JPH05190177A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH05190177A JPH05190177A JP4001923A JP192392A JPH05190177A JP H05190177 A JPH05190177 A JP H05190177A JP 4001923 A JP4001923 A JP 4001923A JP 192392 A JP192392 A JP 192392A JP H05190177 A JPH05190177 A JP H05190177A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium
- secondary battery
- electrolyte secondary
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水電解液二次電池
の、とくに正極に用いられるリチウムの複合酸化物の改
良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a lithium composite oxide used for a positive electrode.
【0002】[0002]
【従来の技術】近年、電子機器のポータブル化、コード
レス化にともないこれらの駆動用電源として高エネルギ
ー密度の二次電池に対する要望が高いが、とくにリチウ
ムを用いた非水電解液二次電池は、高電圧で高エネルギ
ー密度の二次電池として期待されている。2. Description of the Related Art In recent years, there has been a great demand for a secondary battery having a high energy density as a power source for driving these electronic devices as they have become portable and cordless. In particular, non-aqueous electrolyte secondary batteries using lithium are It is expected as a secondary battery with high voltage and high energy density.
【0003】この電池の正極に用いる活物質としてリチ
ウムをドープ、脱ドープすることのできる層状化合物、
たとえば、LiCoO2、LiNiO2(米国特許第43
02518号明細書)やLiyNixCo(1-x)O2(0<
x≦0.75,y≦1)(特開昭63−299056号
公報)などのリチウムの複合酸化物が提案されている。A layered compound capable of being doped and dedoped with lithium as an active material used for the positive electrode of this battery,
For example, LiCoO 2 , LiNiO 2 (US Pat.
No. 02518) and Li y Ni x Co (1-x) O 2 (0 <
A composite oxide of lithium such as x ≦ 0.75, y ≦ 1) (Japanese Patent Laid-Open No. 63-299056) has been proposed.
【0004】これらの化合物を正極活物質として用いる
ことにより、4V級の電圧をもつ高電圧、高エネルギー
密度の二次電池を実現することができる。By using these compounds as the positive electrode active material, it is possible to realize a secondary battery having a high voltage and a high energy density with a voltage of 4V class.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
非水電解液二次電池では、電解液として使用されている
プロピレンカーボネート、ジメトキシエタンなどの有機
電解質が高い電圧下で分解されるため、電池の充放電特
性が低下するという問題点があった。However, in the above-mentioned non-aqueous electrolyte secondary battery, the organic electrolytes such as propylene carbonate and dimethoxyethane used as the electrolyte are decomposed under a high voltage, so that There is a problem that the charge and discharge characteristics are deteriorated.
【0006】この問題を解決するためにLiCoO2の
コバルトの一部を他の金属元素に置換するという技術が
提案されており、具体的には、コバルトの一部をニッケ
ル(特開昭63−299056号公報)、鉄(特開昭6
3−211564号公報)、アルミニウム、錫、インジ
ウム(特開昭62−90863号公報)で置換するもの
である。In order to solve this problem, a technique of substituting a part of cobalt of LiCoO 2 with another metal element has been proposed. Specifically, a part of the cobalt is nickel (Japanese Patent Laid-Open No. 63- 299056), iron (JP-A-6-6
3-211564), aluminum, tin, and indium (Japanese Patent Laid-Open No. 62-90863).
【0007】しかし、このような金属元素によってコバ
ルトの一部を置換したリチウムの複合酸化物を正極に用
いると、電池としての放電電圧が低くなる傾向がある。However, when a composite oxide of lithium in which a part of cobalt is substituted with such a metal element is used for the positive electrode, the discharge voltage of the battery tends to be low.
【0008】また、LiCoO2等のコバルトを含むリ
チウムの複合酸化物を正極活物質として用いた電池で
は、充電状態で高温に保存した場合、著しく電池容量が
低下するという問題があった。Further, a battery using a lithium composite oxide containing cobalt such as LiCoO 2 as a positive electrode active material has a problem that the battery capacity is remarkably reduced when stored at a high temperature in a charged state.
【0009】これは、正極活物質上での電解液の分解反
応や、正極活物質の結晶破壊に起因していると考えられ
ている。本発明はこのような課題を解決するもので、高
電圧・高エネルギー密度を有し、かつ充放電サイクル寿
命特性や保存特性に優れた非水電解液二次電池を実現す
るために、とくに高電圧下における正極活物質上での電
解液の分解反応や、正極活物質の結晶崩壊を防止するこ
とのできる正極活物質を用いた非水電解液二次電池の提
供を目的とするものである。It is considered that this is due to the decomposition reaction of the electrolytic solution on the positive electrode active material and the crystal destruction of the positive electrode active material. The present invention is to solve such a problem, in order to realize a non-aqueous electrolyte secondary battery having a high voltage and high energy density, and excellent in charge-discharge cycle life characteristics and storage characteristics, An object of the present invention is to provide a non-aqueous electrolyte secondary battery using a positive electrode active material capable of preventing the decomposition reaction of the electrolytic solution on the positive electrode active material under voltage and the crystal collapse of the positive electrode active material. ..
【0010】[0010]
【課題を解決するための手段】この課題を解決するため
に、本発明の非水電解液二次電池は、一般式LixM1
(1-x)M2O2(ただし、M1は銅または銀、M2は鉄、ニ
ッケル、マンガンのうちいずれか)で表わされるリチウ
ムの複合酸化物からなる正極と、リチウム、リチウム合
金あるいはリチウムをドープ、脱ドープできる炭素材料
からなる負極と、非水電解液により構成される非水電解
液二次電池である。To solve this problem, the non-aqueous electrolyte secondary battery of the present invention has a general formula Li x M 1
(1-x) M 2 O 2 (wherein M 1 is copper or silver, M 2 is any one of iron, nickel and manganese) and a positive electrode made of a composite oxide of lithium and lithium, a lithium alloy or A non-aqueous electrolyte secondary battery composed of a negative electrode made of a carbon material that can be doped and dedoped with lithium and a non-aqueous electrolyte.
【0011】[0011]
【作用】本発明の非水電解液二次電池の正極活物質であ
るLixM1(1-x)M2O2(ただし、M1はCuまたはA
g、M2はFe,Ni,Mnのいずれかであり、xは0
<x<1)は、六方晶であるデラフォサイト型複合酸化
物の一部に属している。Function: Li x M 1 (1-x) M 2 O 2 which is the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention (where M 1 is Cu or A
g and M 2 are any one of Fe, Ni and Mn, and x is 0
<X <1) belongs to a part of the delafossite-type composite oxide that is a hexagonal crystal.
【0012】これは、LiCoO2に代表されるような
コバルトを含有している六方晶系の複合酸化物とは異な
り、銅や銀が結晶中で安定した状態で存在するため、電
解液と反応する触媒作用を抑制することができる。これ
により、正極活物質上での電解液の分解反応を防止する
ことができる。また、充電時にリチウムの空位が生じた
場合でも、安定した金属原子が存在することで、結晶が
安定化し、結果として結晶の崩壊を防止することができ
る。This is different from the hexagonal complex oxide containing cobalt as typified by LiCoO 2 , because copper and silver exist in a stable state in the crystal, and thus react with the electrolytic solution. It is possible to suppress the catalytic action. Thereby, the decomposition reaction of the electrolytic solution on the positive electrode active material can be prevented. Further, even when a vacancy of lithium occurs during charging, the presence of stable metal atoms stabilizes the crystal, and as a result, it is possible to prevent the crystal from collapsing.
【0013】したがって、本発明のリチウムの複合酸化
物を正極活物質に用いることにより電解液の分解反応や
正極活物質の結晶崩壊を防止することができ、充放電サ
イクル寿命特性や保存特性を向上させることができる。Therefore, by using the lithium composite oxide of the present invention as the positive electrode active material, it is possible to prevent the decomposition reaction of the electrolytic solution and the crystal collapse of the positive electrode active material, and improve the charge / discharge cycle life characteristics and storage characteristics. Can be made
【0014】[0014]
【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0015】本発明の非水電解液二次電池の正極活物質
であるリチウムの複合酸化物を以下のようにして作製し
た。A lithium composite oxide, which is a positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, was produced as follows.
【0016】酸化第一銅(Cu2O)と鉄のオキシ水酸
化物と酸化リチウム(Li2O)を一定のモル比1:
1:0.5に秤量して混合した後、10wt%の水酸化
ナトリウム溶液を添加し、これらを700℃で加熱処理
した。ついで、これを水洗した後、110℃で加熱乾燥
し、粉砕処理して粒径2〜4μmのLi0.5Cu0.5Fe
O 2を得た。Cuprous oxide (Cu2O) and iron oxyhydroxide
And lithium oxide (Li2O) at a constant molar ratio of 1:
1: Weighed to 0.5 and mixed, then 10 wt% of hydroxylation
Add sodium solution and heat them at 700 ℃
did. Then, after washing this with water, heat drying at 110 ℃
And pulverized to obtain Li having a particle size of 2 to 4 μm.0.5Cu0.5Fe
O 2Got
【0017】同様な方法で、ニッケルおよびマンガンの
オキシ水酸化物をそれぞれ用いることにより、粒径2〜
4μmのLi0.5Cu0.5NiO2およびLi0.5Cu0.5
MnO2を作製した。In the same manner, by using nickel and manganese oxyhydroxides respectively, the particle size of 2 to
4 μm of Li 0.5 Cu 0.5 NiO 2 and Li 0.5 Cu 0.5
MnO 2 was prepared.
【0018】次に、酸化第一銀(Ag2O)と鉄のオキ
シ水酸化物と酸化リチウム(Li2O)を一定のモル比
1:1:0.5に秤量して混合した後、10wt%の水
酸化ナトリウム溶液を添加しこれらを500℃で加熱処
理した。ついで、これを水洗した後、110℃で加熱乾
燥し、粉砕処理して粒径3〜6μmのLi0.5Ag0.5F
eO2を得た。Next, after sterilized silver oxide (Ag 2 O), iron oxyhydroxide and lithium oxide (Li 2 O) were weighed and mixed at a constant molar ratio of 1: 1: 0.5, A 10 wt% sodium hydroxide solution was added, and these were heat-treated at 500 ° C. Then, this was washed with water, dried by heating at 110 ° C., and pulverized to obtain Li 0.5 Ag 0.5 F having a particle size of 3 to 6 μm.
eO 2 was obtained.
【0019】同様な方法で、ニッケルおよびマンガンの
オキシ水酸化物をそれぞれ用いて、粒径3〜6μmのL
i0.5Ag0.5NiO2およびLi0.5Ag0.5MnO2を得
た。In a similar manner, L having a particle size of 3 to 6 μm was prepared using nickel and manganese oxyhydroxides, respectively.
i 0.5 Ag 0.5 NiO 2 and Li 0.5 Ag 0.5 MnO 2 were obtained.
【0020】このようにして得られた正極活物質100
重量部とアセチレンブラック4重量部、グラファイト4
重量部、フッ素樹脂系結着剤7重量部を混合して正極合
剤とし、これをカルボキシルメチルセルロース水溶液に
懸濁させてペースト状にした。このペーストをアルミ箔
の両面に塗着し、乾燥後圧延して正極板とした。The positive electrode active material 100 thus obtained
Parts by weight and acetylene black 4 parts by weight, graphite 4
By weight, 7 parts by weight of a fluororesin binder was mixed to prepare a positive electrode mixture, which was suspended in a carboxymethyl cellulose aqueous solution to form a paste. This paste was applied to both sides of an aluminum foil, dried and rolled to obtain a positive electrode plate.
【0021】次に負極板を次のようにして作製した。コ
ークスを焼成した炭素材100重量部に、フッ素樹脂系
結着材10重量部を混合し、カルボキシルメチルセルロ
ース水溶液に懸濁させてペースト状にした。このペース
トを銅箔の両面に塗着し、乾燥後圧延して負極板とし
た。Next, a negative electrode plate was produced as follows. 100 parts by weight of the carbon material obtained by baking the coke was mixed with 10 parts by weight of the fluororesin-based binder and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. This paste was applied to both sides of a copper foil, dried and rolled to obtain a negative electrode plate.
【0022】これらの正極と負極とポリプロピレン製の
セパレータおよび非水電解液を用いて、図1に示すよう
な密閉型非水電解液二次電池を構成し、本発明の非水電
解液二次電池とした。A sealed type non-aqueous electrolyte secondary battery as shown in FIG. 1 is constructed by using the positive electrode, the negative electrode, the polypropylene separator and the non-aqueous electrolytic solution, and the non-aqueous electrolyte secondary battery of the present invention is formed. It was a battery.
【0023】ここで電解液は炭酸プロピレンと炭酸エチ
レンとの等容積混合溶媒に、過塩素酸リチウムを1mo
l/l溶解したものを用いた。Here, the electrolyte is 1 volume of lithium perchlorate in a mixed solvent of equal volume of propylene carbonate and ethylene carbonate.
1 / l dissolved product was used.
【0024】図1において正極板と負極板はセパレータ
を介して渦巻き状の極板群1とされ、この極板群1は耐
有機電解液性のステンレス鋼板を加工した電池ケース2
に収納されている。この電池ケース2の上部は、安全弁
を備えた封口板3で封口されている。In FIG. 1, the positive electrode plate and the negative electrode plate are formed into a spiral electrode plate group 1 with a separator interposed therebetween, and the electrode plate group 1 is a battery case 2 formed by processing a stainless steel plate resistant to organic electrolyte.
It is stored in. The upper portion of the battery case 2 is sealed with a sealing plate 3 having a safety valve.
【0025】また、正極からは正極リード4が引き出さ
れて封口板3に接続されており、負極からは負極リード
5が引き出されて電池ケース2と接続されている。図1
中6は電池ケース2と封口板3との間を絶縁する絶縁パ
ッキング、7はケース2の内底部と極板群1の下部との
間に位置させた絶縁板でまた、比較電池として、正極の
活物質にLiCoO2とLiNi0.5Co0.5O2を用いる
以外は本発明の電池と同様である電池を構成した。A positive electrode lead 4 is drawn out from the positive electrode and connected to the sealing plate 3, and a negative electrode lead 5 is drawn out from the negative electrode and connected to the battery case 2. Figure 1
A middle 6 is an insulating packing that insulates between the battery case 2 and the sealing plate 3, 7 is an insulating plate positioned between the inner bottom of the case 2 and the lower part of the electrode plate group 1, and a positive electrode as a comparison battery. A battery similar to the battery of the present invention was constructed except that LiCoO 2 and LiNi 0.5 Co 0.5 O 2 were used as the active material.
【0026】次に本発明電池と比較電池の充電を行い正
極のリチウムを負極の炭素材中に移動させてドープした
後、これらの電池を用いて定電流充放電サイクル試験と
高温充電保存試験を行った。Next, the battery of the present invention and the comparative battery were charged, lithium in the positive electrode was moved into the carbon material of the negative electrode to dope, and then a constant current charge / discharge cycle test and a high temperature charge storage test were performed using these batteries. went.
【0027】定電流充放電サイクル試験は、充電を電流
100mAで電圧4.1Vまで行い、放電は電流100
mAで終止電圧3.0Vの条件で常温において行った。
高温充電保存試験は、上記の充放電サイクルを100サ
イクル繰り返した後、電池を60℃において充電状態で
20日間保存して行った。In the constant current charge / discharge cycle test, charging was performed at a current of 100 mA up to a voltage of 4.1 V, and discharging was performed at a current of 100
It was carried out at room temperature under the conditions of mA and a final voltage of 3.0V.
The high temperature charge storage test was carried out by repeating the above charge / discharge cycle 100 times and then storing the battery in a charged state at 60 ° C. for 20 days.
【0028】本発明電池と比較電池の充放電サイクル寿
命試験における充放電サイクル数と放電容量維持率
[(サイクル経過後の容量/初期容量)×100]の関
係を(表1)に示す。The relationship between the number of charge / discharge cycles and the discharge capacity retention rate [(capacity after cycle / initial capacity) × 100] in the charge / discharge cycle life test of the battery of the present invention and the comparative battery is shown in (Table 1).
【0029】また、高温充電保存試験後の電池の容量保
持率[(保存後の容量/保存前の容量)×100]を
(表2)に示す。The capacity retention of the battery after the high temperature charge storage test [(capacity after storage / capacity before storage) × 100] is shown in (Table 2).
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】(表1)からわかるように、コバルトを含
むリチウムの複合酸化物を正極活物質に用いた比較電池
では、300サイクル経過後の容量維持率は当初の52
%であり、初期容量の約半分まで容量が低下したが、銅
や銀を含むリチウムの複合酸化物を用いた本発明の電池
では、300サイクル経過後の容量維持率は約80%で
あり、サイクル経過後も容量維持率が良好であった。As can be seen from (Table 1), in the comparative battery using the lithium-containing composite oxide containing cobalt as the positive electrode active material, the capacity retention ratio after 300 cycles was 52% of the initial value.
%, The capacity decreased to about half of the initial capacity, but in the battery of the present invention using the lithium composite oxide containing copper and silver, the capacity retention rate after 300 cycles was about 80%, The capacity retention rate was good even after the cycle.
【0033】また、(表2)からわかるように、コバル
トを含むリチウムの複合酸化物を正極活物質に用いた比
較電池では、高温充電保存後の容量保持率は53%であ
ったが、銅や銀を含むリチウムの複合酸化物を用いた本
発明の電池では、容量保持率は約80%であり、高温充
電後の保存性が良好であった。Further, as can be seen from (Table 2), in the comparative battery in which the lithium-containing composite oxide containing cobalt was used as the positive electrode active material, the capacity retention rate after high temperature charge storage was 53%. In the battery of the present invention using the lithium composite oxide containing silver and silver, the capacity retention was about 80%, and the storage stability after high temperature charging was good.
【0034】これらの結果から、銅や銀を含むリチウム
の複合酸化物を正極活物質に用いると、電池の充放電サ
イクル寿命特性および保存特性を向上させることができ
る。From these results, it is possible to improve the charge / discharge cycle life characteristics and storage characteristics of the battery by using the lithium composite oxide containing copper and silver as the positive electrode active material.
【0035】また、本実施例では一般式LixM1(1-x)
M2O2のxの値を0.5としたが、0<x<1の範囲で
はほぼ同様の効果が得られた。In this embodiment, the general formula Li x M 1 (1-x)
Although the value of x of M 2 O 2 was set to 0.5, substantially the same effect was obtained in the range of 0 <x <1.
【0036】なお、本実施例では負極としてリチウムを
ドープ、脱ドープできる炭素材料を用いたが、これ以外
にリチウム金属やリチウム合金であってもよい。また、
本実施例では電解液として炭酸プロピレンと炭酸エチレ
ンとの等容積混合溶媒に、過塩素酸リチウムを溶解した
ものを用いたが、他の有機溶媒にリチウム塩を溶質とし
て溶解したものでもよい。In this embodiment, a carbon material which can be doped with lithium and dedoped is used as the negative electrode, but other than this, lithium metal or lithium alloy may be used. Also,
In the present embodiment, as the electrolytic solution, the one obtained by dissolving lithium perchlorate in the mixed solvent of equal volume of propylene carbonate and ethylene carbonate was used, but it may be one obtained by dissolving the lithium salt as a solute in another organic solvent.
【0037】[0037]
【発明の効果】以上のように、本発明の非水電解液二次
電池は正極活物質に一般式LixM1(1 -x)M2O2(ただ
し、M1は銅または銀、M2は鉄、ニッケル、マンガンの
いずれかであり、0<x<1)で表わされるリチウムの
複合酸化物を用いるので、高電圧下における正極活物質
上での電解液の分解反応や正極活物質の結晶崩壊を防止
することができ、充放電サイクル寿命特性および保存特
性を向上させることができる。As described above, in the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material has the general formula Li x M 1 (1- x) M 2 O 2 (where M 1 is copper or silver, M 2 is any one of iron, nickel and manganese, and since the lithium complex oxide represented by 0 <x <1) is used, the decomposition reaction of the electrolytic solution on the positive electrode active material under high voltage and the positive electrode activity are performed. It is possible to prevent crystal collapse of the substance and improve charge / discharge cycle life characteristics and storage characteristics.
【図1】本発明の非水電解液二次電池の断面図FIG. 1 is a sectional view of a non-aqueous electrolyte secondary battery of the present invention.
1 極板群 2 電池ケース 3 封口板 4 正極リード 5 負極リード 6 絶縁パッキング 7 絶縁リング 1 electrode plate group 2 battery case 3 sealing plate 4 positive electrode lead 5 negative electrode lead 6 insulating packing 7 insulating ring
Claims (1)
は銅または銀、M2は鉄、ニッケル、マンガンのうちの
いずれかであり、xは0<x<1)で表わされるリチウ
ムの複合酸化物からなる正極と、 リチウム、リチウム合金あるいはリチウムをドープ、脱
ドープできる炭素材料からなる負極と、 非水電解液とから構成される非水電解液二次電池。1. A general formula Li x M 1 (1-x) M 2 O 2 (where M 1
Is copper or silver, M 2 is one of iron, nickel and manganese, and x is a positive electrode made of a lithium composite oxide represented by 0 <x <1), and is doped with lithium, a lithium alloy or lithium. A non-aqueous electrolyte secondary battery including a negative electrode made of a carbon material that can be dedoped and a non-aqueous electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4001923A JP3008627B2 (en) | 1992-01-09 | 1992-01-09 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4001923A JP3008627B2 (en) | 1992-01-09 | 1992-01-09 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05190177A true JPH05190177A (en) | 1993-07-30 |
JP3008627B2 JP3008627B2 (en) | 2000-02-14 |
Family
ID=11515120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4001923A Expired - Fee Related JP3008627B2 (en) | 1992-01-09 | 1992-01-09 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3008627B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08190907A (en) * | 1995-01-10 | 1996-07-23 | Hitachi Ltd | Secondary battery |
EP0845436A1 (en) * | 1996-11-29 | 1998-06-03 | Sharp Kabushiki Kaisha | Lithium nickel copper composite oxide and its production process and use |
-
1992
- 1992-01-09 JP JP4001923A patent/JP3008627B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08190907A (en) * | 1995-01-10 | 1996-07-23 | Hitachi Ltd | Secondary battery |
EP0845436A1 (en) * | 1996-11-29 | 1998-06-03 | Sharp Kabushiki Kaisha | Lithium nickel copper composite oxide and its production process and use |
Also Published As
Publication number | Publication date |
---|---|
JP3008627B2 (en) | 2000-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2855877B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3550783B2 (en) | Lithium-containing transition metal composite oxide, method for producing the same, and use thereof | |
JP3502118B2 (en) | Method for producing lithium secondary battery and negative electrode thereof | |
JP4055241B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3003431B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2751624B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002042812A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same | |
JPH1092467A (en) | Nonaqueous electrolyte secondary battery | |
JP3054829B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP4746846B2 (en) | Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery | |
JP2797693B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH03108261A (en) | Nonaqueous solvent secondary battery | |
JPH06124707A (en) | Nonaqueous electrolytic battery | |
JPH056779A (en) | Nonaqueous electrolytic secondary battery | |
JP2979826B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP3044812B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0487268A (en) | Nonaqueous electrolyte secondary battery | |
JP3008627B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH05174872A (en) | Nonaqueous electrolyte secondary battery | |
JPH056780A (en) | Nonaqueous electrolytic secondary battery | |
JP3136679B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH04319259A (en) | Non-aqueous electrolyte secondary battery | |
JP2015173094A (en) | lithium secondary battery | |
JP3008638B2 (en) | Non-aqueous electrolyte secondary battery and its negative electrode active material | |
JP3509477B2 (en) | Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |