JPS6319760A - Nonaqueous electrolyte battery and manufacture of its positive active material - Google Patents

Nonaqueous electrolyte battery and manufacture of its positive active material

Info

Publication number
JPS6319760A
JPS6319760A JP61163233A JP16323386A JPS6319760A JP S6319760 A JPS6319760 A JP S6319760A JP 61163233 A JP61163233 A JP 61163233A JP 16323386 A JP16323386 A JP 16323386A JP S6319760 A JPS6319760 A JP S6319760A
Authority
JP
Japan
Prior art keywords
cobalt
active material
nickel
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61163233A
Other languages
Japanese (ja)
Other versions
JPH0750606B2 (en
Inventor
Hideo Yasuda
安田 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP61163233A priority Critical patent/JPH0750606B2/en
Publication of JPS6319760A publication Critical patent/JPS6319760A/en
Publication of JPH0750606B2 publication Critical patent/JPH0750606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make it possible to use as positive active material of a nonaqueous electrolyte battery by preparing nickel oxyhydroxide containing a specified amount of cobalt. CONSTITUTION:Nckel oxyhydroxide containing 20-75wt% cobalt is used as positive active material. This active material is prepared in such a way that a mixture or a mixed solution containing 20-75wt% cobalt of cobalt nitrate and nickel nitrate, cobalt sulfate and nickel sulfate, cobalt chloride and nickel chloride, or these mixture is heated at 110-350 deg.C, and the product obtained is anodically oxidized in an aqueous alkaline solution, or the mixture or the mixed solution is oxidized with an oxidizing agent such as sodium hypochloride or potassium peroxosulfate in an alkaline solution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム、ナトリウムあるいはマグネシウムを
負極とし、非水電解液例えばプロピレンカーボネートや
γ−ブチルラクトン等を電解液とする非水電解液電池に
関するものであり、従来とは異なる正極活物質を用いる
ことにより新しい一次電池および二次電池を提供するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonaqueous electrolyte battery that uses lithium, sodium, or magnesium as a negative electrode and a nonaqueous electrolyte such as propylene carbonate or γ-butyllactone as an electrolyte. By using positive electrode active materials different from conventional ones, new primary and secondary batteries are provided.

従来の技術 近年、電子機器の発展に伴って、小形軽量で長期保存性
のよい電池の要求が高まっており、その要求に適する電
池としてリチウム、ナトリウムあるいはマグネシウムを
負極とし、プロピレンカーボネートやγ−ブチルラクト
ン等の非水溶液を電解液とする非水電解液電池が注目さ
れている。この電池の正極活vIJ質としては種々のも
のが提案されているが、実用段階にあるのは(CF)n
Background of the Invention In recent years, with the development of electronic devices, there has been an increasing demand for batteries that are small, lightweight, and have a long shelf life.Batteries that meet these demands use lithium, sodium, or magnesium as the negative electrode, and propylene carbonate or γ-butyl as the negative electrode. Nonaqueous electrolyte batteries that use a nonaqueous solution such as lactone as an electrolyte are attracting attention. Various materials have been proposed as positive electrode active vIJ materials for this battery, but the one that is in the practical stage is (CF)n
.

△Q Cr 04 、Mn Ozおよび5OCI 2の
みであり、いずれも−次電池用の正極活物質である。
Only ΔQ Cr 04 , Mn Oz and 5OCI 2 are used, all of which are positive electrode active materials for secondary batteries.

したがって、新しい正極活物質、特に二次電池用正極活
物質の出現が期待されている。
Therefore, the emergence of new positive electrode active materials, particularly positive electrode active materials for secondary batteries, is expected.

発明が解決しようとする問題点 アルカリ電池用正極活物質としては二酸化マンガンおよ
び水酸化ニッケルがあり、前考は一次電池用、後者は二
次電池用の正極活物質として広く用いられている。この
2つの正極活物質の放電反応の機構はプロトンの拡散で
あることが知られており、二酸化マンガンの場合は非水
電解液電池の正極活物質としても使われている。しかし
ながら、水酸化ニッケルの場合は、非水電解液中では電
気化学的に不活性であるため、非水電解液電池の一次電
池はもとより二次電池の正極活物質としても用いられて
いなかった。
Problems to be Solved by the Invention Manganese dioxide and nickel hydroxide are available as positive electrode active materials for alkaline batteries, and the former is widely used as a positive electrode active material for primary batteries, while the latter is widely used as a positive electrode active material for secondary batteries. It is known that the discharge reaction mechanism of these two positive electrode active materials is proton diffusion, and in the case of manganese dioxide, it is also used as a positive electrode active material in non-aqueous electrolyte batteries. However, since nickel hydroxide is electrochemically inactive in non-aqueous electrolytes, it has not been used as a positive electrode active material in secondary batteries, let alone in primary batteries of non-aqueous electrolyte batteries.

本発明の目的は、従来、非水電解液中では不活性であっ
た水酸化ニッケルを改質して、非水電解液を用いた電池
の正極活物質として用いることにある。
An object of the present invention is to modify nickel hydroxide, which has conventionally been inactive in non-aqueous electrolytes, and to use the modified nickel hydroxide as a positive electrode active material for batteries using non-aqueous electrolytes.

問題点を解決するための手段 即ち、本発明は、20〜75wt%のコバルトを含むオ
キシ水酸化ニッケルを正極活物質とするものである。ま
たこのコバルトを含むオキシ水酸化ニッケルは、硝酸コ
バルトと硝酸ニッケル、硫酸コバルトとTa酸ニッケル
、塩化コバルトと塩化ニッケル、あるいはこれらを混合
したものからなる20〜75wt%のコバルトを含む混
合物あるいは混合溶液を110〜350℃で加熱処理し
て得られる生成物をアルカリ水溶液中でアノード酸化す
るか、もしくは前記混合物あるいは混合溶液をアルカリ
水溶液と次亜塩素酸ナトリウムやペルオクソ硫酸カリウ
ム等の酸化剤で処理することによって製造することがで
きる。その場合、生成したオキシ水酸化ニッケルに含ま
れる水分を除去するために100〜250℃で乾燥する
必要がある。
A means for solving the problem, that is, the present invention uses nickel oxyhydroxide containing 20 to 75 wt% of cobalt as a positive electrode active material. Nickel oxyhydroxide containing cobalt is a mixture or mixed solution containing 20 to 75 wt% cobalt, such as cobalt nitrate and nickel nitrate, cobalt sulfate and nickel Ta oxide, cobalt chloride and nickel chloride, or a mixture thereof. The product obtained by heat treatment at 110 to 350°C is anodized in an alkaline aqueous solution, or the mixture or mixed solution is treated with an alkaline aqueous solution and an oxidizing agent such as sodium hypochlorite or potassium peroxosulfate. It can be manufactured by In that case, it is necessary to dry the produced nickel oxyhydroxide at a temperature of 100 to 250° C. in order to remove moisture contained in the nickel oxyhydroxide.

実施例 以下、本発明を実施例を用いて説明する。Example The present invention will be explained below using examples.

先ず、本発明による正極活物質は次の方法で製作するこ
とができる。なお、コバルトの含有量は活物質中の金属
ニッケルおよび金属コバルトの総量に対する合成コバル
ト量の含有率で表わすことにする。すなわち、 コバルトの含有量−(Co / (Ni +Go ) 
)x  10100(%) (a)コバルトの含有量が20〜75wt%の硝酸コバ
ルトと硝酸ニッケルとの混合物あるいはその混合溶液を
110〜350℃で加熱処理した後、水酸化ナトリウム
等のアルカリ水溶液で処理する。次に水洗、乾燥した後
、粉砕し、さらにアルカリ水溶液を用いてアノード酸化
を行ない、水洗、乾燥を行なう。
First, a positive electrode active material according to the present invention can be manufactured by the following method. Note that the content of cobalt is expressed as the content ratio of the amount of synthesized cobalt to the total amount of metal nickel and metal cobalt in the active material. That is, cobalt content - (Co / (Ni + Go)
) x 10100 (%) (a) A mixture of cobalt nitrate and nickel nitrate with a cobalt content of 20 to 75 wt% or a mixed solution thereof is heat-treated at 110 to 350°C, and then heated with an alkaline aqueous solution such as sodium hydroxide. Process. Next, after washing with water and drying, it is pulverized, further subjected to anodic oxidation using an alkaline aqueous solution, and then washed with water and dried.

(b)コバルトの含有量が20〜75wt%の硝酸コバ
ルトと硝酸ニッケルとの混合物あるいはその混合溶液を
110〜350℃で加熱処理した後、次亜塩素酸ナトリ
ウム、臭素あるいはベルオクソ硫酸カリウム等の酸化剤
と水酸化ナトリウム等のアルカリ水溶液とを用いて酸化
し、さらに水洗、乾燥する。
(b) After heating a mixture of cobalt nitrate and nickel nitrate with a cobalt content of 20 to 75 wt% or a mixed solution thereof at 110 to 350°C, oxidation of sodium hypochlorite, bromine, potassium beroxosulfate, etc. and an alkaline aqueous solution such as sodium hydroxide, followed by washing with water and drying.

(C)コバルトの含有(6)が20〜75wt%の混合
溶液、例えば硝酸ニッケルと硝酸コバルトの混合溶液、
硫酸ニッケルと硫酸コバルトの混合溶液、塩化ニッケル
と塩化コバルトの混合溶液、あるいはこれらの混合溶液
を水酸化ナトリウム水溶液等のアルカリ水溶液で処理す
る。次に水洗、乾燥した後、粉砕し、さらにアルカリ水
溶液を用いてアノード酸化を行ない、水洗、乾燥する。
(C) A mixed solution containing 20 to 75 wt% of cobalt (6), for example, a mixed solution of nickel nitrate and cobalt nitrate,
A mixed solution of nickel sulfate and cobalt sulfate, a mixed solution of nickel chloride and cobalt chloride, or a mixed solution thereof is treated with an alkaline aqueous solution such as an aqueous sodium hydroxide solution. Next, after washing with water and drying, it is pulverized, further subjected to anodic oxidation using an alkaline aqueous solution, washed with water, and dried.

(d)コバルトの含有量が20〜75wt%の混合溶液
、例えば硝酸ニッケルと硝酸コバルトの混合溶液、硫酸
ニッケルと硫酸コバルトの混合溶液、塩化ニッケルと塩
化コバルトの混合溶液、あるいはこれら混合溶液を次亜
塩素酸ナトリウム、臭素あるいはペルオクソ硫酸カリウ
ム等の酸化剤と水酸化ナトリウム等のアルカリ水溶液と
を用いて処理し、さらに水洗、乾燥する。
(d) A mixed solution with a cobalt content of 20 to 75 wt%, such as a mixed solution of nickel nitrate and cobalt nitrate, a mixed solution of nickel sulfate and cobalt sulfate, a mixed solution of nickel chloride and cobalt chloride, or a mixed solution of these. It is treated with an oxidizing agent such as sodium chlorite, bromine or potassium peroxosulfate, and an alkaline aqueous solution such as sodium hydroxide, followed by washing with water and drying.

基本的には上記のようにして、本発明による正極活物質
を作ることができるが、次に具体的な実施例並びにその
効果を詳述する。
Although the positive electrode active material according to the present invention can basically be produced as described above, specific examples and their effects will be described in detail below.

実施例1 コバルトの含有量が50wt%[(Go/(Ni+Go
 ) ’) x 1oo]になるような硝酸コバルトと
硝酸ニッケルとの混合水溶液[P)−1=1、比重1.
60(20℃)]を230℃で1時間加熱処理した後、
比g21.20  (20℃)の水酸化ナトリウム水溶
液に浸漬する。次に湯洗した後、110℃で乾燥し、ボ
ールミルで粉砕する。こうして得られた粉末をニッケル
メツシュで作られた容器に入れ、比重1.05(20℃
)の水酸化カリウム水溶液中で、対極にニッケル板を用
い、活物質1g当り0.1への電流でアノード酸化を5
時間行なう。続いて湯洗した後、130℃で2時間乾燥
して本発明による1也活物質を得た。
Example 1 Cobalt content was 50 wt% [(Go/(Ni+Go
)') x 1oo] A mixed aqueous solution of cobalt nitrate and nickel nitrate [P)-1=1, specific gravity 1.
60 (20°C)] at 230°C for 1 hour,
Immerse in an aqueous sodium hydroxide solution with a ratio of 21.20 (20°C). Next, after washing with hot water, it is dried at 110°C and pulverized with a ball mill. The powder thus obtained was placed in a container made of nickel mesh, with a specific gravity of 1.05 (at 20°C).
) in a potassium hydroxide aqueous solution, using a nickel plate as a counter electrode, anodic oxidation was carried out at a current of 0.1 per 1 g of active material.
Do time. Subsequently, after washing with hot water, the material was dried at 130° C. for 2 hours to obtain the Ichiya active material according to the present invention.

実施例2 コバルトの含有量が501℃%[(Co / (Ni 
+Go ) ) x 100Fになるような硝酸コバル
トと硝酸ニッケルとの混合水溶液[PH−1、比重1.
60(20℃)]を230℃で1時間加熱処理した後、
0.2Mのペルオクソ硫酸カリウム(K2 Sz Os
 )を含む比j! 1.15  (20℃)の水酸化ナ
トリウム水溶液に2時間浸漬する。その後、湯洗した後
、130℃で2時間乾燥して本発明による正極活物質を
得た。
Example 2 Cobalt content was 501°C% [(Co/(Ni
+ Go ) ) x A mixed aqueous solution of cobalt nitrate and nickel nitrate such that the concentration is 100F [PH-1, specific gravity 1.
60 (20°C)] at 230°C for 1 hour,
0.2M potassium peroxosulfate (K2 Sz Os
) including ratio j! 1.15 Immerse in aqueous sodium hydroxide solution (20°C) for 2 hours. Then, after washing with hot water, the material was dried at 130° C. for 2 hours to obtain a positive electrode active material according to the present invention.

実施例3 コバルトの含有量が50wt%[(Co / (Ni 
+Co ) ) x 100]になるような硫酸コバル
トと硫酸ニッケルとの混合水溶液[’1−(=2、比重
1.30(20℃>1ニ比重1.20  (2a℃)の
水酸化ナトリウム水溶液を加えて生成した沈澱物を湯洗
した後、110℃で乾燥し、そしてボールミルで粉砕す
る。こうして得られた粉末をニッケルメツシュで作られ
た容器に入れ、比重1.05  (20℃)の水酸化カ
リウム水溶液中で、対極にニッケル板を用い、活物質1
g当り0.1Aの7[1j流でアノード酸化を5時間行
なう。続いて湯洗した後、130℃で2時間乾燥して本
発明による正極活物質を得た。
Example 3 The cobalt content was 50 wt% [(Co/(Ni
+Co ) The precipitate formed by the addition of is washed with hot water, dried at 110°C, and ground in a ball mill.The powder thus obtained was placed in a container made of nickel mesh, and the specific gravity was 1.05 (at 20°C). In an aqueous solution of potassium hydroxide, using a nickel plate as a counter electrode, the active material 1
Anodic oxidation is carried out for 5 hours at a flow of 0.1 A/g. Subsequently, after washing with hot water, the material was dried at 130° C. for 2 hours to obtain a positive electrode active material according to the present invention.

実施例4 コバルトの含有量が50wt%[(Co / (Ni 
+co ) ) x 100]になるような塩化コバル
トと塩化ニッケルとの混合水溶液[PH−2、比重1.
20(20℃)]に0.5M/lの次亜塩素酸ソーダ(
Na OCI )を含む比重1.20  (20℃)の
水酸化ナトリウム水溶液を加えることにより生ずる沈澱
物を湯洗した後、130℃で2時間乾燥して本発明によ
る正極活物質を得た。
Example 4 Cobalt content was 50 wt% [(Co/(Ni
+ co ) ) x 100] A mixed aqueous solution of cobalt chloride and nickel chloride [PH-2, specific gravity 1.
20 (20℃)] and 0.5M/l sodium hypochlorite (
A precipitate formed by adding a sodium hydroxide aqueous solution containing Na OCI ) with a specific gravity of 1.20 (20° C.) was washed with hot water and then dried at 130° C. for 2 hours to obtain a positive electrode active material according to the present invention.

これらの本発明による正極活物質を用いた非水電解液電
池、例えば負極板リチウム、ナトリウム、マグネシウム
あるいはアルミニウム等を用いる電池のうち、最も卑な
電位を示すリチウムを負極活物質の代表例とした場合に
ついてその効果を次に述べる。
Among these nonaqueous electrolyte batteries using the positive electrode active material according to the present invention, for example, batteries using a negative electrode plate of lithium, sodium, magnesium, or aluminum, lithium, which has the lowest potential, was used as a representative example of the negative electrode active material. The effect in this case will be described below.

実施例1〜4で1りた正極活物質0.49と導電材とし
て10wt%のグラファイト、結着剤として5wt%の
ポリテトラフルオロエチレン粉末をよく混合した後、S
OO勺/dの圧力で円板状(11mmφ)に成形して正
極板を作り、負極板は金属リチウムを圧延して得た1、
25m1mのシートから円板状(7,5manφ)に打
法いて製作した。このリチウム負極板をステンレス製の
負極缶に溶接したステンレス網の集電体に圧着し、正極
板も同様に正穫缶に圧着させた。電解液には過塩素酸リ
チウム(Li Cl0a)を1  mol/R溶解させ
たプロピレンカーボネートを用い、これをポリプロピレ
ン不織布のセパレータに含浸させて使用した。
S
The positive electrode plate was made by molding it into a disk shape (11 mmφ) under a pressure of 0.0 mm/d, and the negative electrode plate was obtained by rolling metallic lithium.
It was manufactured by punching a 25m1m sheet into a disc shape (7.5 manφ). This lithium negative electrode plate was crimped to a stainless steel current collector welded to a stainless steel negative electrode can, and the positive electrode plate was similarly crimped to the positive electrode can. Propylene carbonate in which 1 mol/R of lithium perchlorate (Li Cl0a) was dissolved was used as the electrolytic solution, and this was used by impregnating a polypropylene nonwoven fabric separator.

これらのエレメントをポリプロピレン類の絶縁バッキン
グを介してかしめ、外形11.6mm、高さ4.2am
の本発明のボタン形非水電解液電池を製作した。実施例
1〜4で得た正極活物質を用いた電池をそれぞれA、B
、CおよびDとする。これらの電池を20℃の温度下で
20にΩの定抵抗を介して放電した時の放電特性を第1
図に示す。
These elements are caulked through an insulating backing made of polypropylene, and the outer diameter is 11.6 mm and the height is 4.2 am.
A button-type non-aqueous electrolyte battery according to the present invention was manufactured. Batteries using the positive electrode active materials obtained in Examples 1 to 4 were labeled A and B, respectively.
, C and D. The discharge characteristics when these batteries were discharged through a constant resistance of 20Ω at a temperature of 20°C were
As shown in the figure.

図より、本発明の電池の放電電圧は2.4〜2.7Vと
安定な電圧を示し、良好な特性であることがわかる。特
にコバルトとニッケルとの混合硝酸溶液を加熱処理して
製作した正極活物質を用いた電池AおよびBの方が、コ
バルトとニッケルとの混合溶液とアルカリ水溶液とで中
和して製作した正極活物質を用いた電池CおよびDより
も特性が優れている。なお、比較例としてコバルトの含
有量が8%の硝酸コバルトと硝酸ニッケルとの混合水m
’fiを用いた以外は全て実施例1と同様にして製作し
た正極活物質を用いて前記と同様な電池Eを製作して放
電を行なったが、はとんど容量を取り出すことができな
かった。
From the figure, it can be seen that the discharge voltage of the battery of the present invention is stable at 2.4 to 2.7 V, and has good characteristics. In particular, batteries A and B using positive electrode active materials manufactured by heat treating a mixed nitric acid solution of cobalt and nickel are better than batteries A and B using positive electrode active materials manufactured by neutralizing a mixed solution of cobalt and nickel with an alkaline aqueous solution. It has better characteristics than batteries C and D that use the same material. As a comparative example, mixed water of cobalt nitrate and nickel nitrate with a cobalt content of 8% was used.
A battery E similar to that described above was manufactured using a positive electrode active material manufactured in the same manner as in Example 1 except for using 'fi, and discharged, but the capacity could not be extracted. Ta.

さらに、本発明の電池A、B、CおよびDの特徴的なこ
とは二次電池としても、使用可能である点である。これ
らの本究明の電池を2  mAの電流で端子電圧が4.
5■になるまで充電した後、20にΩの定抵抗で1.5
■まで放電するという充tlliを15サイクル行なっ
たとぎの15サイクル目の放電特性を第2図に示す。い
ずれの電池の放電持続時間も初期に比較して約20%低
下しているものの、充m電を繰り返し行なうことができ
ることがわかる。
Furthermore, a characteristic feature of batteries A, B, C, and D of the present invention is that they can also be used as secondary batteries. These batteries were tested at a terminal voltage of 4.0 mA at a current of 2 mA.
After charging until it becomes 5■, it becomes 1.5 with a constant resistance of 20Ω.
FIG. 2 shows the discharge characteristics at the 15th cycle after 15 cycles of charging (discharging to ■). Although the discharge duration of each battery was reduced by about 20% compared to the initial stage, it can be seen that charging can be performed repeatedly.

このように本発明による正極活物質が非水電解液電池の
正極活物質として有効であることがわかる。次に本発明
の正極活物質が従来のアルカリ電池用活物質である水酸
化ニッケルとどのような違いがあるかを調べるために、
本発明による電池Aおよび従来の電池Eの正極活物質を
比Φ1.25(20℃)の水酸化カリウム水溶液中、2
0 mAで放電し、さらに20111Aで充電した時の
電位および充放電中に電流を遮断してその開路電位を測
定した。
Thus, it can be seen that the positive electrode active material according to the present invention is effective as a positive electrode active material for non-aqueous electrolyte batteries. Next, in order to investigate how the positive electrode active material of the present invention differs from nickel hydroxide, which is a conventional active material for alkaline batteries,
The positive electrode active materials of the battery A according to the present invention and the conventional battery E were mixed in a potassium hydroxide aqueous solution with a ratio of Φ1.25 (20°C) at 2
The potential when the battery was discharged at 0 mA and then charged at 20111A, and the open circuit potential when the current was interrupted during charging and discharging were measured.

その電位変化と開路電位の変化とを本発明による電池A
の正極板について第3図に、従来の電池Eの正極板につ
いて第4図に示す。図において、実線が充放電の電位変
化であり、破線が開路電位の変化である。本発明による
電池の正極板の開路電位の変化(第3図)は充放電に伴
なってS字形に大きく変化し、放電初期から放電終期、
充′yi初期から充電終期にかけて約500Ill■あ
る。これに対して、従来の電池の正極板の場合(第4図
)は約150mVと小さい。このことは本発明による正
極活物質のアルカリ水溶液における充放電は、従来の正
極活物質よりもその反応様構がより一層プロトンの均一
固相反応にしたがうことを意味しているものと思われる
The change in potential and the change in open circuit potential of the battery A according to the present invention
The positive electrode plate of conventional battery E is shown in FIG. 3, and the positive electrode plate of conventional battery E is shown in FIG. In the figure, the solid line represents the potential change during charging and discharging, and the broken line represents the change in the open circuit potential. The change in the open circuit potential of the positive electrode plate of the battery according to the present invention (Fig. 3) changes greatly in an S-shape with charging and discharging, from the early stage of discharge to the end of discharge,
There are approximately 500 Ill■ from the beginning of charging to the end of charging. On the other hand, in the case of the positive electrode plate of a conventional battery (FIG. 4), the voltage is as small as about 150 mV. This seems to mean that when the positive electrode active material according to the present invention is charged and discharged in an alkaline aqueous solution, the reaction pattern follows the homogeneous solid phase reaction of protons more than the conventional positive electrode active material.

次に前記した実施例2と同様な方法で、但し硝酸コバル
トと硝酸ニッケルとの混合割合を変えて正極活物質を製
作し、これらの正極活物質と負極にリチウムを用いた先
の場合と同様なボタン形非水電解液電池を製作し、20
℃の温度下で20にΩの定抵抗を介して放電を行なった
。その時の放雷持続時間とコバルトの含有量との関係を
第5図に示す。第5図より、非水電解液電池としての正
極活物質の活性度はコバルトの含有量が20wt%を越
えると著しく高くなり、コバルトの含有量が70wt%
を越えると逆に不活性となることがわかる。したがって
非水電解液電池の正極活物質としてはコバルトの含有量
は20wt%以上、75wt%以下、好ましくは25w
’t%〜70vt%の範囲であることがわかる。
Next, a positive electrode active material was produced using the same method as in Example 2 described above, but with a different mixing ratio of cobalt nitrate and nickel nitrate, and lithium was used for these positive electrode active materials and the negative electrode. A button-shaped non-aqueous electrolyte battery was manufactured, and 20
Discharge was carried out through a constant resistance of 20 Ω at a temperature of .degree. The relationship between the lightning duration and the cobalt content at that time is shown in FIG. From Figure 5, the activity of the positive electrode active material as a non-aqueous electrolyte battery increases significantly when the cobalt content exceeds 20 wt%, and when the cobalt content exceeds 70 wt%.
It can be seen that if it exceeds , it becomes inactive. Therefore, as a positive electrode active material for a non-aqueous electrolyte battery, the content of cobalt is 20 wt% or more and 75 wt% or less, preferably 25 wt%.
It can be seen that the range is from 't% to 70vt%.

このようにコバルトの含有量が20〜75wt%の範囲
で、正極活1勿質としての活性度が生ずる理由は定かで
ないが、コバルトの含有量が20wt%未満の場合は、
前述したように放電時における開路電位の変化が高々1
50〜170mVであるのに対して、コバルトの含有量
が20wt%以上になるとその開路電位の変化が200
mV以上になり、コバルトの含有量が40〜60wt%
になると500IIIV程度と極めて大きくなる。した
がって、コバルトの含有量が20wt%以上特に25w
t%以上になると、アルカリ水溶液中ではプロトンの均
一固相反応が明確となり、プロトンの拡散が非常に容易
になるものと推定できる。
Although it is not clear why the positive electrode activity is high when the cobalt content is in the range of 20 to 75 wt%, when the cobalt content is less than 20 wt%,
As mentioned above, the change in open circuit potential during discharge is at most 1
50 to 170 mV, whereas when the cobalt content is 20 wt% or more, the change in open circuit potential is 200 mV.
mV or more, and the cobalt content is 40 to 60 wt%
It becomes extremely large, about 500IIIV. Therefore, if the cobalt content is 20wt% or more, especially 25w
It can be assumed that when the concentration exceeds t%, a homogeneous solid-phase reaction of protons becomes clear in an alkaline aqueous solution, and proton diffusion becomes extremely easy.

この場合、コバルトとニッケルとは固溶体を形成し、均
一相からなるものと考えられる。一方、負極にリチウム
を用いた非水電解液電池においてもコバルトの含有量が
20wt%以上になると、プロトンの代りにリチウムイ
オンが活物質内部へ拡散し易くなり、正極活物質として
の活性度が高くなるものと思われる。一方、コバルトの
含有aが75wt%を越えると、X線回折分析の結果か
ら、C0(Ni )OOH(7)他に−CO30nやC
002等が生成することがわかった。したがって、この
ようなコバルトの化合物が存在すると、活物質の活性度
が低下するものと思われる。
In this case, cobalt and nickel are considered to form a solid solution and consist of a homogeneous phase. On the other hand, even in non-aqueous electrolyte batteries that use lithium in the negative electrode, when the cobalt content exceeds 20 wt%, lithium ions instead of protons tend to diffuse into the active material, reducing its activity as a positive electrode active material. It is expected that the price will be higher. On the other hand, when the cobalt content a exceeds 75 wt%, the results of X-ray diffraction analysis show that in addition to C0(Ni)OOH(7), -CO30n and C
002 etc. were found to be generated. Therefore, the presence of such a cobalt compound is thought to reduce the activity of the active material.

次に前記した実施例4と同様な方法で、但し乾燥温度を
75℃、100℃、125℃、150℃、175℃、2
00℃、225℃および300℃として正極活物質を製
作し、これらの正極活物質と負極にリチウ11を用いた
先の場合と同様なボタン形非水電解液電池を製作して、
第1図で行なった試験と同様な条件で放電を行なった。
Next, in the same manner as in Example 4 described above, except that the drying temperature was changed to 75°C, 100°C, 125°C, 150°C, 175°C, 2
00°C, 225°C, and 300°C, and produced a button-shaped nonaqueous electrolyte battery similar to the previous case using these positive electrode active materials and lithium 11 for the negative electrode.
Discharge was carried out under the same conditions as the test conducted in FIG.

その結果を表1に示す。The results are shown in Table 1.

(以下余白) 表1 放電持続時間に及ぼす乾燥 温度の影響 表1より、乾燥温度は125〜225℃の範囲が最も良
好であるが、100〜250℃の範囲でも電池性能上、
使用できる。なお、乾燥温度が75℃と低いと放電が不
能となり、また300℃と高くなると活性度が低下する
ことがわかる。これは乾燥温度が100℃以下の場合に
は付着水が充分に除去できないこと、また300℃以上
の場合には生成したオキシ水酸化ニッケル(コバルト)
Ni  (Co)00Hが熱分解を受け、Co  (N
! )203やC0(Ni)304が生成することに基
くものと思われる。
(Leaving space below) Table 1 Effect of drying temperature on discharge duration According to Table 1, a drying temperature in the range of 125 to 225°C is best, but even a drying temperature in the range of 100 to 250°C has a negative impact on battery performance.
Can be used. It can be seen that when the drying temperature is as low as 75°C, discharge becomes impossible, and when the drying temperature is as high as 300°C, the activity decreases. This is because adhering water cannot be removed sufficiently if the drying temperature is below 100°C, and if the drying temperature is above 300°C, nickel oxyhydroxide (cobalt) is produced.
Ni (Co)00H undergoes thermal decomposition and becomes Co (N
! ) 203 and C0(Ni) 304 are produced.

発明の効果 以上述べたように本発明によれば、従来にない新しい非
水電解液電池用正極活物質を4!?ることができ、また
−次電池のみならず二次電池を製作することができる。
Effects of the Invention As described above, according to the present invention, a new cathode active material for non-aqueous electrolyte batteries that has never existed before can be produced. ? Furthermore, not only secondary batteries but also secondary batteries can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による非水電解液電池の放電特性比較図
、第2図は本発明による非水電解液電池を15サイクル
の充放電を行なった後のtIlffl特性比較図、第3
図は本発明による正極活物質をアルカリ水溶液中で放電
した時の充放電電位特性と開路電位の変化とを示す特性
図、第4図は従来の活物質をアルカリ水溶液中で放電し
た時の充放電電位特性と開路電位力変化とを示す特性図
、第5図はコバルトの含有量の異なる本発明による正極
活物質の放電持続時間の変化を示す特性図である。 倉 1 z 六 2 図 依惚片娩咋N’f/h A  3  凹 許   団   / h オ  4  図 行   関   / h オ  5  丙
FIG. 1 is a comparison diagram of the discharge characteristics of the non-aqueous electrolyte battery according to the present invention, FIG.
The figure is a characteristic diagram showing the charge/discharge potential characteristics and the change in open circuit potential when the positive electrode active material according to the present invention is discharged in an alkaline aqueous solution. FIG. 5 is a characteristic diagram showing changes in discharge potential characteristics and open circuit potential force. FIG. 5 is a characteristic diagram showing changes in discharge duration of positive electrode active materials according to the present invention having different cobalt contents. Kura 1 z 6 2 Zuyai Kotaku N'f/h A 3 Congregation group / h O 4 Zugyo Guan / h O 5 Hei

Claims (2)

【特許請求の範囲】[Claims] (1)20〜75wt%のコバルトを含むオキシ水酸化
ニッケルを正極活物質に用い、非水電解液例えばプロピ
レンカーボネートやγ−ブチルラクトン等を電解液に用
いたことを特徴とする非水電解液電池。
(1) A non-aqueous electrolyte characterized by using nickel oxyhydroxide containing 20 to 75 wt% cobalt as the positive electrode active material and using a non-aqueous electrolyte such as propylene carbonate or γ-butyllactone as the electrolyte. battery.
(2)硝酸コバルトと硝酸ニッケル、硫酸コバルトと硫
酸ニッケル、塩化コバルトと塩化ニッケル、あるいはこ
れらを混合したものからなる20〜75wt%のコバル
トを含む混合物あるいは混合溶液を加熱処理して得られ
る生成物をアルカリ水溶液中でアノード酸化するか、も
しくは前記混合物あるいは混合溶液をアルカリ水溶液と
次亜塩素酸ナトリウムやベルオクソ硫酸カリウム等の酸
化剤で処理し、コバルトを含むオキシ水酸化ニッケルを
正極活物質として得ることを特徴とする非水電解液電池
用正極活物質の製造方法。
(2) A product obtained by heat treating a mixture or mixed solution containing 20 to 75 wt% cobalt, such as cobalt nitrate and nickel nitrate, cobalt sulfate and nickel sulfate, cobalt chloride and nickel chloride, or a mixture thereof. is anodized in an alkaline aqueous solution, or the mixture or mixed solution is treated with an alkaline aqueous solution and an oxidizing agent such as sodium hypochlorite or potassium oxosulfate to obtain nickel oxyhydroxide containing cobalt as a positive electrode active material. A method for producing a positive electrode active material for a non-aqueous electrolyte battery, characterized in that:
JP61163233A 1986-07-10 1986-07-10 Non-aqueous electrolyte battery and method for producing positive electrode active material thereof Expired - Fee Related JPH0750606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163233A JPH0750606B2 (en) 1986-07-10 1986-07-10 Non-aqueous electrolyte battery and method for producing positive electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163233A JPH0750606B2 (en) 1986-07-10 1986-07-10 Non-aqueous electrolyte battery and method for producing positive electrode active material thereof

Publications (2)

Publication Number Publication Date
JPS6319760A true JPS6319760A (en) 1988-01-27
JPH0750606B2 JPH0750606B2 (en) 1995-05-31

Family

ID=15769861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163233A Expired - Fee Related JPH0750606B2 (en) 1986-07-10 1986-07-10 Non-aqueous electrolyte battery and method for producing positive electrode active material thereof

Country Status (1)

Country Link
JP (1) JPH0750606B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733974A1 (en) * 1995-04-28 1996-11-15 Japan Storage Battery Co Ltd PROCESS FOR PRODUCING LICKIUM-CONTAINING NICKEL OXIDE
EP0841711A1 (en) * 1996-11-08 1998-05-13 Japan Storage Battery Company Limited Lithium battery
EP0843372A1 (en) * 1996-11-18 1998-05-20 Japan Storage Battery Company Limited Positive electrode for lithium battery and lithium battery
US5783334A (en) * 1996-04-01 1998-07-21 Japan Storage Battery Co., Ltd. Method for producing lithium nickelate positive electrode and lithium battery using the same
EP0809310A3 (en) * 1996-05-24 1999-12-15 Japan Storage Battery Company Limited Lithium battery and method producing positive electrode active material therefor
JP2001351629A (en) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd Non-aqueous electrolyte battery
JP2001351630A (en) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolyte battery and non-aqueous electrolyte battery positive electrode material
JP2002003223A (en) * 2000-06-16 2002-01-09 Tanaka Chemical Corp Surface electroconductive oxy nickel hydroxide and method for manufacturing it
JP2005112691A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Method of manufacturing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell provided with electrode containing the lithium-containing nickel oxyhydroxide
JP2011081971A (en) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology Nickel-lithium secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733974A1 (en) * 1995-04-28 1996-11-15 Japan Storage Battery Co Ltd PROCESS FOR PRODUCING LICKIUM-CONTAINING NICKEL OXIDE
US5720932A (en) * 1995-04-28 1998-02-24 Japan Storage Battery Co., Ltd. Method of producing lithium nickelate which contains cobalt
CN1078748C (en) * 1995-04-28 2002-01-30 日本电池株式会社 Method of producing active material of positive electrode for nonaqueous battery
US5783334A (en) * 1996-04-01 1998-07-21 Japan Storage Battery Co., Ltd. Method for producing lithium nickelate positive electrode and lithium battery using the same
US6335119B1 (en) 1996-05-24 2002-01-01 Japan Storage Battery Co., Ltd. Lithium battery and method of producing positive electrode active material therefor
EP0809310A3 (en) * 1996-05-24 1999-12-15 Japan Storage Battery Company Limited Lithium battery and method producing positive electrode active material therefor
US6074784A (en) * 1996-11-08 2000-06-13 Japan Storage Battery Co., Ltd. Lithium battery
EP0841711A1 (en) * 1996-11-08 1998-05-13 Japan Storage Battery Company Limited Lithium battery
EP0843372A1 (en) * 1996-11-18 1998-05-20 Japan Storage Battery Company Limited Positive electrode for lithium battery and lithium battery
JP2001351629A (en) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd Non-aqueous electrolyte battery
JP2001351630A (en) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolyte battery and non-aqueous electrolyte battery positive electrode material
JP2002003223A (en) * 2000-06-16 2002-01-09 Tanaka Chemical Corp Surface electroconductive oxy nickel hydroxide and method for manufacturing it
JP2005112691A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Method of manufacturing lithium-containing nickel oxyhydroxide and non-aqueous electrolyte electrochemical cell provided with electrode containing the lithium-containing nickel oxyhydroxide
JP2011081971A (en) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology Nickel-lithium secondary battery

Also Published As

Publication number Publication date
JPH0750606B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JPH0349178B2 (en)
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPS6319760A (en) Nonaqueous electrolyte battery and manufacture of its positive active material
CN106848256B (en) A kind of nickel iron cell core duplex shell structure cathode nano material and its preparation method and application
CN111430701A (en) Lithium-rich carbonate precursor and preparation method and application thereof
JPS63148550A (en) Nonaqueous secondary battery
JPS6319761A (en) Manufacture of positive active material for nonaqueous electrolyte battery
JPH01235158A (en) Nonaqueous secondary battery
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0554912A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JPS59128765A (en) Nonaqueous electrolyte battery
JP2799007B2 (en) Method for producing positive electrode in non-aqueous electrolyte secondary battery
JP2798991B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery
JPH0475267A (en) Nonaqueous secondary battery
JP3009673B2 (en) Non-aqueous electrolyte secondary battery
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2849183B2 (en) Non-aqueous electrolyte secondary battery
JPS5991670A (en) Manufacture of organic electrolyte battery
JP2001035526A (en) Nickel hydrogen storage battery
JP2979641B2 (en) Non-aqueous electrolyte secondary battery
JPH041466B2 (en)
JPH034445A (en) Nonaqueous medium secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees