or calcium ions as charge carriers for secondary batteries.

【0004】カルシウムイオン二次電池の例として、負
極材料に黒鉛,コークス等の炭素材料を用い、正極材料
にCaCo24,Ca3Co49,Ca2Co25,Ca
3Co26,CaFeO3,CaFeO2等のカルシウム
含有金属酸化物を用いる非水電解質二次電池が、特開平
6−163080号公報等に既に開示されている。ま
た、カルシウムイオン正極の単位重量当たりの容量の向
上を図るため、カルシウムの酸化物ではなく、カルシウ
ムのケイ化物やゲルマニウム化物を正極材料とする非水
電解質電池が、特開平8−321305号公報に開示さ
れている。
As an example of a calcium ion secondary battery, a carbon material such as graphite or coke is used as a negative electrode material, and CaCo 2 O 4 , Ca 3 Co 4 O 9 , Ca 2 Co 2 O 5 , Ca is used as a positive electrode material.
A non-aqueous electrolyte secondary battery using a calcium-containing metal oxide such as 3 Co 2 O 6 , CaFeO 3 , CaFeO 2 has already been disclosed in JP-A-6-163080. Further, in order to improve the capacity per unit weight of the calcium ion positive electrode, a non-aqueous electrolyte battery using a positive electrode material of calcium silicide or germanium oxide instead of calcium oxide is disclosed in JP-A-8-321305. It has been disclosed.

【0005】更に、マグネシウムイオン二次電池に関し
て、正極にTiS2,ZrS2,RuO2,Co34,V2
5等を用い、非水電解質としてアセトニトリルにMg
(ClO42を溶解した電解液を用いた系で、約170
mAh/gの電池容量を得たという報告がP.Nova
kらによってなされ、J.Electrochem.S
oc.,Vol.140 No.1,Jan(199
3)140に記載されている。更に、MoO3へMg2+
イオンを吸蔵させたものを正極活物質として用いた例
も、M.E.Spahr;J.Power Sourc
es 54 (1995)346に報告されている。
Further, regarding a magnesium ion secondary battery, TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2
Using O 5 etc., acetonitrile as a non-aqueous electrolyte
(ClO 4 ) 2 is a system using an electrolytic solution in which about 170
A report that a battery capacity of mAh / g was obtained was reported by P.S. Nova
k., et al. Electrochem. S
oc. , Vol. 140 No. 1, Jan (199
3) 140. Furthermore, Mg 2+ is added to MoO 3
An example in which a material having occluded ions is used as a positive electrode active material is also disclosed in E. FIG. Spahr; Power Source
es 54 (1995) 346.

【0006】上述のように、これらマグネシウムイオン
二次電池は、リチウムイオン二次電池を凌ぐ負荷特性を
持つ電池として期待されている。
[0006] As described above, these magnesium ion secondary batteries are expected to have load characteristics superior to lithium ion secondary batteries.

【0007】[0007]

【発明が解決しようとする課題】ところが、正極活物質
として、TiS2,ZrS2,RuO2,Co34,V2
5等を用いた非水電解質電池、或いは、MoO3へMg2+
イオンを吸蔵させたものを用いた非水電解質電池では、
正極活物質の結晶内におけるマグネシウムイオンパスが
一次元的であるために、正極活物質内でのマグネシウム
イオンの拡散が遅くなり、その結果として、負荷特性及
びサイクル特性等が悪化するという問題点を生じる。
However, TiS 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2 O are used as positive electrode active materials.
Non-aqueous electrolyte battery using 5 or Mg 2+ to MoO 3
In non-aqueous electrolyte batteries that use ions
Since the magnesium ion path in the crystal of the positive electrode active material is one-dimensional, the diffusion of magnesium ions in the positive electrode active material becomes slow, and as a result, load characteristics and cycle characteristics deteriorate. Occurs.

【0008】また、正極活物質として、従来のTi
2,ZrS2,RuO2,Co34,V25,MoO3
以外に、リチウムイオン二次電池の正極活物質として用
いられるLixMO2(ここで、MはNi,Coの何れか
又は両方を含有する。)からリチウムを放出したものを
マグネシウムイオン電池の正極として用いることが可能
である。この方法で作製される正極は、マグネシウムイ
オンパスが二次元的であることから負荷特性及びサイク
ル特性が向上するが、この方法では、リチウムイオン二
次電池に用いる正極を作製する工程と、更に、その作製
した正極からリチウムイオンを放出する工程とが必要と
なるため製造工程が複雑となるという問題や、コストが
高くなるという問題点を生じる。
Further, as a positive electrode active material, a conventional Ti
In addition to S 2 , ZrS 2 , RuO 2 , Co 3 O 4 , V 2 O 5 , MoO 3 and the like, Li x MO 2 used as a positive electrode active material of a lithium ion secondary battery (where M is Ni, Co Containing either or both of the above) can be used as a positive electrode of a magnesium ion battery. The positive electrode produced by this method has improved load characteristics and cycle characteristics because the magnesium ion path is two-dimensional.In this method, a step of producing a positive electrode used for a lithium ion secondary battery, Since a step of releasing lithium ions from the manufactured positive electrode is required, there arises a problem that the manufacturing process is complicated and a problem that the cost is increased.

【0009】本発明は、このような従来の実情に鑑みて
提案されたものであり、マグネシウムイオンを電荷担体
として用い、マグネシウムイオンの拡散を円滑にし、負
荷特性及びサイクル特性の向上を実現する非水電解質電
池を提供することを目的とする。
The present invention has been proposed in view of such a conventional situation, and uses a magnesium ion as a charge carrier to facilitate the diffusion of the magnesium ion and to improve the load characteristics and the cycle characteristics. It is an object to provide a water electrolyte battery.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明に係る非水電解質電池は、負極活物質を含
む負極と、正極活物質を含む正極と、非水電解質とを備
え、上記正極活物質として、一般式MgMn24で表さ
れるマグネシウムマンガン複合酸化物を含有するもので
ある。また、負極活物質は、マグネシウム金属,マグネ
シウム合金又はマグネシウムを吸蔵放出可能な材料を含
有する。更に、非水電解質は、Mg(ClO42で表さ
れる化合物を含有するものである。
In order to achieve the above-mentioned object, a non-aqueous electrolyte battery according to the present invention comprises a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte. And a magnesium manganese composite oxide represented by the general formula MgMn 2 O 4 as the positive electrode active material. The negative electrode active material contains a magnesium metal, a magnesium alloy, or a material capable of inserting and extracting magnesium. Further, the non-aqueous electrolyte contains a compound represented by Mg (ClO 4 ) 2 .

【0011】以上のように構成された本発明に係るマグ
ネシウムイオンを電荷担体とする非水電解質電池によれ
ば、リチウムイオン電池の正極からリチウムを放出した
ものを正極として用いるのではなく、予めマグネシウム
を含有する正極を用いることによって、正極を作製する
工程が簡略化されるために、コストの削減が可能とな
る。また、上述の非水電解質電池は、正極内でのマグネ
シウムイオンのイオン伝導が二次元的に起こるため、マ
グネシウムイオンが効率よく拡散され、負荷特性及びサ
イクル特性等の向上が実現される。
According to the nonaqueous electrolyte battery of the present invention having magnesium ions as a charge carrier, lithium ions discharged from the positive electrode of the lithium ion battery are not used as the positive electrode, but the magnesium ion is used in advance. The use of a positive electrode containing simplifies the process of manufacturing the positive electrode, thereby enabling cost reduction. Further, in the above-described nonaqueous electrolyte battery, since the ion conduction of magnesium ions in the positive electrode occurs two-dimensionally, magnesium ions are efficiently diffused, and load characteristics and cycle characteristics are improved.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る非水電解質電
池の実施の形態について、図面を参考にして詳細に説明
する。本発明を適用した非水電解質電池1は、図1にそ
の具体的な構成を示すように、負極2と、負極2を収納
する負極缶3と、正極4と、正極4を収納する正極缶5
と、正極4と負極2との間に配されたセパレータ6と、
ガスケット7とを備え、負極缶3及び正極缶5内に非水
電解液が充填されてなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the nonaqueous electrolyte battery according to the present invention will be described below in detail with reference to the drawings. As shown in FIG. 1, a nonaqueous electrolyte battery 1 to which the present invention is applied includes a negative electrode 2, a negative electrode can 3 containing the negative electrode 2, a positive electrode 4, and a positive electrode can containing the positive electrode 4. 5
And a separator 6 disposed between the positive electrode 4 and the negative electrode 2,
A gasket 7 is provided, and the nonaqueous electrolyte is filled in the negative electrode can 3 and the positive electrode can 5.

【0013】負極2は、負極活物質となる金属マグネシ
ウムを圧延した金属マグネシウム箔からなる。上述した
もの以外にも、例えば、マグネシウム化合物の粉末と結
着剤等を混合し、更にホルムアミドやN−メチルピロリ
ドン等の有機溶媒を添加してペースト状の負極用合剤を
調製して、これをアルミニウム箔等の負極集電体上に塗
布し、乾燥したものを負極2として用いることもでき
る。上記結着剤には、従来公知の結着剤を用いることが
できる。
The negative electrode 2 is formed of a metal magnesium foil obtained by rolling metal magnesium serving as a negative electrode active material. In addition to those described above, for example, a magnesium compound powder and a binder are mixed, and an organic solvent such as formamide or N-methylpyrrolidone is added to prepare a paste-like negative electrode mixture. Can be applied to a negative electrode current collector such as an aluminum foil and dried to be used as the negative electrode 2. As the binder, a conventionally known binder can be used.

【0014】また、負極活物質は、マグネシウムの吸蔵
放出を可能とする材料であれば限定されることなく使用
可能であり、例えば、金属マグネシウム単体、金属マグ
ネシウムとアルカリ金属との合金及びマグネシウムが吸
蔵された導電性高分子や層状化合物(炭素材料や金属酸
化物等)を使用することができる。
The negative electrode active material can be used without any limitation as long as it is a material capable of inserting and extracting magnesium. For example, a single metal magnesium, an alloy of magnesium metal and an alkali metal, and magnesium can be used. Conducted polymers and layered compounds (carbon materials, metal oxides, etc.) can be used.

【0015】負極缶3は、負極2を収納するものであ
り、また、非水電解質電池1の外部負極を兼ねている。
The negative electrode can 3 houses the negative electrode 2 and also functions as an external negative electrode of the nonaqueous electrolyte battery 1.

【0016】正極4は、正極活物質として一般式MgM
24で表されるマグネシウムマンガン複合酸化物を含
有する。このマグネシウムマンガン複合酸化物は、溶液
法若しくは固相法により調製することができる。
The positive electrode 4 has a general formula MgM as a positive electrode active material.
It contains a magnesium-manganese composite oxide represented by n 2 O 4 . This magnesium-manganese composite oxide can be prepared by a solution method or a solid-phase method.

【0017】溶液法の場合、塩化マグネシウム溶液と塩
化マンガン溶液とを所定の割合で混合し、更に、この混
合液にアンモニア水及び過酸化水素水を添加して常温下
で一週間程度静置し、マグネシウム及びマンガンの水酸
化物を沈澱させる。これらの沈殿物を濾別した後、濾液
が中性になるまで十分に洗浄する。その後、この濾集し
た沈殿物を乾燥させ、700℃〜900℃にて3〜5時
間焼成する。以上の工程を経ることによってMgMn2
4を得ることができる。
In the case of the solution method, a magnesium chloride solution and a manganese chloride solution are mixed at a predetermined ratio, and further, aqueous ammonia and hydrogen peroxide are added to the mixture, and the mixture is allowed to stand at room temperature for about one week. , Magnesium and manganese hydroxide precipitate. After these precipitates have been filtered off, they are washed thoroughly until the filtrate is neutral. Thereafter, the collected precipitate is dried and calcined at 700 ° C. to 900 ° C. for 3 to 5 hours. Through the above steps, MgMn 2
O 4 can be obtained.

【0018】固相法の場合、マンガン酸化物とマグネシ
ウム化合物とを所定の割合で混合し、650℃〜100
0℃の範囲で加熱処理を行って得られた生成物を温水で
十分に洗浄することによってMgMn24を得ることが
できる。
In the case of the solid phase method, a manganese oxide and a magnesium compound are mixed at a predetermined ratio,
MgMn 2 O 4 can be obtained by sufficiently washing the product obtained by performing the heat treatment in the range of 0 ° C. with warm water.

【0019】正極4は、上述の方法により得たMgMn
24の粉末と、導電剤と、結着剤とを混練して調製され
た正極用合剤を圧縮成形することによりペレット状に加
工して得られる。この他に、上記MgMn24の粉末
と、導電剤と、結着剤とを混合し、更にホルムアミドや
N−メチルピロリドン等の有機溶媒を添加してペースト
状の正極用合剤を調製して、これをアルミニウム箔等の
正極集電体上に塗布し、乾燥したものを正極4として用
いることができる。
The cathode 4 is made of MgMn obtained by the above-described method.
The positive electrode mixture prepared by kneading a powder of 2 O 4 , a conductive agent, and a binder is processed into a pellet by compression molding. In addition, the powder of MgMn 2 O 4 , a conductive agent, and a binder are mixed, and an organic solvent such as formamide or N-methylpyrrolidone is added to prepare a paste-like positive electrode mixture. Then, this is applied to a positive electrode current collector such as an aluminum foil and dried, and can be used as the positive electrode 4.

【0020】上記導電剤には、例えばカーボンブラック
やグラファイト等の炭素質材料を用いることができる。
また、結着剤には、例えばポリフッ化ビニリデン等を用
いることができる。
As the conductive agent, for example, a carbonaceous material such as carbon black or graphite can be used.
Further, as the binder, for example, polyvinylidene fluoride or the like can be used.

【0021】正極缶5は、正極4を収納するものであ
り、また、非水電解質電池1の外部正極となる。
The positive electrode can 5 houses the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0022】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解質電池のセパレ
ータとして通常用いられる従来公知の材料を使用でき
る。セパレータ6には、例えば、ポリプロピレンなどの
高分子フィルムを用いることができる。また、リチウム
イオン伝導度とエネルギー密度との関係から、セパレー
タの厚みはできるだけ薄いことが必要とされる。具体的
には、セパレータの厚みは、例えば50μm以下である
ことが好ましい。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and may be made of a conventionally known material that is usually used as a separator for this type of nonaqueous electrolyte battery. For the separator 6, for example, a polymer film such as polypropylene can be used. In addition, the thickness of the separator needs to be as small as possible from the relationship between lithium ion conductivity and energy density. Specifically, the thickness of the separator is preferably, for example, 50 μm or less.

【0023】ガスケット7は、負極缶3に組み込まれ一
体化されている。このガスケット7は、負極缶3及び正
極缶5内に充填された非水電解液の漏出を防止するため
のものである。
The gasket 7 is incorporated in the negative electrode can 3 and integrated. This gasket 7 is for preventing the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5 from leaking.

【0024】非水電解液は、非水溶媒中に電解質を溶解
されてなる。非水電解液の非水溶媒には、例えば、プロ
ピレンカーボネート、エチレンカーボネート、ブチレン
カーボネート、ビニレンカーボネート、γ−ブチルラク
トン、スルホラン、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、2−メチルテトラヒドロフラン、
3−メチル−1,3−ジオキソラン、プロピオン酸メチ
ル、酪酸メチル、ジメチルカーボネート、ジエチルカー
ボネート、ジプロピルカーボネート等を使用することが
できる。特に、電圧安定性の点から、プロピレンカーボ
ネート、ビニレンカーボネート等の環状カーボネート
類、ジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート等の鎖状カーボネート類を使用す
ることが好ましい。また、このような非水溶媒は、1種
類を単独で用いても良いし、2種類以上を混合して用い
ても良い。
The non-aqueous electrolyte is obtained by dissolving an electrolyte in a non-aqueous solvent. Non-aqueous solvents for the non-aqueous electrolyte include, for example, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyl lactone, sulfolane, 1,2-dimethoxyethane, 1,2
-Diethoxyethane, 2-methyltetrahydrofuran,
3-Methyl-1,3-dioxolan, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used. Particularly, from the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as propylene carbonate and vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate. Further, one kind of such a non-aqueous solvent may be used alone, or two or more kinds may be mixed and used.

【0025】また、非水電解液の電解質は、当該電解質
自体が上記非水溶媒に可溶でイオン伝導性を示すもので
あれば良く、特に限定されるものではない。例えば、M
g(SO2CH32,Mg(BF42,Mg(CF3SO
32,Mg(PF62等のマグネシウム塩を用いること
ができる。とりわけ、Mg(ClO42を用いることが
好ましい。
The electrolyte of the non-aqueous electrolyte is not particularly limited as long as the electrolyte itself is soluble in the non-aqueous solvent and exhibits ionic conductivity. For example, M
g (SO 2 CH 3 ) 2 , Mg (BF 4 ) 2 , Mg (CF 3 SO
3 ) Magnesium salts such as 2 and Mg (PF 6 ) 2 can be used. In particular, it is preferable to use Mg (ClO 4 ) 2 .

【0026】なお、上述の非水電解質電池において、電
解質は、液状であることに限定されることなく、固体電
解質であっても、溶媒によって膨潤しているゲル電解質
であっても良い。また、電池缶、セパレータ、ガスケッ
ト等の非水電解質電池の構成要素及び電池の形状は、特
に限定されない。電池の形状は、例えば、フィルム型,
巻回型,積層型,円筒型,角型等の種々の形状で用いる
ことができる。更に、上述の非水電解質電池は、一次電
池であっても、二次電池であっても良い。
In the above-mentioned nonaqueous electrolyte battery, the electrolyte is not limited to a liquid, and may be a solid electrolyte or a gel electrolyte swollen by a solvent. The components of the nonaqueous electrolyte battery such as a battery can, a separator, and a gasket, and the shape of the battery are not particularly limited. The shape of the battery is, for example, a film type,
It can be used in various shapes such as a wound type, a laminated type, a cylindrical type, and a square type. Further, the above-described nonaqueous electrolyte battery may be a primary battery or a secondary battery.

【0027】[0027]

【実施例】発明の実施例及び比較例について詳細に説明
するが、本発明はこれら実施例に限定されるものではな
い。以下のようにして、マグネシウムイオンを電荷担体
とする非水電解質電池1を作製し、その電池特性を評価
した。
EXAMPLES Examples of the present invention and comparative examples will be described in detail, but the present invention is not limited to these examples. A non-aqueous electrolyte battery 1 using magnesium ions as a charge carrier was produced as described below, and its battery characteristics were evaluated.

【0028】<実施例1>正極活物質として用いるMg
Mn24を、以下に示す溶液法によって作製した。ま
ず、濃度が2mol/lの塩化マグネシウム溶液を50
0mlと、濃度が1mol/lの塩化マンガン溶液を5
00mlとの混合溶液中に、濃度が25%のアンモニア
水を1000ml添加して十分に撹拌し、均一溶液とし
た。更に、この均一溶液中に、濃度が30%である過酸
化水素水を260ml徐々に添加して水酸化物の沈澱を
得た。この沈澱物を5日間静置した後、濾別し、濾液が
中性になるまで蒸留水にて洗浄した。その後、この濾集
した沈殿物を120℃に保持した恒温槽中で3時間乾燥
させ、続いて800℃にて3時間焼成した。
<Example 1> Mg used as a positive electrode active material
Mn 2 O 4 was prepared by a solution method described below. First, a magnesium chloride solution having a concentration of 2 mol / l
0 ml and 1 mol / l manganese chloride solution
To a mixed solution of 00 ml and 1000 ml of 25% ammonia water was added and sufficiently stirred to obtain a homogeneous solution. Further, 260 ml of a hydrogen peroxide solution having a concentration of 30% was gradually added to the homogeneous solution to obtain a precipitate of hydroxide. After allowing this precipitate to stand for 5 days, the precipitate was separated by filtration and washed with distilled water until the filtrate became neutral. Thereafter, the precipitate collected by filtration was dried in a thermostat kept at 120 ° C. for 3 hours, and subsequently calcined at 800 ° C. for 3 hours.

【0029】以上のようにして得られた試料のX線回折
測定を行ったところ、図2に示す結果を得た。これは、
JCPDSカードのカード番号23−392に示される
MgMn24のX線回折測定チャートとほぼ一致するた
め、上述の方法によって作製された試料は、MgMn2
4であると考えた。以上のようにして、スピネル型の
MgMn24を得た。
The X-ray diffraction measurement of the sample obtained as described above gave the results shown in FIG. this is,
Since the X-ray diffraction measurement chart of MgMn 2 O 4 shown in the card number 23-392 of the JCPDS card almost matches, the sample prepared by the above-described method is MgMn 2
It was considered to O 4. Thus, spinel-type MgMn 2 O 4 was obtained.

【0030】次に、上述した方法で得られたMgMn2
4の粉末と、黒鉛の粉末と、ポリフッ化ビニリデンと
の混合量が、重量比で85:10:5となるように秤取
し、これらをN−メチル−2−ピロリドン中で分散させ
て混練し、正極用合剤を調製した。この正極用合剤を6
0mgと、正極集電体であるアルミニウムメッシュとを
圧縮成形することによって、直径15mmのペレット状
の正極4を作製した。
Next, the MgMn 2 obtained by the above-described method was used.
O 4 powder, graphite powder, and polyvinylidene fluoride are weighed such that the mixing amount is 85: 10: 5 by weight, and these are dispersed in N-methyl-2-pyrrolidone. The mixture was kneaded to prepare a positive electrode mixture. This positive electrode mixture
By compression-molding 0 mg and an aluminum mesh as a positive electrode current collector, a pellet-shaped positive electrode 4 having a diameter of 15 mm was produced.

【0031】一方、負極2には、正極4と略同型になる
ように金属マグネシウムを圧延した円形のマグネシウム
箔板を用いた。
On the other hand, a circular magnesium foil plate obtained by rolling metallic magnesium so as to have substantially the same shape as the positive electrode 4 was used as the negative electrode 2.

【0032】次に、非水電解質電池1の電解質として、
エチレンカーボネートを50体積部と、ジメチルカーボ
ネート50体積部とを混合した溶媒に、Mg(Cl
42を1mol/lの濃度で溶解させることにより非
水電解液を調製した。
Next, as an electrolyte of the nonaqueous electrolyte battery 1,
Mg (Cl 2) was added to a solvent obtained by mixing 50 parts by volume of ethylene carbonate and 50 parts by volume of dimethyl carbonate.
A nonaqueous electrolyte was prepared by dissolving O 4 ) 2 at a concentration of 1 mol / l.

【0033】以上のようにして得られた正極4を正極缶
5に収納し、負極2を負極缶3に収納し、負極2と正極
4との間に多孔性ポリプロピレン膜のセパレータ6を配
した。負極缶3及び正極缶5内に非水電解液を注入し、
負極缶3と正極缶5とをかしめて固定することにより2
025型のコイン型電池を作製した。
The positive electrode 4 thus obtained was stored in the positive electrode can 5, the negative electrode 2 was stored in the negative electrode can 3, and a separator 6 of a porous polypropylene film was disposed between the negative electrode 2 and the positive electrode 4. . A non-aqueous electrolyte is injected into the negative electrode can 3 and the positive electrode can 5,
By caulking and fixing the negative electrode can 3 and the positive electrode can 5, 2
A 025-type coin battery was produced.

【0034】<実施例2>正極活物質として用いるMg
Mn24を、以下に示す固相法により作製したこと以外
は、実施例1と同様に正極を作製し、同様の方法にてコ
イン型電池を作製した。まず、塩基性炭酸マグネシウム
と二酸化マンガンとを、Mg:Mn=1:2の割合で混
合し、800℃下で5時間の熱処理を行った。その後、
この混合体を冷却し、再び混合した後、再度800℃下
にて5時間の熱処理を行った。この作業を3回繰り返し
た後、蒸留水で洗浄して得られた試料のX線回折測定を
行ったところ、図示しないが、実施例1の図2に示す結
果と類似のX線回折結果を得た。従って、上述の方法に
よって作製された試料は、MgMn24である考えられ
る。以上のようにして、スピネル型のMgMn24を得
た。
Example 2 Mg used as a positive electrode active material
A positive electrode was produced in the same manner as in Example 1 except that Mn 2 O 4 was produced by the solid phase method described below, and a coin-type battery was produced in the same manner. First, basic magnesium carbonate and manganese dioxide were mixed at a ratio of Mg: Mn = 1: 2, and a heat treatment was performed at 800 ° C. for 5 hours. afterwards,
This mixture was cooled, mixed again, and then heat-treated again at 800 ° C. for 5 hours. After this operation was repeated three times, the sample obtained by washing with distilled water was subjected to X-ray diffraction measurement. Although not shown, an X-ray diffraction result similar to the result shown in FIG. Obtained. Therefore, the sample prepared by the above method is considered to be MgMn 2 O 4 . Thus, spinel-type MgMn 2 O 4 was obtained.

【0035】<比較例1>正極に用いる正極活物質とし
てV25を用いたこと以外は、実施例1と同様に正極を
作製し、同様の方法にてコイン型電池を作製した。
Comparative Example 1 A positive electrode was produced in the same manner as in Example 1 except that V 2 O 5 was used as the positive electrode active material used for the positive electrode, and a coin-type battery was produced in the same manner.

【0036】<比較例2>正極に用いる正極活物質とし
てMoO3を用いたこと以外は、実施例1と同様に正極
を作製し、同様の方法にてコイン型電池を作製した。
Comparative Example 2 A positive electrode was produced in the same manner as in Example 1 except that MoO 3 was used as the positive electrode active material used for the positive electrode, and a coin-type battery was produced in the same manner.

【0037】電池の評価 これらの非水電解質電池を、以下に示す試験方法によっ
て評価した結果を図3に示した。上述のように作製した
非水電解質電池を、23℃下にて100mA/cm2
定電流充電し、電池電圧が3.0V(対Mg2+/Mg)
に達した後、3.0Vで定電流充電を行い、4時間経過
した時点で満充電とした。続いて、0.0V(対Mg2+
/Mg)になるまで定電流放電を行った。以上の工程を
1サイクルとし、これを10サイクル繰り返し行って、
それぞれのサイクル毎に放電容量を測定した。サイクル
特性の評価には、1サイクル目の放電容量を定格容量C
(1)とし、Nサイクル目の放電容量をC(N)とした
ときの容量維持率S(=C(N)/C(1))を用い
た。
Evaluation of Batteries The results of evaluating these nonaqueous electrolyte batteries by the following test methods are shown in FIG. The non-aqueous electrolyte battery prepared as described above was charged at a constant current of 100 mA / cm 2 at 23 ° C., and the battery voltage was 3.0 V (vs. Mg 2+ / Mg).
, The battery was charged at a constant current of 3.0 V, and was fully charged after 4 hours. Subsequently, 0.0V (vs. Mg 2+
/ Mg). The above process is defined as one cycle, and this process is repeated for 10 cycles.
The discharge capacity was measured for each cycle. For the evaluation of the cycle characteristics, the discharge capacity in the first cycle was calculated as the rated capacity C
(1), and the capacity retention ratio S (= C (N) / C (1)) when the discharge capacity at the Nth cycle was C (N) was used.

【0038】図2から明らかなように、V25及びMo
3を正極活物質として用いた比較例1及び比較例2と
比べて、スピネル型のMgMn24を正極活物質として
用いた実施例1及び実施例2の非水電解質電池の方がサ
イクル特性に優れることが判る。また、正極活物質は、
溶液法によって作製されるスピネル型のMgMn24
固相法によって作製されるものよりもサイクル特性が優
れていることが判った。
As is apparent from FIG. 2, V 2 O 5 and Mo
Compared with Comparative Examples 1 and 2 using O 3 as the positive electrode active material, the non-aqueous electrolyte batteries of Examples 1 and 2 using the spinel-type MgMn 2 O 4 as the positive electrode active material had more cycles. It can be seen that the characteristics are excellent. The positive electrode active material is
It was found that spinel-type MgMn 2 O 4 produced by the solution method had better cycle characteristics than that produced by the solid-phase method.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明に係
るマグネシウムイオンを電荷担体とする非水電解質電池
によれば、正極内でのマグネシウムイオンのイオン伝導
が二次元的に起こるため、マグネシウムイオンが効率よ
く拡散され、サイクル特性及び負荷特性等の向上が実現
される。更に、正極を作製する工程を簡略化することに
よって、マグネシウムイオン電池を作製する際のコスト
を削減することが可能となる。
As described above in detail, according to the nonaqueous electrolyte battery of the present invention using magnesium ions as a charge carrier, the ion conduction of magnesium ions in the positive electrode occurs two-dimensionally, The ions are efficiently diffused, and the cycle characteristics and load characteristics are improved. Further, by simplifying the process of manufacturing the positive electrode, it is possible to reduce the cost when manufacturing a magnesium ion battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解質電池の一構成例を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration example of a nonaqueous electrolyte battery according to the present invention.

【図2】MgMn24のX線回折結果を示すX線回折図
である。
FIG. 2 is an X-ray diffraction diagram showing the result of X-ray diffraction of MgMn 2 O 4 .

【図3】実施例で作製した電池のサイクル数と容量維持
率との関係を示すサイクル特性図である。
FIG. 3 is a cycle characteristic diagram showing the relationship between the number of cycles and the capacity retention of the batteries manufactured in the examples.

【符号の説明】[Explanation of symbols]

1 非水電解質電池、2 負極、3 負極缶、4 正
極、5 正極缶、6 セパレータ、7 ガスケット
1 Non-aqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4 positive electrode, 5 positive electrode can, 6 separator, 7 gasket

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 BB02 BB05 BD00 5H014 AA02 EE10 HH00 5H029 AJ05 AL11 AM01 AM03 AM04 AM05 AM07 BJ03 HJ02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA04 BB02 BB05 BD00 5H014 AA02 EE10 HH00 5H029 AJ05 AL11 AM01 AM03 AM04 AM05 AM07 BJ03 HJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質を含む負極と、 正極活物質を含む正極と、 非水電解質とを備え、 上記正極活物質として、一般式MgMn24で表される
マグネシウムマンガン複合酸化物を含有することを特徴
とする非水電解質電池。
1. A negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte, wherein a magnesium manganese composite oxide represented by a general formula MgMn 2 O 4 is used as the positive electrode active material. Non-aqueous electrolyte battery characterized by containing.
【請求項2】 上記負極活物質は、マグネシウム金属,
マグネシウム合金又はマグネシウムを吸蔵放出可能な材
料を含有することを特徴とする請求項1記載の非水電解
質電池。
2. The negative electrode active material comprises magnesium metal,
2. The non-aqueous electrolyte battery according to claim 1, further comprising a magnesium alloy or a material capable of inserting and extracting magnesium.
【請求項3】 上記非水電解質は、Mg(ClO42
表される化合物を含有することを特徴とする請求項1記
載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte contains a compound represented by Mg (ClO 4 ) 2 .
JP24654399A 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof Expired - Fee Related JP4501181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24654399A JP4501181B2 (en) 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24654399A JP4501181B2 (en) 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001076721A true JP2001076721A (en) 2001-03-23
JP4501181B2 JP4501181B2 (en) 2010-07-14

Family

ID=17149983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24654399A Expired - Fee Related JP4501181B2 (en) 1999-08-31 1999-08-31 Non-aqueous electrolyte battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4501181B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100344A (en) * 2000-09-22 2002-04-05 Sony Corp Positive electrode and battery
JP2011165639A (en) * 2010-02-04 2011-08-25 Samsung Electro-Mechanics Co Ltd Positive electrode active material with magnesium, and magnesium secondary battery with the same
EP2469631A1 (en) 2010-12-24 2012-06-27 Hitachi Ltd. Positive electrode active material for secondary battery and magnesium secondary battery using the same
JP2012182124A (en) * 2011-02-28 2012-09-20 Toyota Motor Corp Magnesium secondary battery, method for using electrolyte in magnesium secondary battery, and electrolyte for magnesium secondary battery
WO2012160587A1 (en) * 2011-05-20 2012-11-29 株式会社 日立製作所 Magnesium secondary battery, and battery system equipped therewith
JP2013008671A (en) * 2011-06-22 2013-01-10 Toyota Motor Engineering & Manufacturing North America Inc High voltage rechargeable magnesium cell
JP2013533577A (en) * 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
KR101334186B1 (en) * 2010-12-30 2013-11-28 삼성전자주식회사 Electrolyte Solution and magnesium battery using the same
US8877383B2 (en) 2010-06-21 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Magnesium-based battery
WO2015064867A1 (en) * 2013-10-29 2015-05-07 Samsung Electronics Co., Ltd. Electrode active material for magnesium battery
US9246170B2 (en) 2013-03-27 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. MgMn2O4 with a crystal structure analogue to CaFe2O4, CaMn2O4, or CaTi2O4 as rechargeable magnesium battery cathode
US9325004B2 (en) 2013-09-23 2016-04-26 Samsung Electronics Co., Ltd. Cathode active material, and cathode and magnesium secondary battery including the cathode active material
JP2016164103A (en) * 2015-03-06 2016-09-08 学校法人東京理科大学 Method for producing magnesium composite oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283621A (en) * 1989-04-25 1990-11-21 Agency Of Ind Science & Technol New manganese compound and production thereof
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery
JPH06227820A (en) * 1992-07-29 1994-08-16 Tosoh Corp New manganese oxide and its production and application
JPH08195196A (en) * 1991-10-22 1996-07-30 Nippon Telegr & Teleph Corp <Ntt> Lithium battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682574A (en) * 1979-11-06 1981-07-06 South African Inventions Method of manufacturing cathode adapted for secondary electrochemical battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283621A (en) * 1989-04-25 1990-11-21 Agency Of Ind Science & Technol New manganese compound and production thereof
JPH08195196A (en) * 1991-10-22 1996-07-30 Nippon Telegr & Teleph Corp <Ntt> Lithium battery
JPH06227820A (en) * 1992-07-29 1994-08-16 Tosoh Corp New manganese oxide and its production and application
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100344A (en) * 2000-09-22 2002-04-05 Sony Corp Positive electrode and battery
JP2011165639A (en) * 2010-02-04 2011-08-25 Samsung Electro-Mechanics Co Ltd Positive electrode active material with magnesium, and magnesium secondary battery with the same
KR101067115B1 (en) 2010-02-04 2011-09-22 삼성전기주식회사 Cathode active material having magnesium and magnesium secondary battery having same
JP2013533577A (en) * 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
US8877383B2 (en) 2010-06-21 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Magnesium-based battery
EP2469631A1 (en) 2010-12-24 2012-06-27 Hitachi Ltd. Positive electrode active material for secondary battery and magnesium secondary battery using the same
KR101334186B1 (en) * 2010-12-30 2013-11-28 삼성전자주식회사 Electrolyte Solution and magnesium battery using the same
JP2012182124A (en) * 2011-02-28 2012-09-20 Toyota Motor Corp Magnesium secondary battery, method for using electrolyte in magnesium secondary battery, and electrolyte for magnesium secondary battery
WO2012160587A1 (en) * 2011-05-20 2012-11-29 株式会社 日立製作所 Magnesium secondary battery, and battery system equipped therewith
JP2013008671A (en) * 2011-06-22 2013-01-10 Toyota Motor Engineering & Manufacturing North America Inc High voltage rechargeable magnesium cell
US10615452B2 (en) 2011-06-22 2020-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. High voltage rechargeable magnesium cell
US9246170B2 (en) 2013-03-27 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. MgMn2O4 with a crystal structure analogue to CaFe2O4, CaMn2O4, or CaTi2O4 as rechargeable magnesium battery cathode
US9325004B2 (en) 2013-09-23 2016-04-26 Samsung Electronics Co., Ltd. Cathode active material, and cathode and magnesium secondary battery including the cathode active material
WO2015064867A1 (en) * 2013-10-29 2015-05-07 Samsung Electronics Co., Ltd. Electrode active material for magnesium battery
US10658662B2 (en) 2013-10-29 2020-05-19 Samsung Electronics Co., Ltd. Electrode active material for magnesium battery
JP2016164103A (en) * 2015-03-06 2016-09-08 学校法人東京理科大学 Method for producing magnesium composite oxide

Also Published As

Publication number Publication date
JP4501181B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
EP1443575B1 (en) Positive plate material and cell comprising it
JP3336998B2 (en) Non-aqueous electrolyte secondary battery
JP2002134112A (en) Nonaqueous electrolyte secondary battery
JP4501181B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5026629B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JPH1083815A (en) Lithium secondary battery
JP4232277B2 (en) Non-aqueous electrolyte battery
JP2001076720A (en) Magnesium compound, nonaqueous electrolyte battery using it, synthetic method of magnesium compound, and manufacturing method of nonaqueous electrolyte battery using it
JP4370638B2 (en) Non-aqueous electrolyte battery
JP2002025617A (en) Nonaqueous electrolyte secondary battery
JP4742412B2 (en) Positive electrode and battery
JP2004362934A (en) Positive electrode material and battery
US7638240B2 (en) Cathode material, method of manufacturing the same, and battery using the same
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2007200774A (en) Active material for nonaqueous electrolyte electrochemical cell, manufacturing method, and nonaqueous electrolyte electrochemical cell provided therewith
JP3451602B2 (en) Non-aqueous electrolyte battery
JP4136407B2 (en) Anode active material for non-aqueous electrolyte secondary battery
JP2007173150A (en) Nonaqueous electrolyte battery
JPH11144730A (en) Lithium battery
JP4244427B2 (en) Non-aqueous electrolyte battery
JP3443921B2 (en) Non-aqueous electrolyte secondary battery
JPH113707A (en) Lithium secondary battery
JP3005961B2 (en) Lithium battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
KR20110011497A (en) Cathode active material, cathode comprising the same and lithium battery using the cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees