JPH034445A - Nonaqueous medium secondary battery - Google Patents

Nonaqueous medium secondary battery

Info

Publication number
JPH034445A
JPH034445A JP1135859A JP13585989A JPH034445A JP H034445 A JPH034445 A JP H034445A JP 1135859 A JP1135859 A JP 1135859A JP 13585989 A JP13585989 A JP 13585989A JP H034445 A JPH034445 A JP H034445A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1135859A
Other languages
Japanese (ja)
Inventor
Takumi Uchida
内田 卓美
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP1135859A priority Critical patent/JPH034445A/en
Publication of JPH034445A publication Critical patent/JPH034445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain nonaqueous medium secondary battery of long life and high performance by using lithium or lighium alloy for a negative electrode and using a specific lighium manganic oxide for positive electrode active material. CONSTITUTION:Lithium or lighium alloy is used for a negative electrode 5, and a lighium magnetic oxide, which is obtained by adding lighium salt to a manganic oxide (gamma-MnOOH), having an X-ray fiffraction pattern shown in table I, and heat treating it and which has spinel structure, is used for positive electrode active material. This lithium manganic oxide (LiMn2O4) has, inside the crystal structure, vacant lattice points, which Li ions can invade, in the shape of being different in three dimensions, and it is small in grain degree and is large in specific surface area. Accordingly, during charge, the invasion and emission of Li ions of negative electrode active material into the positive electrode active material of a positive electrode 3 are done smoothly, and the collapse of the crystal structure by repeating charge and discharge can be suppressed. Hereby, a long life of nonaqueous medium secondary battery, wherein the capacity deterioration by a charge/discharge cycle is small, can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は正極活物質を改良した非水溶媒二次電池に関す
る。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery with an improved positive electrode active material.

(従来の技術) 近年、電子機器の発達に伴い、小形で軽量、かつエネル
ギー密度が高く、更に繰り返し充放電可能な二次電池の
開発が要望されている。この種の二次電池としては、負
極としてリチウム(Li)又はリチウム合金を用い、正
極活物質としてモリブデン、バナジウム、チタン、ニオ
ブなどの酸化物、硫化物又はセレン化物などが知られて
いる。
(Prior Art) In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. This type of secondary battery is known to use lithium (Li) or a lithium alloy as the negative electrode, and to use oxides, sulfides, or selenides of molybdenum, vanadium, titanium, niobium, etc. as the positive electrode active material.

−4、二酸化マンガン(MnOi)は、高エネルギー密
度、高電圧を有する正極活物質として非水溶媒−次電池
に用いられ実用化されているが、M n O2はトンネ
ル構造を有しており、−次電池においては、電池が放電
することによってLiイオンが前記1−ンネル内に侵入
し、これによってM n O□結晶構造は膨張する。こ
のI−ンネル内のI−iイオンは容易に移動できる状態
であるため、この電池を充電状態にすると、トンネル内
のLiイオンが放出され、それに伴ってM n Ox結
晶構造が収縮する。このように、従来の非水溶媒−次電
池で使用されるM n O2を、そのまま二次電池の正
極活物質として用いると、電池の充放電に伴って結晶構
造の収縮・膨張が繰り返され、これによってM n O
xのトンネル構造が崩れてしまい、充放電サイクルの進
行につれて充放電容量の劣化が著しくなるという問題が
あった。
-4. Manganese dioxide (MnOi) has been put to practical use in non-aqueous solvent batteries as a positive electrode active material with high energy density and high voltage, but MnO2 has a tunnel structure. In a secondary battery, as the battery discharges, Li ions invade the 1-channel, thereby expanding the MnO□ crystal structure. Since the I-i ions in this I-tunnel are in a state where they can be easily moved, when this battery is brought into a charged state, the Li ions in the tunnel are released, and the MnOx crystal structure contracts accordingly. In this way, if MnO2, which is used in conventional non-aqueous solvent secondary batteries, is used as it is as a positive electrode active material in secondary batteries, the crystal structure will repeatedly contract and expand as the battery is charged and discharged. This allows M n O
There is a problem in that the tunnel structure of x collapses and the charge/discharge capacity deteriorates significantly as the charge/discharge cycle progresses.

このようなことから、硫酸マンガンを電解酸化して得ら
れる電解二酸化マンガンにリチウム化合物(例えば■、
12 G O3)を加え、加熱処理することにより製造
されたリチウムマンガン酸化物を正極活物質とした非水
溶媒二次電池が知られている。
For this reason, lithium compounds (for example, ■,
A non-aqueous solvent secondary battery is known in which a positive electrode active material is lithium manganese oxide produced by adding 12G O3) and heat-treating.

(発明が解決しようとする課題) しかしながら、かかる電解二酸化マンガンから製造され
たリチウムマンガン酸化物を正極活物質として用いた二
次電池においても、充放電サイクルの進行につれて充放
電容量の劣化が依然として生じるという問題があり、サ
イクル寿命が長く、経済性の高い非水溶媒二次電池を得
るため、正極活物質の改良が必要であった。
(Problem to be Solved by the Invention) However, even in secondary batteries using lithium manganese oxide produced from such electrolytic manganese dioxide as a positive electrode active material, deterioration in charge/discharge capacity still occurs as the charge/discharge cycle progresses. Due to this problem, it was necessary to improve the positive electrode active material in order to obtain a nonaqueous solvent secondary battery that has a long cycle life and is highly economical.

[発明の構成] (課題を解決するための手段) 本発明は、リチウム又はリチウム合金を負極とし、下記
のX線回折パターンを有するマンガン酸化物(γ−Mn
OOH)にリチウム塩を加え、加熱処理して得られた主
としてスピネル構造を有するリチウムマンガン酸化物を
、正極活物質とすることを特徴とする非水溶媒二次電池
である8面間隔(入) 3.41±0.02 2.64±0.02 2.4】±0.02 2.27±0.02 2.19±0.02 1、78±0.02 1、69±0.02 1、67±0.02 1、50±0、02 1、44±0.02 前記X線回折パターンを有するマンガン酸化物(γ−M
 n OOH)は、例えば、硫酸マンガン水溶液に過酸
化水素水とアンモニア水とを加えることによって得るこ
とができる。
[Structure of the Invention] (Means for Solving the Problems) The present invention uses lithium or a lithium alloy as a negative electrode, and a manganese oxide (γ-Mn) having the following X-ray diffraction pattern.
A non-aqueous solvent secondary battery characterized by using a lithium manganese oxide mainly having a spinel structure obtained by adding a lithium salt to OOH) and heat-treating it as the positive electrode active material. 3.41±0.02 2.64±0.02 2.4]±0.02 2.27±0.02 2.19±0.02 1,78±0.02 1,69±0.02 1,67±0.02 1,50±0,02 1,44±0.02 Manganese oxide (γ-M
n OOH) can be obtained, for example, by adding hydrogen peroxide and ammonia water to an aqueous manganese sulfate solution.

また、上記リチウム塩としては、例えば、炭酸ノチウム
(L12Cos)及び水酸化リチウム(LiOH)をあ
げることができる。これらいずれのリチウム塩を用いた
場合でも、加熱処理後の生成物は、主としてスピネル型
のリチウムマンガン酸化物(LiMn、04)である。
Furthermore, examples of the lithium salt include notium carbonate (L12Cos) and lithium hydroxide (LiOH). Regardless of which of these lithium salts is used, the product after the heat treatment is mainly spinel-type lithium manganese oxide (LiMn, 04).

上記リチウム塩と上記マンガン酸化物(γ−MnOOH
)どの配合割合は、それぞれモル比率にて、MnLiが
2:Q、3〜2:1.2の範囲とすることが好ましい。
The above lithium salt and the above manganese oxide (γ-MnOOH
) The molar ratio of MnLi is preferably in the range of 2:Q, 3 to 2:1.2.

この2合比を2+0.8未満にすると、加熱処理後に得
られるリチウムマンガン酸化物中に、γ−MnOOHの
分解によって生じたMn= O=やM n v O4が
混在し、一方、2:1.2を越えると、加熱処理後に得
られるリチウムマンガン酸化物中にLl、0が生成・混
在し、いずれの場合も、充放電容量の劣化を招くので好
ましくない。
When the ratio of the two is less than 2+0.8, Mn=O= and MnvO4 produced by the decomposition of γ-MnOOH are mixed in the lithium manganese oxide obtained after heat treatment, and on the other hand, when the ratio is less than 2:1, If it exceeds .2, Ll and 0 will be generated and mixed in the lithium manganese oxide obtained after the heat treatment, and in either case, it is not preferable because it causes deterioration of the charge/discharge capacity.

上記加熱処理温度は、540〜950℃の温度範囲とす
ることが好ましい。この温度を540℃未満にすると、
加熱処理後に得られるリチウムマンガン酸化物中にMn
aOsが生成・混在し、方、950℃を越えると、M 
n +104が生成・混在して充放電容量の劣化を招く
恐れがあるので好ましくない。
The heat treatment temperature is preferably in a temperature range of 540 to 950°C. If this temperature is lower than 540℃,
Mn is present in the lithium manganese oxide obtained after heat treatment.
When aOs is generated and mixed, and the temperature exceeds 950℃, M
This is not preferable because n+104 may be generated and coexisted, leading to deterioration of charge/discharge capacity.

(作用) 本発明のγ−MnOOHにリチウム塩を加えて、加熱処
理して得られる主としてスピネル構造を有するリチウム
マンガン酸化物(LiMnzO4)は、その結晶構造内
に、Liイオンが侵入できる空格子点を三次元的に連な
る形で有する。また、電解二酸化マンガンを出発原料と
したスピネル型リチウムマンガン酸化物にくらべて、本
発明のスピネル型リチウムマンガン酸化物は、実施例に
記載のごとく、粒度が小さく、比表面積が大きい。従っ
て、本発明のスピネル型リチウムマンガン酸化物を、導
電材及び結着材と配合して得られる正極を組込んだ非水
溶媒二次電池は、その充放電時において、負極活物質で
あるLiイオンの該正極の正極活物質への侵入・放出が
スムーズに行われ、なおかつ、充放電を繰り返すことに
よる結晶構造の崩壊を抑制できる。その結果、充放電サ
イクルによる容量劣化が少なく、長寿命な非水溶媒二次
電池を得ることができる。
(Function) The lithium manganese oxide (LiMnzO4) mainly having a spinel structure obtained by adding a lithium salt to γ-MnOOH of the present invention and heating it has vacancies in its crystal structure that allow Li ions to enter. It has a three-dimensional series. Furthermore, compared to spinel-type lithium-manganese oxide using electrolytic manganese dioxide as a starting material, the spinel-type lithium-manganese oxide of the present invention has a smaller particle size and a larger specific surface area, as described in Examples. Therefore, in a non-aqueous solvent secondary battery incorporating a positive electrode obtained by blending the spinel-type lithium manganese oxide of the present invention with a conductive material and a binder, during charging and discharging, the negative electrode active material Li Ions can smoothly enter and release the positive electrode active material of the positive electrode, and furthermore, the collapse of the crystal structure due to repeated charging and discharging can be suppressed. As a result, it is possible to obtain a non-aqueous solvent secondary battery with little capacity deterioration due to charge/discharge cycles and a long life.

(実施例) 以下、本発明の実施例により詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail using examples.

実施例1 第1図は、本発明に係るボタン形非水溶媒二次電池の縦
断面図である。図中の1はステンレス鋼製の正極容器で
あり、この容器1内には、集電体2を介して後述する方
法で作製した正極3が収納されている。この正極3上に
は、ボロプロピレン不織布からなるセパレータ4及び金
属リチウムからなる負極5が載置されている。前記セパ
レータ4には、プロピレンカーボネートと1.2−ジメ
トキシエタンの混合溶媒(重量比でl : l)に過塩
素酸リチウムを0.5モル/I2の濃度で溶解した電解
液が含浸保持されている。前記正極容器1の開口部には
、バッキング6を介して負極容器7が設けられており、
該負極容器7のかしめ加工により正極容器l及び負極容
器7内に前記正極3゜セパレータ4及び負極5が密閉さ
れている。上記正極は、次のような方法により作製した
Example 1 FIG. 1 is a longitudinal sectional view of a button-shaped non-aqueous solvent secondary battery according to the present invention. 1 in the figure is a positive electrode container made of stainless steel, and in this container 1, a positive electrode 3 manufactured by a method described later is housed via a current collector 2. On this positive electrode 3, a separator 4 made of a boropropylene nonwoven fabric and a negative electrode 5 made of metallic lithium are placed. The separator 4 is impregnated with an electrolytic solution in which lithium perchlorate is dissolved at a concentration of 0.5 mol/I2 in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (l:l in weight ratio). There is. A negative electrode container 7 is provided at the opening of the positive electrode container 1 via a backing 6,
By caulking the negative electrode container 7, the positive electrode 3° separator 4 and the negative electrode 5 are sealed inside the positive electrode container I and the negative electrode container 7. The above positive electrode was produced by the following method.

正極活物質としてのLiMnzO490重量部に、導電
剤としてのアセチレンブラック10重量部と結着剤とし
てのポリテトラフルオロエチレン5重量部とを混合して
正極合剤とし、この合剤を圧力約2トン/cn+”の条
件で加圧成形し、更に、200℃の真空中で乾燥して作
製した。
A positive electrode mixture was prepared by mixing 490 parts by weight of LiMnzO as a positive electrode active material, 10 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polytetrafluoroethylene as a binder, and this mixture was heated under a pressure of about 2 tons. /cn+'' conditions, and was further dried in a vacuum at 200°C.

なお、LiMnzO4の原料となるマンガン酸化物(γ
−MnOOH)は、次のような方法にて作製したもので
ある。
In addition, manganese oxide (γ
-MnOOH) was produced by the following method.

II2の水に硫酸マンガン四水和物15gを溶かした溶
液を、激しくかきまぜながら3%過酸化水素水150−
1つづいて0.2mol /i!、アンモニア水200
Tt11を、各々加えた。得られた暗褐色または黒色の
懸濁液を、数分沸騰させた後済通した。炉別した固形分
を1.5J2の熱水で洗浄した後、五酸化ニリンを入れ
た減圧デシケータ中で乾燥した。得られた物質の×!1
回折パターンを調べたところ第2図のようになり、この
物質がγ−MnOOHであることを確認した。また、電
子顕微鏡観察によって該物質が針状結晶を有することを
認めた。
A solution of 15 g of manganese sulfate tetrahydrate dissolved in II2 water was mixed vigorously with 3% hydrogen peroxide solution 150-
0.2mol/i in a row! , ammonia water 200
Tt11 was added to each. The resulting dark brown or black suspension was boiled for a few minutes and then allowed to drain. The solids separated by furnace were washed with 1.5 J2 of hot water and then dried in a vacuum desiccator containing niline pentoxide. × of the obtained substance! 1
When the diffraction pattern was examined, it was as shown in FIG. 2, and it was confirmed that this substance was γ-MnOOH. Moreover, it was confirmed by electron microscopy that the substance had needle-like crystals.

上記方法によって得たγ−MnOOH30gと炭酸リチ
ウム6.3gとを混合1モル比率Mn: Li=2 :
 1)  ・粉砕し、空気中で850℃、1時間加熱処
理し、冷却した後、再び粉砕し、再度空気中で850°
C12時間加熱処理した。この反応生成物のX線回折パ
ターンを調べたところ第3図のようになりASTM  
Na18−736のL i M n z Oaのデータ
と一致した。
30 g of γ-MnOOH obtained by the above method and 6.3 g of lithium carbonate were mixed in a 1 molar ratio Mn:Li=2:
1) - Grind, heat treat in air at 850°C for 1 hour, cool, then grind again, heat treat in air at 850°C again.
Heat treatment was performed for C12 hours. When the X-ray diffraction pattern of this reaction product was examined, it was as shown in Figure 3. ASTM
It was consistent with the L i M nz Oa data of Na18-736.

実施例2 実施例1と同じ方法にて得たγ−M n OOH30g
と炭酸リチウム5.0gとを混合(モル比率Mn : 
Li=2 + 0.8)  ・粉砕し、空気中で600
℃、3時間加熱処理し、冷却した後、再び粉砕し、再度
空気中で600℃、5時間加熱処理した。この反応生成
物は、前述した第3図と同様な回折パターンとなり、L
 i M n * 04を主成分とすることを確認した
Example 2 30 g of γ-M n OOH obtained by the same method as Example 1
and 5.0 g of lithium carbonate (mole ratio Mn:
Li=2 + 0.8) ・Crush and 600 ml in air
After being heat-treated at 600°C for 3 hours and cooled, it was ground again and heat-treated again in air at 600°C for 5 hours. This reaction product has a diffraction pattern similar to that shown in FIG.
It was confirmed that i M n *04 was the main component.

この反応生成物に実施例1と同様な処理を施して、実施
例1と同構造のボタン型非水溶媒二次電池を組み立てた
This reaction product was subjected to the same treatment as in Example 1, and a button-type nonaqueous solvent secondary battery having the same structure as in Example 1 was assembled.

実施例3 実施例1と同じ方法にて得たγ−MnOOH30gと水
酸化リチウム4.1gとを混合Cモル比率Mn : L
i =2 : L)  ・粉砕し、空気中で550°C
13時間加熱処理し、冷却した後、再び粉砕し、再度空
気中で550℃、21時間加熱処理した。この反応生成
物のX線回折パターンは第4図の通りであり、L iM
 n x O4を主成分とすることを確認した。この反
応生成物に、実施例1と同様な処理を施して、実施例1
と同構造のボタン型非水溶媒二次電池を組み立てた。
Example 3 30 g of γ-MnOOH obtained by the same method as Example 1 and 4.1 g of lithium hydroxide were mixed C molar ratio Mn:L
i = 2: L) ・Crush and heat at 550°C in air
After being heat-treated for 13 hours and cooled, it was ground again and heat-treated again in air at 550°C for 21 hours. The X-ray diffraction pattern of this reaction product is shown in Figure 4, and LiM
It was confirmed that n x O4 was the main component. This reaction product was subjected to the same treatment as in Example 1, and Example 1
A button-type non-aqueous solvent secondary battery with the same structure was assembled.

比較例1 硫酸マンガンを電解酸化して得られる電解二酸化マンガ
ンと炭酸リチウムとをモル比率Mn:Li=2:1にて
混合・粉砕し、空気中で850℃、1時間加熱処理し、
冷却した後、再び粉砕し、再度空気中で850℃、2時
間加熱処理した。この反応生成物のX線回折パターンは
第5図の通りであり、L i M n x 04を主成
分とすることを確認した。
Comparative Example 1 Electrolytic manganese dioxide obtained by electrolytically oxidizing manganese sulfate and lithium carbonate were mixed and pulverized at a molar ratio of Mn:Li=2:1, and heat treated in air at 850°C for 1 hour.
After cooling, it was ground again and heat-treated again in air at 850°C for 2 hours. The X-ray diffraction pattern of this reaction product was as shown in FIG. 5, and it was confirmed that the main component was L i M n x 04.

この反応生成物を正極活物質として用いた以外、実施例
1と同様な処理を施して、実施例1と同構造のボタン型
非水溶媒二次電池を組み立てた。
A button-type non-aqueous solvent secondary battery having the same structure as in Example 1 was assembled by performing the same treatment as in Example 1 except that this reaction product was used as the positive electrode active material.

比較例2 比較例1と同様な電解二酸化マンガンと炭酸リチウムと
をモル比率Mn : Li=2 : 0.5にて混合・
粉砕し、空気中で600℃、3時間加熱処理し、冷却し
た後、再び粉砕し、再度空気中で600°C15時間加
熱処理した。この反応生成物を正極活物質として用いた
以外、実施例1と同様な処理を施して、実施例1と同構
造のボタン型非水溶媒二次電池を組み立てた。
Comparative Example 2 The same electrolytic manganese dioxide and lithium carbonate as in Comparative Example 1 were mixed at a molar ratio of Mn:Li=2:0.5.
It was crushed, heat treated in air at 600°C for 3 hours, cooled, crushed again, and heat treated again in air at 600°C for 15 hours. A button-type non-aqueous solvent secondary battery having the same structure as in Example 1 was assembled by performing the same treatment as in Example 1 except that this reaction product was used as the positive electrode active material.

実施例1〜3及び比較例1,2の電池について、3.5
V〜2.OVの間を0.5mAの定電流で繰り返し充放
電させ、各ザイクルにおける容量維持率(すなわち、充
放電容量の劣化の度合を表わす)を測定した結果、第6
図に示す特性図を得た。なお、第6図中のAは実施例1
の電池における特性線、Bは実施例2の電池における特
性線、Cは実施例3の電池における特性線、Dは比較例
1の電池における特性線、Eは比較例2の電池における
特性線である。
For the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, 3.5
V~2. The 6th
The characteristic diagram shown in the figure was obtained. Note that A in FIG. 6 represents Example 1.
B is the characteristic line for the battery of Example 2, C is the characteristic line for the battery of Example 3, D is the characteristic line for the battery of Comparative Example 1, and E is the characteristic line for the battery of Comparative Example 2. be.

第6図から明らかなように、本発明の電池は、比較の電
池に比べて、充放電ザイクルでの容量維持率が極めて高
く、優れた性能を有することがわかる。
As is clear from FIG. 6, the battery of the present invention has an extremely high capacity retention rate in a charge/discharge cycle and has excellent performance compared to the comparative battery.

この理由は、γ−M n OOHから製造したL i 
M n * 04は、電解二酸化マンガンより製造した
L i M n 204にくらべて、下表の様に粒度が
小さく、比表面積が大きいという特徴を有するためであ
る。
The reason for this is that L i produced from γ-M n OOH
This is because, as shown in the table below, M n *04 has a smaller particle size and a larger specific surface area than L i M n 204 produced from electrolytic manganese dioxide.

また、第3図、及び第5図にそれぞれ、実施例1及び比
較例1のX線回折パターンを示したが、本発明のL i
 M n 204の方が、ピーク強度も高く、ピークも
シャープであることがわかる。以上のようなことから、
本発明で得られるスピネル構造を有するリチウムマンガ
ン酸化物は、スピネル構造の結晶性が発達していると考
えられる、上記実施例では、電解液としてプロピレンカ
ーボネートと1.2−ジメトキシエタンの混合溶媒に過
塩素酸リチウムを溶解したものを用いたが、γ−ブチロ
ラクトン、テトラヒドロフラン、2−メチルテ!・ラヒ
ドロフラン、エチレンカーボネート等の非水溶媒にLi
Cε04.LiPF5、L i A s F s 、 
L I B F 4等の電解質を0.2〜1.5モル/
ρ溶解させたものを使用してもよい。
In addition, although FIGS. 3 and 5 show the X-ray diffraction patterns of Example 1 and Comparative Example 1, respectively, the Li
It can be seen that M n 204 has higher peak intensity and sharper peak. From the above,
It is thought that the lithium manganese oxide having a spinel structure obtained by the present invention has developed crystallinity of the spinel structure. A solution of lithium perchlorate was used, but γ-butyrolactone, tetrahydrofuran, 2-methylte!・Li in non-aqueous solvents such as lahydrofuran and ethylene carbonate
Cε04. LiPF5, LiAsFs,
Electrolyte such as L I B F 4 at 0.2 to 1.5 mol/
You may also use a solution of ρ.

また、上記実施例では結着剤としてポリテトラフルオロ
エチレンを用いたが、ポリアクリル酸又はその塩類を用
いてもよい。
Furthermore, although polytetrafluoroethylene was used as the binder in the above embodiments, polyacrylic acid or its salts may also be used.

なお、上記実施例では、ボタン型非水溶媒二次電池を例
にして説明したが、電極がスパイラル構造を有する円筒
型非水溶媒二次電池等にも同様に適用できる。
In the above embodiments, a button-type non-aqueous solvent secondary battery has been described as an example, but the present invention can be similarly applied to a cylindrical non-aqueous solvent secondary battery, etc. in which the electrodes have a spiral structure.

[発明の効果] 以上詳述した如く、本発明によればトンネル構造を有し
、非水溶媒二次電池に組込んだ後の充放電、つまりL 
iイオンの侵入・放出に伴う結晶構造の崩れの小さいマ
ンガンリチウム酸化物からなる正極活物質を製造でき、
ひいては該正極活物質を用いることにより充放電ザイク
ルでの容量劣化の少ない長寿命、高性能の非水溶媒二次
電池を得ることができる等顕著な効果を奏する。
[Effects of the Invention] As detailed above, the present invention has a tunnel structure, and after being incorporated into a non-aqueous solvent secondary battery, charging and discharging, that is, L
It is possible to produce a positive electrode active material made of manganese lithium oxide whose crystal structure is less likely to collapse due to the entry and release of i-ions,
Furthermore, by using the positive electrode active material, remarkable effects such as being able to obtain a long-life, high-performance non-aqueous solvent secondary battery with little capacity deterioration in charge/discharge cycles can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すボタン型非水溶媒二次
電池の断面図、第2図は本発明で用いたマンガン酸化物
(γ−MnOOH)のX線回折パターン図、第3図は実
施例1によって得たリチウムマンガン酸化物のX線回折
パターン図、第4図は実施例3によって得たリチウムマ
ンガン酸化物のX線回折パターン図、第5図は比較例1
によって得たリチウムマンガン酸化物のXli回折パタ
ーン図、第6図は本実施例1.2.3および比較例1.
2の電池における充放電サイクル数に対する容量維持率
を示す特性図を示す。 1、正極容器 3.正極 4.セパレータ5、負極 7
.負極容器
FIG. 1 is a cross-sectional view of a button-type non-aqueous solvent secondary battery showing one embodiment of the present invention, FIG. 2 is an X-ray diffraction pattern diagram of manganese oxide (γ-MnOOH) used in the present invention, and FIG. The figure shows an X-ray diffraction pattern of lithium manganese oxide obtained in Example 1, FIG. 4 shows an X-ray diffraction pattern of lithium manganese oxide obtained in Example 3, and FIG. 5 shows Comparative Example 1.
FIG. 6 shows the Xli diffraction pattern of lithium manganese oxide obtained by Example 1.2.3 and Comparative Example 1.
2 is a characteristic diagram showing the capacity retention rate with respect to the number of charge/discharge cycles in the battery No. 2. 1. Positive electrode container 3. Positive electrode 4. Separator 5, negative electrode 7
.. negative electrode container

Claims (1)

【特許請求の範囲】 リチウム又はリチウム合金を負極とし、下記のX線回折
パターンを有するマンガン酸化物(γ−MnOOH)に
リチウム塩を加え、加熱処理して得られた主としてスピ
ネル構造を有するリチウムマンガン酸化物を、正極活物
質とすることを特徴とする非水溶媒二次電池。 面間隔(Å) 3.41±0.02 2.64±0.02 2.41±0.02 2.27±0.02 2.19±0.02 1.78±0.02 1.69±0.02 1.67±0.02 1.50±0.02 1.44±0.02
[Claims] Lithium manganese mainly having a spinel structure obtained by using lithium or a lithium alloy as a negative electrode, adding lithium salt to manganese oxide (γ-MnOOH) having the following X-ray diffraction pattern, and heat-treating the mixture. A non-aqueous solvent secondary battery characterized by using an oxide as a positive electrode active material. Plane spacing (Å) 3.41±0.02 2.64±0.02 2.41±0.02 2.27±0.02 2.19±0.02 1.78±0.02 1.69 ±0.02 1.67±0.02 1.50±0.02 1.44±0.02
JP1135859A 1989-05-31 1989-05-31 Nonaqueous medium secondary battery Pending JPH034445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135859A JPH034445A (en) 1989-05-31 1989-05-31 Nonaqueous medium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135859A JPH034445A (en) 1989-05-31 1989-05-31 Nonaqueous medium secondary battery

Publications (1)

Publication Number Publication Date
JPH034445A true JPH034445A (en) 1991-01-10

Family

ID=15161438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135859A Pending JPH034445A (en) 1989-05-31 1989-05-31 Nonaqueous medium secondary battery

Country Status (1)

Country Link
JP (1) JPH034445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
CN103367737A (en) * 2012-04-09 2013-10-23 江苏国泰锂宝新材料有限公司 Preparation method of high-density lithium battery anode material spinel lithium manganate
JP2014205617A (en) * 2014-06-12 2014-10-30 東ソー株式会社 Manganese oxide and method for producing lithium manganate using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
CN103367737A (en) * 2012-04-09 2013-10-23 江苏国泰锂宝新材料有限公司 Preparation method of high-density lithium battery anode material spinel lithium manganate
JP2014205617A (en) * 2014-06-12 2014-10-30 東ソー株式会社 Manganese oxide and method for producing lithium manganate using the same

Similar Documents

Publication Publication Date Title
US6794085B2 (en) Metal oxide containing multiple dopants and method of preparing same
JP3502118B2 (en) Method for producing lithium secondary battery and negative electrode thereof
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH11185758A (en) Positive electrode material for nonaqueous secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
EP0825661B1 (en) Lithium Battery
JP2001332262A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP2002117843A (en) Nonaqueous electrolyte secondary battery
JP2001185145A (en) Method of manufacturing positive electrode material for lithium secondary battery
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2000182616A (en) Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JPH034445A (en) Nonaqueous medium secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP3611133B2 (en) Method for producing positive electrode active material for non-aqueous battery
JPH04332480A (en) Nonaqueous secondary battery
JP3128143B2 (en) Lithium secondary battery
JPH0384874A (en) Manufacture of lithium secondary cell
JPH02170354A (en) Manufacture of positive electrode active material for nonaqueous solvent secondary cell
JPH05190177A (en) Nonaqueous electrolyte secondary battery
JPH03219556A (en) Lithium secondary battery and manufacture thereof