JP2798991B2 - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery

Info

Publication number
JP2798991B2
JP2798991B2 JP1207000A JP20700089A JP2798991B2 JP 2798991 B2 JP2798991 B2 JP 2798991B2 JP 1207000 A JP1207000 A JP 1207000A JP 20700089 A JP20700089 A JP 20700089A JP 2798991 B2 JP2798991 B2 JP 2798991B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
manganese dioxide
discharge
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1207000A
Other languages
Japanese (ja)
Other versions
JPH0374062A (en
Inventor
浩平 山本
義久 日野
吉郎 原田
正典 中西
秀哲 名倉
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP1207000A priority Critical patent/JP2798991B2/en
Publication of JPH0374062A publication Critical patent/JPH0374062A/en
Application granted granted Critical
Publication of JP2798991B2 publication Critical patent/JP2798991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、非水電界液二次電池の製造方法に関し、
特に正極の製造初期段階における放電処理によってサイ
クル特性および容量の向上を図るようにした方法に関す
る。
The present invention relates to a method for producing a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to a method in which cycle characteristics and capacity are improved by discharge treatment in an initial stage of manufacturing a positive electrode.

《従来の技術》 リチウム二次電池における正極活物質として二酸化マ
ンガンが知られている。
<< Prior Art >> Manganese dioxide is known as a positive electrode active material in a lithium secondary battery.

この二酸化マンガンは保存性(安定性)にすぐれ、資
源的に豊富であることと、安価であることなどから多用
されているが、負極活物質であるリチウムが水分との反
応性に富むため、実用にあたっては熱処理を施し、水分
を除去しなければならない。
This manganese dioxide is widely used because of its excellent preservability (stability), abundant resources and low cost. However, since lithium as the negative electrode active material is highly reactive with moisture, In practical use, heat treatment must be performed to remove water.

ところが、この種の熱処理を施すことによって二酸化
マンガンの結晶形態はγ型からβ−γ型或いはβ型に変
化するといわれている。
However, it is said that the crystal form of manganese dioxide changes from γ-type to β-γ-type or β-type by performing this kind of heat treatment.

そして、γ型結晶構造の二酸化マンガンは放電後の結
晶の崩れが小さいが、β−γ型或いはβ型は放電時の結
晶構造の崩れが大きく、可逆性に難があることから、放
電回数に応じて容量が低下し、サイクル特性が低下する
欠点があった。
Manganese dioxide having a γ-type crystal structure has a small collapse of the crystal after discharge, whereas β-γ or β-type has a large collapse of the crystal structure at the time of discharge. Accordingly, there is a disadvantage that the capacity is reduced and the cycle characteristics are reduced.

このため、例えば特開昭62−108455号公報に示すよう
に、リチウムをドープした電解二酸化マンガンを熱処理
して得たものを正極活物質として用いることが提案され
ている。
For this reason, it has been proposed to use, as a positive electrode active material, one obtained by heat-treating lithium-doped electrolytic manganese dioxide as disclosed in, for example, JP-A-62-108455.

この構造の二酸化マンガンは熱処理しても結晶構造の
変化が抑制され、従来の二酸化マンガン単体を熱処理し
て得た正極活物質を用いた電池に比べてサイクル特性に
すぐれることが示されている。
Manganese dioxide of this structure suppresses the change in crystal structure even when heat-treated, indicating that the manganese dioxide has better cycle characteristics than batteries using a positive electrode active material obtained by heat-treating conventional manganese dioxide alone. .

《発明が解決しようとする課題》 この発明は、以上の二酸化マンガンと金属の焼成体の
もつすぐれたサイクル特性をさらに向上させることを目
的として種々検討した結果、製造初期段階において放電
制御を行うことにより、一旦アルカリ金属イオンを正極
活物質中にドープし、その後充電を行うことによりさら
にサイクル特性および容量を向上した正極活物質を得ら
れることを知見し、本発明を完成するに至った。
《Problems to be solved by the invention》 As a result of various studies for the purpose of further improving the superior cycle characteristics of the fired body of manganese dioxide and metal as described above, the present invention is to perform discharge control in the initial stage of production. As a result, the inventors have found that a positive electrode active material having further improved cycle characteristics and capacity can be obtained by doping alkali metal ions into the positive electrode active material once and then charging the same, and have completed the present invention.

《課題を解決するための手段》 前記目的を達成するため、この発明は、アルカリ金
属,アルカリ土類金属,遷移金属,或いは希土類金属化
合物のうちの少なくとも1種類を二酸化マンガンに添加
し、加熱して得た正極を、非水電解液の存在化でアルカ
リ金属に対向させ、24時間後の回復開路電圧が1.5〜2.7
Vになるまで放電することにより、正極内部にアルカリ
金属イオンをドープすることを特徴とする。
<< Means for Solving the Problems >> In order to achieve the above object, the present invention relates to a method of adding at least one kind of alkali metal, alkaline earth metal, transition metal, or rare earth metal compound to manganese dioxide and heating the mixture. The positive electrode thus obtained is opposed to an alkali metal in the presence of a non-aqueous electrolyte, and the recovery open circuit voltage after 24 hours is 1.5 to 2.7.
By discharging to V, the inside of the positive electrode is doped with an alkali metal ion.

より具体的には、前述のごとき組成の正極とアルカリ
負極をセパレータを介して積層し、非水電解液を加えて
完成した非水電解液二次電池の製造直後の段階で前述の
放電処理を行っても良いし、組立前の状態で前記正極に
同様の放電処理を行い、その後この正極を用いて電池を
組み立てることもできる。
More specifically, the above-described discharge treatment is performed immediately after the production of the completed non-aqueous electrolyte secondary battery by laminating a positive electrode and an alkali negative electrode having the above-described composition via a separator, and adding a non-aqueous electrolyte. Alternatively, the same discharge treatment may be performed on the positive electrode before assembling, and then the battery may be assembled using the positive electrode.

また、前記二酸化マンガン中に添加されるアルカリ金
属としてはリチウムを、アルカリ土類金属としてはカル
シウム,マグネシウムを、遷移金属としてクローム,
鉄,コバルト,バナジウム,モリブデン,チタン,タン
グステンを、希土類金属化合物としてはランタン,セシ
ウムを用いることができる。
Lithium is added as an alkali metal added to the manganese dioxide, calcium and magnesium are used as alkaline earth metals, and chromium and magnesium are used as transition metals.
Iron, cobalt, vanadium, molybdenum, titanium and tungsten can be used, and lanthanum and cesium can be used as rare earth metal compounds.

《作 用》 以上の放電処理を実施した正極を用いた非水電解液二
次電池によれば、従来のアルカリ金属イオンを二酸化マ
ンガン中にドープしただけの正極を用いたものに比べて
サイクル特性が向上し、かつ容量も向上する。
<Operation> According to the non-aqueous electrolyte secondary battery using the positive electrode subjected to the above-described discharge treatment, the cycle characteristics are higher than those using the conventional positive electrode in which alkali metal ions are simply doped into manganese dioxide. And the capacity is also improved.

そして、この事実は、二酸化マンガンと金属化合物と
の焼成体を作ることにより二酸化マンガンの結晶形態に
変化が生ずることは前述のごとく確認されているが、こ
れに加えて正極に放電によってアルカリ金属イオンをド
ープし、その後の充放電時のアルカリ金属イオンの出入
りにおける可逆性に対してさらに有利な構造に改質され
るものと推察される。
And, as mentioned above, it is confirmed that the morphology of manganese dioxide changes when a fired body of manganese dioxide and a metal compound is produced. Is presumed to be modified to a structure that is more advantageous for the reversibility of the entrance and exit of alkali metal ions during subsequent charge and discharge.

《発明の効果》 この発明方法では、同一の金属化合物を添加した二酸
化マンガンからなる正極において、従来よりもサイクル
特性の向上と、容量の増加を図ることができる。
<< Effects of the Invention >> In the method of the present invention, in the positive electrode made of manganese dioxide to which the same metal compound is added, the cycle characteristics can be improved and the capacity can be increased as compared with the related art.

また、製造工程の最終段階で初期放電処理と再充電工
程を付加するだけで前述の効果を得られるので、既存の
非水電解液二次電池の製造工程の主要部を何等改変する
ことなく行うことができ、容易に実施出来る。
In addition, since the above-described effects can be obtained only by adding the initial discharge process and the recharging process at the final stage of the manufacturing process, the main portion of the existing non-aqueous electrolyte secondary battery manufacturing process is performed without any modification. And can be easily implemented.

《実 施 例》 以下、この発明の実施例を説明する。<< Embodiment >> An embodiment of the present invention will be described below.

この発明の非水電解液二次電池は以下の(イ)〜
(ホ)の製造工程を経て作られる。
The non-aqueous electrolyte secondary battery of the present invention has the following (a) to
It is made through the manufacturing process of (e).

(イ)電解によって得られた二酸化マンガン1モルに対
してLiOH,Ca(OH)2,Mg(OH)2,Cr2O3,FeO3,CoO,V2O3,M
nO3,TiO2,WO3,La2O3,およびCe2O3をそれぞれ0.1モル添
加し、乳鉢で十分混合した後これら混合物を400℃で加
熱し、冷却後さらに混合し、400℃で72時間の加熱処理
を行い正極活物質を得た。
(B) LiOH respect manganese dioxide 1 mol obtained by electrolysis, Ca (OH) 2, Mg (OH) 2, Cr 2 O 3, FeO 3, CoO, V 2 O 3, M
0.1 mol of each of nO 3 , TiO 2 , WO 3 , La 2 O 3 , and Ce 2 O 3 were added, and the mixture was thoroughly mixed in a mortar, heated at 400 ° C., cooled, and further mixed at 400 ° C. Heat treatment was performed for 72 hours to obtain a positive electrode active material.

(ロ)得られた正極活物質8重量部に対しアセチレンブ
ラック1重量部,バインダとしてPTFE粉末を1重量部混
合し直径13mm,厚さ1.2mmのペレット状の正極に成形し
た。
(B) 8 parts by weight of the obtained positive electrode active material was mixed with 1 part by weight of acetylene black and 1 part by weight of PTFE powder as a binder to form a pellet-shaped positive electrode having a diameter of 13 mm and a thickness of 1.2 mm.

(ハ)次にこれらの正極を用いその他は従来と同様の方
法によってCR2016タイプのコイン型電池を組み立てた。
(C) Next, a CR2016 type coin-type battery was assembled using these positive electrodes by the same method as the conventional method except for the above.

なお、負極活物質としては金属リチウムを用い、セパ
レータにはポリプロピレン多孔膜を用い、非水電解液と
してはPC:DME=1:1,LiClO4 1mol/を用いた。
Note that metallic lithium was used as the negative electrode active material, a polypropylene porous film was used as the separator, and PC: DME = 1: 1, LiClO 4 1 mol / was used as the nonaqueous electrolyte.

(ニ)組立直後の段階で、各電池に500Ωの抵抗を接続
し、24時間後の回復開路電圧が2.5Vになるまで初期放電
処理を行った。
(D) Immediately after the assembly, a resistance of 500Ω was connected to each battery, and an initial discharge treatment was performed until the recovery open circuit voltage after 24 hours became 2.5V.

(ホ)引き続き各電池に1mAで3.5Vまで充電を行い、製
品とした。
(E) Each battery was subsequently charged at 1 mA up to 3.5 V to produce a product.

次に以上の製造工程を経て作られた各電池の充放電サ
イクルを50回まで行った結果、第1図に示すサイクルに
対する容量(mA)の特性が得られた。なお、充放電電流
は1mA,最低電圧2.2V,最高電圧3.5Vの繰返しとした。
Next, the charge / discharge cycle of each battery manufactured through the above manufacturing process was performed up to 50 times, and as a result, the characteristic of capacity (mA) with respect to the cycle shown in FIG. 1 was obtained. The charge / discharge current was 1 mA, the minimum voltage was 2.2 V, and the maximum voltage was 3.5 V.

また、参照として二酸化マンガン単体からなる正極活
物質を用いた電池、二酸化マンガンにリチウムを添加し
た正極活物質で初期放電処理を行わなかった電池につい
ての充放電サイクル特性も同時に測定した。
In addition, as a reference, charge / discharge cycle characteristics of a battery using a positive electrode active material composed of manganese dioxide alone and a battery in which initial discharge treatment was not performed with a positive electrode active material obtained by adding lithium to manganese dioxide were also measured.

図からは、各添加物質についてそれぞれサイクル特性
のバラツキが生じているが、例えばリチウムを添加した
正極で初期放電処理をしたものと、初期放電処理をしな
いものとを比較すると、初期は大きな差はないが、20サ
イクル目で有意差が生じ、50サイクルでは極端に容量の
差が生じていることが理解される。
From the figure, it can be seen that the cycle characteristics of the respective additive substances vary, but for example, when comparing the initial discharge treatment with the lithium-added positive electrode and the one without the initial discharge treatment, the initial difference is large. However, it is understood that a significant difference occurs at the 20th cycle, and an extremely large capacity difference occurs at the 50th cycle.

さらに二酸化マンガン単体の正極を用いた電池と他の
金属化合物を添加したものとを比べても極端な差が確認
されている。
Further, an extreme difference has been confirmed between a battery using a positive electrode of manganese dioxide alone and a battery containing another metal compound.

次に、二酸化マンガンに対する各金属物質の添加割合
を10〜70モル%まで変えた場合の充放電サイクル10回に
おける放電容量について調査した結果、第2図に示す結
果が得られた。なお、調査対象金属化合物としてはLi,C
a,Cr,Laを選んだ。
Next, as a result of investigating the discharge capacity in 10 charge / discharge cycles when the addition ratio of each metal substance to manganese dioxide was changed from 10 to 70 mol%, the results shown in FIG. 2 were obtained. In addition, Li, C
a, Cr, La were selected.

この結果より、添加量50モル%程度までは放電容量は
漸滅しているが、これを越えると極端に容量低下する。
According to this result, the discharge capacity is gradually reduced up to the addition amount of about 50 mol%, but when it exceeds this, the capacity is extremely reduced.

したがって、二酸化マンガンに対する各種金属の添加
量は上限を50モル%としそれ以下の添加割合とすること
が望ましいことが判明した。
Therefore, it was found that the upper limit of the amount of various metals to be added to manganese dioxide was 50 mol%, and it was desirable that the addition ratio be less than that.

次に製造工程(イ)の加熱処理工程において、処理温
度の放電容量に及ぼす影響をLi,Laについて20サイクル
目の放電容量を測定したところ、第3図に示す結果を得
られた。
Next, in the heat treatment step of the production step (a), the influence of the treatment temperature on the discharge capacity was measured for the discharge capacity at the 20th cycle for Li and La, and the results shown in FIG. 3 were obtained.

この結果から、加熱処理温度としては200〜450℃の範
囲が容量の低下が少なく、特に300℃での熱処理が結晶
構造に対して好影響を与えることが判明した。
From this result, it was found that the heat treatment temperature in the range of 200 to 450 ° C. had a small decrease in capacity, and that the heat treatment at 300 ° C. particularly had a favorable effect on the crystal structure.

次に(ニ)の初期放電処理工程での放電処理条件によ
る影響をLi,La,無添加二酸化マンガンについて測定した
ところ、第4図に示す測定結果を得られた。
Next, when the influence of the discharge treatment conditions in the initial discharge treatment step (d) was measured for Li, La, and manganese dioxide without addition, the measurement results shown in FIG. 4 were obtained.

この結果から、初期放電処理としては図の斜線の範囲
内である1.5〜2.7V間での回復開路電圧まで放電するこ
とが望ましく、この範囲以外の場合ではいずれも放電容
量が低下する。
From this result, it is desirable to discharge to the recovery open-circuit voltage between 1.5 and 2.7 V, which is within the range of the hatched area in the figure, as the initial discharge processing, and in any other case, the discharge capacity is reduced.

また、特に2.2V程度が容量特性に好結果を与える。 In particular, about 2.2 V gives a good result in the capacitance characteristics.

以上各測定を行ったが、結論としては前述の二酸化マ
ンガンに対する各種金属化合物の添加量は50モル%以内
であって、加熱処理条件は200〜450℃、初期放電処理工
程における回復開路電圧が1.5〜2.7Vとすることで、正
極が充放電サイクルを繰返すことに対し、崩壊しにくい
結晶構造をもたらすものと推定され、この結果サイクル
特性の向上と容量の増加を図ることができるものと思わ
れる。
As a result, the amounts of the various metal compounds added to manganese dioxide were within 50 mol%, the heat treatment conditions were 200 to 450 ° C., and the recovery open circuit voltage in the initial discharge treatment step was 1.5%. By setting the voltage to ~ 2.7 V, it is estimated that the repetition of the charge / discharge cycle of the positive electrode results in a crystal structure that is difficult to collapse.As a result, it is thought that the cycle characteristics can be improved and the capacity can be increased. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法によって得られた各電池の充放電サ
イクルに対する放電容量特性を示すグラフ、第2図は正
極活物質を構成する二酸化マンガンに対する各金属化合
物の添加割合と放電容量との関係を示すグラフ、第3図
は正極活物質の加熱処理温度と放電容量との関係を示す
グラフ、第4図は初期放電処理における開路電圧と放電
容量との関係を示すグラフである。
FIG. 1 is a graph showing the discharge capacity characteristics with respect to the charge / discharge cycle of each battery obtained by the method of the present invention, and FIG. 2 is a relation between the addition ratio of each metal compound to manganese dioxide constituting the cathode active material and the discharge capacity. FIG. 3 is a graph showing the relationship between the heat treatment temperature of the positive electrode active material and the discharge capacity, and FIG. 4 is a graph showing the relationship between the open circuit voltage and the discharge capacity in the initial discharge process.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 正典 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 4/00 - 4/04 H01M 4/36 - 4/62 H01M 10/36 - 10/40──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanori Nakanishi 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Inventor Hidenori Nakura 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/00-4/04 H01M 4/36-4/62 H01M 10/36-10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルカリ金属,アルカリ土類金属,遷移金
属,或いは希土類金属化合物のうちの少なくとも1種類
を二酸化マンガンに添加し、加熱して得た正極を、非水
電解液の存在化でアルカリ金属に対向させ、24時間後の
回復開路電圧が1.5〜2.7Vになるまで放電することによ
り、正極内部にアルカリ金属イオンをドープすることを
特徴とする非水電解液二次電池の製造方法。
1. A positive electrode obtained by adding at least one kind of an alkali metal, alkaline earth metal, transition metal or rare earth metal compound to manganese dioxide and heating the resultant to form an alkali in the presence of a non-aqueous electrolyte. A method for producing a non-aqueous electrolyte secondary battery, comprising: doping alkali metal ions into a positive electrode by facing the metal and discharging until a recovery open circuit voltage after 24 hours becomes 1.5 to 2.7 V.
【請求項2】前記正極中に添加されるアルカリ金属とし
てリチウム、アルカリ土類金属としてカルシウム,マグ
ネシウム、遷移金属としてクローム,鉄,コバルト,バ
ナジウム,モリブデン,チタン,タングステン,希土類
金属化合物としてランタン,セシウムを用いることを特
徴とする請求項1に記載の非水電解液二次電池の製造方
法。
2. An alkali metal added to the positive electrode is lithium, an alkaline earth metal is calcium, magnesium, a transition metal is chromium, iron, cobalt, vanadium, molybdenum, titanium, tungsten, a rare earth metal compound is lanthanum or cesium. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein:
JP1207000A 1989-08-11 1989-08-11 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Fee Related JP2798991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207000A JP2798991B2 (en) 1989-08-11 1989-08-11 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207000A JP2798991B2 (en) 1989-08-11 1989-08-11 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0374062A JPH0374062A (en) 1991-03-28
JP2798991B2 true JP2798991B2 (en) 1998-09-17

Family

ID=16532534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207000A Expired - Fee Related JP2798991B2 (en) 1989-08-11 1989-08-11 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2798991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045998B2 (en) 1997-05-15 2000-05-29 エフエムシー・コーポレイション Interlayer compound and method for producing the same
DE60002505T2 (en) 1999-12-10 2004-03-25 Fmc Corp. LITHIUM COBALTOXIDES AND PRODUCTION METHOD

Also Published As

Publication number Publication date
JPH0374062A (en) 1991-03-28

Similar Documents

Publication Publication Date Title
JP4403244B2 (en) Method for producing positive electrode material for lithium battery, and lithium battery
JPS63187569A (en) Nonaqueous secondary battery
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
KR20060054456A (en) Nonaqueous electrolyte secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
KR101082937B1 (en) Negative-electrode material and battery using the same
JP2002270181A (en) Non-aqueous electrolyte battery
JP2798991B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
Manickam et al. Lithium intercalation cells LiMn2O4/LiTi2O4 without metallic lithium
JP3110738B2 (en) Non-aqueous electrolyte secondary battery
JPS62176054A (en) Lithium battery
JP2528183B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3615416B2 (en) Lithium secondary battery
JPH05325961A (en) Lithium battery
JPH07272765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP3009673B2 (en) Non-aqueous electrolyte secondary battery
JP3619701B2 (en) Lithium secondary battery
JP3176703B2 (en) Lithium battery
JPH05299118A (en) Nonaque0us solvent for electrolyte of battery
JPH0982362A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees