JPH049570B2 - - Google Patents

Info

Publication number
JPH049570B2
JPH049570B2 JP62175666A JP17566687A JPH049570B2 JP H049570 B2 JPH049570 B2 JP H049570B2 JP 62175666 A JP62175666 A JP 62175666A JP 17566687 A JP17566687 A JP 17566687A JP H049570 B2 JPH049570 B2 JP H049570B2
Authority
JP
Japan
Prior art keywords
exhaust gas
liquid
absorption liquid
reaction tank
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62175666A
Other languages
Japanese (ja)
Other versions
JPS6418427A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62175666A priority Critical patent/JPS6418427A/en
Publication of JPS6418427A publication Critical patent/JPS6418427A/en
Publication of JPH049570B2 publication Critical patent/JPH049570B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、排ガス中に含まれるSO2、HF、
HCl、NH3、ダスト等の環境汚染物質を効率よ
く除去する方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention provides a method for reducing SO 2 , HF,
This invention relates to a method for efficiently removing environmental pollutants such as HCl, NH 3 and dust.

〔従来技術〕[Prior art]

従来、SO2やダスト等の環境汚染物質を含む排
ガスから、それらの環境汚染物質(以下、単に汚
染物質ともいう)を除去するために、排ガスを吸
収液と接触させる方法は、いわゆる湿式排ガス処
理法として広く知られている。このような湿式排
ガス処理法としては、これまで多くのものが提案
されてきたが、それらの中でも汚染物質の除去率
が高くかつ経済的にもすぐれたものとして、ジエ
ツトバブリングリアクターを用いる技術が知られ
ている(特公昭60−4726号公報、特公昭60−
51372号公報、「公害と対策」vol19、No.11、p79〜
88)。この技術は、吸収液面下に排ガスを高速で
噴出させて、吸収液と排ガスとを激しく混合し
て、排ガスの微細気泡を含む吸収液槽(ジエツト
バブリング槽)を吸収液の表面部に形成させるも
のである。この吸収液の表面部に形成されたジエ
ツトバブリング槽では、高速のガスが吸収液に衝
突し気泡分裂する際の激しい撹乱接触及び層内で
の分裂した微細気泡間の撹乱接触が起り、気液接
触界面が著しく増大される。
Conventionally, in order to remove environmental pollutants (hereinafter simply referred to as pollutants) from exhaust gas containing environmental pollutants such as SO 2 and dust, the method of bringing exhaust gas into contact with an absorbing liquid has been called wet exhaust gas treatment. It is widely known as the law. Many wet exhaust gas treatment methods have been proposed to date, but among them, the technology using a jet bubbling reactor is one that has a high pollutant removal rate and is economically superior. known (Special Publication No. 4726, Special Publication No. 1983)
Publication No. 51372, "Pollution and Countermeasures" vol19, No.11, p79~
88). This technology jets exhaust gas below the absorption liquid surface at high speed, mixes the absorption liquid and exhaust gas vigorously, and creates an absorption liquid tank (jet bubbling tank) containing fine exhaust gas bubbles on the surface of the absorption liquid. It is something that is made to form. In the jet bubbling tank formed on the surface of the absorbent liquid, when high-speed gas collides with the absorbent liquid and causes the bubbles to split, violently disturbed contact and disturbed contact between the split microbubbles within the layer occur. The liquid contact interface is significantly increased.

ところで、このようなジエツトバブリングリア
クターを用いる湿式排ガス処理において、従来
は、ジエツトバブリングリアクターの前段に、冷
却液循環ポンプを備えた除塵塔を設け、排ガスを
この除塵塔に導入し、ここで冷却液のスプレー液
滴と接触させて、排ガスの除塵と冷却を行つた
後、排ガスをジエツトバブリングリアクターに導
入している。しかしながら、このような従来技術
の場合、次のような欠点があつた。
By the way, in wet exhaust gas treatment using such a jet bubbling reactor, conventionally, a dust removal tower equipped with a coolant circulation pump is provided upstream of the jet bubbling reactor, and the exhaust gas is introduced into this dust removal tower. After the exhaust gas is brought into contact with spray droplets of coolant to remove dust and cool it, the exhaust gas is introduced into the jet bubbling reactor. However, such conventional technology has the following drawbacks.

() 除塵塔における冷却液のスプレー液滴径
は、約2000μmという大きいために、排ガスの
冷却及び除塵を行うには、大量の冷却液のスプ
レーが必要とされる。従つて、除塵塔では、排
ガスから分離した大量の冷却液を循環再使用す
るための冷却液循環ポンプの設置が必要とさ
れ、そのための動力費を要した。
() Cooling liquid spray in the dust removal tower Since the droplet diameter is as large as approximately 2000 μm, a large amount of cooling liquid spray is required to cool the exhaust gas and remove dust. Therefore, in the dust removal tower, it is necessary to install a coolant circulation pump for circulating and reusing a large amount of coolant separated from the exhaust gas, which requires power costs.

() 排ガス処理系に導入する排ガス圧力は、除
塵塔設置による圧力損失のために、その分大き
くする必要があり、そのための動力費を要し
た。
() The pressure of the exhaust gas introduced into the exhaust gas treatment system had to be increased by that amount due to the pressure loss caused by installing the dust removal tower, which required additional power costs.

〔目的〕〔the purpose〕

本発明は、従来技術に見られる前記欠点を克服
することを目的とする。
The present invention aims to overcome the aforementioned drawbacks found in the prior art.

〔構成〕〔composition〕

本発明によれば、除塵塔処理を受けていない排
ガス中に含まれる環境汚染物質を除去する方法に
おいて、 (a) 該排ガス中に、冷却液及び吸収液を、反応槽
の中間に水平に配設された多数の開口を有する
仕切板上方の密閉空間内及び/又は該密閉空間
に連結するダクト内において、平均粒子径が
300μm以下の微粒子状で噴霧混合する工程、 (b) 該混合物を該仕切板上方の密閉空間内におい
て気液接触させる工程、 (c) 該密閉空間部から、排ガスを冷却液微粒子及
び吸収液微粒子とともに、該仕切板の開口に垂
設した排ガス導入管を介して反応槽内の仕切板
下方に収容される吸収液中に導入分散してジエ
ツトバブリング層を形成する工程、 (d) 該吸収液中に酸素含有ガスを導入分散させて
酸素含有ガスの微細気液を形成する工程、 からなることを特徴とする排ガスの処理方法が提
供される。
According to the present invention, in a method for removing environmental pollutants contained in flue gas that has not been subjected to dust removal tower treatment, (a) a cooling liquid and an absorbing liquid are horizontally disposed in the middle of a reaction tank in the flue gas. In the closed space above the partition plate with many openings and/or in the duct connected to the closed space,
a step of spraying and mixing the mixture in the form of fine particles of 300 μm or less; (b) a step of bringing the mixture into gas-liquid contact in a closed space above the partition plate; (c) a step of discharging the exhaust gas from the closed space into coolant fine particles and absorption liquid fine particles. (d) introducing and dispersing the absorption liquid into the absorption liquid stored below the partition plate in the reaction tank through an exhaust gas introduction pipe vertically installed in the opening of the partition plate to form a jet bubbling layer; Provided is a method for treating exhaust gas, comprising the steps of: introducing and dispersing oxygen-containing gas into a liquid to form a fine gas-liquid of oxygen-containing gas.

本発明の排ガス処理方法は、前記した従来のジ
エツトバブリングリアクターを用いる方法に比較
し、除塵塔を省略し得ると共に、排ガス中に冷却
液及び吸収液を微粒子化噴霧し、排ガスをこれら
の冷却液及び吸収液の各微粒子と共に吸収液中に
導入分散してジエツトバブリング層を形成する点
で相違する。このようにして排ガスを処理する時
には、除塵塔の省略により、その設置及び運転に
要する費用が不要となり、さらに排ガスを処理系
に供給する際の圧力も低減されることから、排ガ
スの加圧に要する動力費も著しく節約される。
Compared to the method using the conventional jet bubbling reactor described above, the exhaust gas treatment method of the present invention can omit the dust removal tower, and also sprays the cooling liquid and absorption liquid into the exhaust gas to form fine particles, thereby cooling the exhaust gas. The difference is that the jet bubbling layer is formed by introducing and dispersing into the absorbing liquid together with the fine particles of the liquid and the absorbing liquid. When treating flue gas in this way, the cost of installing and operating it is eliminated by omitting the dust removal tower, and the pressure when supplying flue gas to the treatment system is also reduced, making it possible to pressurize the flue gas. The power costs required are also significantly reduced.

次に、本発明を図面により詳述する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の処理装置の模式図である。こ
の図において、1は反応槽を示し、その中間部に
後記する仕切板の開口に垂設された排ガス導入管
2、その上部に吸収液微粒子化ノズル3、及びそ
の下部に酸素含有ガス噴出ノズル4が配置されて
いる。また、この反応槽の液面上部には、中央部
に貫通孔15を有し、表面に多数の開口16を有
する環状仕切板17が配設され、その環状仕切板
17の上方には、同じく中央部に貫通孔を有する
環状密閉板18が水平配置され、その環状仕切板
と環状密閉板の中央貫通孔側の環状端部には、環
状の筒状側板19が配設されて、仕切板の上方に
は、密閉空間(プレナム)12が形成されてい
る。そして、この密閉空間12には、排ガス導入
ダクト7が連結され、また、反応槽の上部側壁に
は排ガス導出ダクト10が各連結され、その排ガ
ス導入ダクト内には冷却液微粒子化ノズル8が配
設されている。3′は吸収液導入管、4′は酸素含
有ガス導入管、5は吸収液撹拌器、6は吸収液、
8′は冷却液導入管を各示す。
FIG. 1 is a schematic diagram of the processing apparatus of the present invention. In this figure, reference numeral 1 indicates a reaction tank, in the middle of which is an exhaust gas introduction pipe 2 vertically installed in the opening of a partition plate, above which is an absorption liquid atomization nozzle 3, and below it is an oxygen-containing gas jetting nozzle. 4 is placed. Further, an annular partition plate 17 having a through hole 15 in the center and a large number of openings 16 on the surface is disposed above the liquid level of this reaction tank. An annular sealing plate 18 having a through hole in the center is arranged horizontally, and an annular cylindrical side plate 19 is disposed on the annular partition plate and the annular end of the annular sealing plate on the side of the central through hole. A closed space (plenum) 12 is formed above. An exhaust gas introduction duct 7 is connected to this sealed space 12, and exhaust gas outlet ducts 10 are connected to the upper side wall of the reaction tank, and a cooling liquid atomization nozzle 8 is arranged in the exhaust gas introduction duct. It is set up. 3' is an absorption liquid introduction pipe, 4' is an oxygen-containing gas introduction pipe, 5 is an absorption liquid stirrer, 6 is an absorption liquid,
Reference numeral 8' indicates a cooling liquid introduction pipe.

本発明の方法を実施するには、冷却液をその微
粒子化ノズル8から微粒子状で噴出させかつ吸収
液をその微粒子化ノズル3から微粒子状で噴出さ
せると共に、排ガスをその導入ダクト7から装置
内の仕切板上に形成された密閉空間12内へ導入
する。導入された排ガスは、この密閉空間(プレ
ナム)12において、冷却液及び吸収液の各微粒
子との間で気液接触を行う。この気液接触によ
り、排ガス中の汚染物質はそれらの液体微粒子に
捕捉吸収されると共に、排ガスの増湿冷却が行わ
れる。また、このプレナム12においては、排ガ
ス中の酸素及び冷却液と吸収液の微粒子化に用い
られた空気中の酸素による汚染物質の酸化も行わ
れる。
To carry out the method of the present invention, the cooling liquid is ejected in the form of fine particles from the atomizing nozzle 8, the absorption liquid is ejected in the form of fine particles from the atomizing nozzle 3, and the exhaust gas is introduced into the apparatus from the inlet duct 7. into the sealed space 12 formed on the partition plate. In this closed space (plenum) 12, the introduced exhaust gas makes gas-liquid contact with each of the particles of the cooling liquid and the absorption liquid. Due to this gas-liquid contact, pollutants in the exhaust gas are captured and absorbed by these liquid particles, and the exhaust gas is humidified and cooled. Further, in this plenum 12, pollutants are oxidized by oxygen in the exhaust gas and oxygen in the air used to atomize the cooling liquid and absorption liquid.

プレナム12に導入された排ガスは、液体微粒
子と共に排ガス導入管2を通して吸収液6中に分
散導入され、ジエツトバブリング層Aを形成す
る。このジエツトバブリング層Aは、排ガスの微
細気泡と吸収液とからなる液相連続の気液接触層
であつて、排ガスを排ガス導入管2の下部から吸
収液中に水平方向に噴出分散させることによつて
形成することができる。第2図に排ガス導入管2
の構造を示す。このガス導入管は下端開口したも
ので、その下端部に噴出部21を有し、ガス導入
管に導入された排ガスはその噴出部21から吸収
液中に水平方向に向けて噴出される。このジエツ
トバブリング層については、前記特公昭60−4726
号公報、特公昭60−51372号公報等に詳述されて
いる。
The exhaust gas introduced into the plenum 12 is dispersed and introduced into the absorption liquid 6 through the exhaust gas introduction pipe 2 together with liquid particles to form a jet bubbling layer A. This jet bubbling layer A is a continuous liquid phase gas-liquid contact layer consisting of fine bubbles of exhaust gas and an absorption liquid, and is a gas-liquid contact layer in which the exhaust gas is ejected and dispersed horizontally from the lower part of the exhaust gas introduction pipe 2 into the absorption liquid. It can be formed by Figure 2 shows the exhaust gas introduction pipe 2.
shows the structure of This gas introduction pipe is open at the bottom and has a jetting part 21 at the bottom end, and the exhaust gas introduced into the gas introducing pipe is jetted horizontally into the absorption liquid from the jetting part 21. Regarding this jet bubbling layer, the above-mentioned Japanese Patent Publication No. 60-4726
This method is described in detail in Japanese Patent Publication No. 60-51372, etc.

前記のようにして排ガスを液体の微粒子と共に
吸収液中に導入分散させると、プレナム12にお
いて液体微粒子に捕捉されなかつた汚染物質はこ
のジエツトバブリング層において吸収液に捕捉吸
収され、また排ガスに同伴された液体微粒子もこ
の吸収液に捕捉吸収される。さらに、このジエツ
トバブリング層においては汚染物質の酸化も行わ
れる。この場合、汚染物質の酸化に要する酸素と
しては、排ガス中の酸素及び酸素含有ガス噴出ノ
ズル4から供給される酸素が用いられる。
When the exhaust gas is introduced and dispersed into the absorption liquid together with the liquid particles as described above, the contaminants that were not captured by the liquid particles in the plenum 12 are captured and absorbed by the absorption liquid in this jet bubbling layer, and are also entrained in the exhaust gas. The absorbed liquid particles are also captured and absorbed by this absorption liquid. Furthermore, oxidation of contaminants also takes place in this jet bubbling layer. In this case, oxygen in the exhaust gas and oxygen supplied from the oxygen-containing gas jetting nozzle 4 are used as the oxygen required for oxidizing the pollutants.

吸収液と接触し、汚染物質の除去された排ガス
は、ジエツトバブリング層から反応槽上部の排ガ
ス出口部空間14に放出され、排ガス導出ダクト
10を通つて反応槽外へ抜出され、ミストエリミ
ネーター11でその中に含まれるミストを除去し
た後、大気へ放出される。反応槽上部の排ガス入
口部空間12と排ガス出口部空間14とは相互に
隔壁等により区画され、導入排ガスは必ず吸収液
中を通つた後、系外へ導出されるようになつてい
る。
The exhaust gas that has come into contact with the absorption liquid and from which pollutants have been removed is released from the jet bubbling layer into the exhaust gas outlet space 14 in the upper part of the reaction tank, and is extracted to the outside of the reaction tank through the exhaust gas outlet duct 10. After removing the mist contained therein in step 11, it is released into the atmosphere. The exhaust gas inlet space 12 and the exhaust gas outlet space 14 in the upper part of the reaction tank are separated from each other by a partition wall or the like, so that the introduced exhaust gas always passes through the absorption liquid before being led out of the system.

酸素含有ガス噴出ノズル4から吸収液中に噴出
された酸素含有ガスは、微細気泡となつて吸収液
中を上昇すると共に、吸収液中に溶解し、汚染物
質を酸化する。また、この微細気泡の上昇は、吸
収液の撹拌を促進させる効果も示す。
The oxygen-containing gas ejected from the oxygen-containing gas ejection nozzle 4 into the absorption liquid becomes fine bubbles and rises in the absorption liquid, dissolves in the absorption liquid, and oxidizes contaminants. Moreover, the rise of these fine bubbles also has the effect of promoting stirring of the absorption liquid.

排ガス中の汚染物質と吸収液との反応により生
成した物質は、排液管9を通して吸収液と共に反
応槽外へ抜出される。
Substances generated by the reaction between pollutants in the exhaust gas and the absorption liquid are discharged from the reaction tank together with the absorption liquid through the drain pipe 9.

本発明において、冷却液及び吸収液を微粒子化
する場合、その微粒子の粒径はできるだけ微細に
するのが有利であり、本発明の場合、平均粒径
300μm以下、殊に100μm以下にするのが有利で
ある。この平均粒径が300μmを超えるようにな
ると、プレナム12において排ガス中の汚染物質
の捕捉が困難になると共に、排ガスの冷却効果が
不十分になる。冷却液及び吸収液の微粒子化は、
通常、空気を用いて実施されるが、この微粒子化
に用いた空気は、プレナム12及びジエツトバブ
リング層Aにおける汚染物質の酸化剤としても作
用する。また、微粒子化する冷却液及び吸収液の
量は、排ガスを飽和温度まで増湿冷却するのに必
要な量以上である。噴霧に用いる吸収液は、水に
対して吸収剤を添加したものであるが、この噴霧
による吸収液の供給のみでは吸収剤が不足する場
合には、反応槽に対して吸収剤供給管13を設け
て必要量の吸収剤を供給する。
In the present invention, when the cooling liquid and the absorption liquid are made into fine particles, it is advantageous to make the particle size of the fine particles as fine as possible, and in the case of the present invention, the average particle size is
Advantageously it is less than 300 μm, in particular less than 100 μm. When this average particle size exceeds 300 μm, it becomes difficult to capture pollutants in the exhaust gas in the plenum 12, and the cooling effect of the exhaust gas becomes insufficient. Atomization of cooling liquid and absorption liquid is
Usually carried out using air, the air used for this atomization also acts as an oxidizing agent for contaminants in the plenum 12 and jet bubbling layer A. Further, the amount of the cooling liquid and absorption liquid to be turned into fine particles is greater than or equal to the amount required to humidify and cool the exhaust gas to the saturation temperature. The absorption liquid used for spraying is made by adding an absorbent to water, but if the absorption liquid is insufficient by just supplying the absorption liquid by spraying, an absorbent supply pipe 13 is connected to the reaction tank. to supply the required amount of absorbent.

本発明において、冷却液としては、通常、水が
用いられ、吸収液としては、排ガス中の汚染物質
の種類に応じて適当な吸収剤を添加した水が用い
られる。例えば、排ガスがSO2、SO3、NO、
N2O3、NO2、N2O4、N2O5、HCl、HF、有機酸
等の酸性汚染物質を含む場合には、吸収剤として
は、アルカリ金属化合物、アルカリ土類金属化合
物、アンモニア等の前記汚染物質に反応性を示す
物質が用いられる。この場合、NOはアルカリ性
吸収液への吸収性が悪いのでNO2の形に酸化し
て処理するのがよい。また、排ガスがアンモニア
等のアルカリ性物質を含む場合には、酸性水溶液
を吸収液として用いればよい。
In the present invention, water is usually used as the cooling liquid, and water added with an appropriate absorbent depending on the type of pollutant in the exhaust gas is used as the absorption liquid. For example, if the exhaust gas is SO 2 , SO 3 , NO,
When containing acidic pollutants such as N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 , HCl, HF, and organic acids, the absorbent may include alkali metal compounds, alkaline earth metal compounds, A substance that is reactive with the contaminant, such as ammonia, is used. In this case, NO is poorly absorbed into the alkaline absorption liquid, so it is best to treat it by oxidizing it into NO 2 form. Further, when the exhaust gas contains an alkaline substance such as ammonia, an acidic aqueous solution may be used as the absorption liquid.

本発明においては、種々の変更が可能であり、
例えば、冷却液及び吸収液の噴霧は共に排ガス導
入ダクト7中に行うことができるし、また、両者
共に反応槽の上部空間12で行うことができる
し、さらに、吸収液を排ガス導入ダクト及び冷却
液を反応槽上部空間に微粒子化噴霧することがで
きる。さらに、反応槽内には、バツフル板等のこ
の種技術に慣用の付属装置を配設することができ
る。
Various changes are possible in the present invention,
For example, the cooling liquid and the absorption liquid can both be sprayed into the exhaust gas introduction duct 7, or both can be performed in the upper space 12 of the reaction tank, and the absorption liquid can be sprayed into the exhaust gas introduction duct 7 and the cooling liquid. The liquid can be atomized and sprayed into the upper space of the reaction tank. Furthermore, accessories customary for this type of technology, such as baffle plates, can be arranged in the reaction vessel.

〔効果〕〔effect〕

本発明では、排ガス中に冷却液及び吸収液を直
接微粒子化噴霧し、排ガスの増湿冷却と同時に汚
染物質の捕捉除去を行う工程を採用したことか
ら、従来の湿式排ガス処理に比べて、排ガス処理
を非常に効率的に行うことができ、従来必要とさ
れていた除塵塔の設置は省略される。従つて、本
発明では、除塵塔の建設費、運転費は削減される
と共に、装置系へ供給する排ガス圧力も低減し得
るので、その動力費もその分節約することができ
る。
The present invention employs a process in which the cooling liquid and absorption liquid are directly atomized into exhaust gas, and the exhaust gas is humidified, cooled, and pollutants are captured and removed at the same time. The treatment can be carried out very efficiently, and the installation of a dust removal tower, which was previously required, is omitted. Therefore, according to the present invention, the construction cost and operating cost of the dust removal tower can be reduced, and the pressure of the exhaust gas supplied to the device system can also be reduced, so that the power cost can be reduced accordingly.

また、本発明では、冷却液及び吸収液の各微粒
子化噴霧工程を設け、排ガス処理の相当部分が達
成されていることから、その後のジエツトバブリ
ング層Aにおける汚染物質の捕捉吸収の負荷は著
しく軽減され、排ガス導入管2の開口先端の吸収
液中深度を浅くしても十分な処理効果を得ること
ができる。従つて、本発明では、排ガス導入管の
吸収液中深度を浅くすることにより排ガスの供給
圧を減少させることができ、排ガスの加圧動力費
をその分減少させることができる。
In addition, in the present invention, since a considerable part of the exhaust gas treatment is achieved by providing atomization spraying steps for the cooling liquid and the absorption liquid, the load of trapping and absorbing pollutants in the subsequent jet bubbling layer A is significantly reduced. Even if the depth in the absorption liquid at the opening end of the exhaust gas introduction pipe 2 is made shallow, a sufficient treatment effect can be obtained. Therefore, in the present invention, the supply pressure of exhaust gas can be reduced by reducing the depth of the exhaust gas introduction pipe in the absorption liquid, and the power cost for pressurizing exhaust gas can be reduced accordingly.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 排ガス処理に使用した装置の形式は第1図に示
すものであり、断面円形の反応槽1は直径1000
mm、液面高さを2000mmとし、排ガス導入管2とし
て直径4インチの管12本を使用し、その開口部先
端の深さは液面下100mmとした。この反応槽1に
は撹拌器5を設けた。なお、吸収液微粒子化ノズ
ル3は、冷却液微粒子ノズル8の下流のダクト7
内に設けた。
Example The type of equipment used for exhaust gas treatment is shown in Figure 1, and the reaction tank 1, which has a circular cross section, has a diameter of 1000 mm.
mm, the liquid level height was 2000 mm, 12 pipes with a diameter of 4 inches were used as the exhaust gas introduction pipe 2, and the depth of the opening tip was 100 mm below the liquid level. This reaction tank 1 was equipped with a stirrer 5. Note that the absorption liquid atomization nozzle 3 is connected to a duct 7 downstream of the cooling liquid atomization nozzle 8.
It was set up inside.

SO2800ppm、ダスト80mg/Nm3、O23%を含む
排煙4000Nm3/hを排ガス導入ダクト7より入口
プレナム12に導入し、撹拌しながら液面下1800
mmに設けた空気噴出ノズル4より空気を40Nm3
hで噴霧した。この場合、吸収液としては、
CaCO3約14Kg/hを石膏濃度5%のスラリー400
/hに混ぜたもの(石灰石スラリー)を用い、
これを排ガス導入ダクト7に設けられた二流体ス
プレーノズルより空気により微粒化噴霧した。ま
た、このスプレーの上流ダクト7内にもう1つの
二流体スプレーノズル8を設け、冷却液としての
工業用水約300/hをガス冷却のために空気に
より微粒化噴霧した。この時の微粒子の平均粒径
は吸収液及び冷却液ともに約60μmであつた。
4000Nm 3 /h of flue gas containing 800ppm SO 2 , 80mg/Nm 3 dust, and 3% O 2 is introduced into the inlet plenum 12 from the exhaust gas introduction duct 7, and is heated 1800Nm 3 /h below the liquid level while stirring.
40Nm 3 /
It was sprayed at h. In this case, the absorption liquid is
Approximately 14Kg/h of CaCO 3 in slurry of 5% gypsum concentration 400
/h (limestone slurry) mixed with
This was atomized and sprayed with air from a two-fluid spray nozzle provided in the exhaust gas introduction duct 7. Further, another two-fluid spray nozzle 8 was installed in the upstream duct 7 of this sprayer, and about 300/h of industrial water as a cooling liquid was atomized and sprayed with air for gas cooling. The average particle size of the fine particles at this time was about 60 μm for both the absorption liquid and the cooling liquid.

以上のような排ガス処理の結果、脱硫率は94〜
96%と高脱硫率が得られた。また、出口ダクト濃
度は1〜6mg/Nm3に維持され、除塵塔とその循
環ポンプがなくても非常に高い除塵性能が得られ
ることが判明した。得られた石膏の性状は次に示
すように高品質であつた。
As a result of the above exhaust gas treatment, the desulfurization rate is 94~
A high desulfurization rate of 96% was obtained. It was also found that the outlet duct concentration was maintained at 1 to 6 mg/Nm 3 and that very high dust removal performance could be obtained even without a dust removal tower and its circulation pump. The properties of the obtained gypsum were of high quality as shown below.

表−1 CaSO4・2H2O:99.1重量%(ただしダスト分は
除く) CaCO3 :0.3 〃 CaSO3 :0 PH :6〜7 平均粒径 :60〜80μm 次に、本発明を従来技術と比較をするために、
石灰石スラリーの微粒化噴霧を停止し、石灰石ス
ラリーを反応槽1の排ガス導入管2の開口部の位
置の吸収液中に直接供給したところ、同じ脱硫率
を得るためには、開口部先端の液面下の深さを約
200mmにする必要があることが判明した。この結
果、本発明によれば、除塵塔の省略による圧力損
失の低減100mmと合わせて約200mmの排ガス供給圧
の削減が可能となり大幅な動力費の削減が可能と
なることが判明した。
Table 1 CaSO 4 2H 2 O: 99.1% by weight (excluding dust) CaCO 3 : 0.3 〃 CaSO 3 : 0 PH: 6-7 Average particle size: 60-80 μm Next, the present invention was compared with the prior art. In order to make a comparison,
When the atomization spraying of the limestone slurry was stopped and the limestone slurry was directly supplied into the absorption liquid at the opening of the exhaust gas introduction pipe 2 of the reaction tank 1, in order to obtain the same desulfurization rate, it was necessary to The depth below the surface is approx.
It turned out that it needed to be 200mm. As a result, it was found that according to the present invention, it is possible to reduce the exhaust gas supply pressure by about 200 mm, including the 100 mm reduction in pressure loss due to the omission of the dust removal tower, and it is possible to significantly reduce power costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で用いる排ガス処理装置の模式
図を示し、第2図は排ガス導入管の構造図を示
す。 1……反応槽、2……排ガス導入管、3……吸
収液微粒子化ノズル、4……酸素含有ガス噴霧ノ
ズル、5……撹拌器、6……吸収液、7……排ガ
ス導入ダクト、8……冷却液微粒子化ノズル、9
……排液管、10……排ガス導出ダクト、11…
…ミストエリミネーター、12……プレナム、2
1……噴出部、A……ジエツトバブリング層。
FIG. 1 shows a schematic diagram of an exhaust gas treatment device used in the present invention, and FIG. 2 shows a structural diagram of an exhaust gas introduction pipe. DESCRIPTION OF SYMBOLS 1... Reaction tank, 2... Exhaust gas introduction pipe, 3... Absorption liquid atomization nozzle, 4... Oxygen-containing gas spray nozzle, 5... Stirrer, 6... Absorption liquid, 7... Exhaust gas introduction duct, 8... Coolant atomization nozzle, 9
...Drain pipe, 10...Exhaust gas outlet duct, 11...
...Mist Eliminator, 12...Plenum, 2
1...Ejection part, A...Jet bubbling layer.

Claims (1)

【特許請求の範囲】 1 除塵処理を受けていない排ガス中に含まれる
環境汚染物質を除去する方法において、 (a) 該排ガス中に、冷却液及び吸収液を反応槽の
中間に水平に配設された多数の開口を有する仕
切板上方の密閉空間内及び/又は該密閉空間に
連結するダクト内において、平均粒子径が
300μm以下の微粒子状で噴霧混合する工程、 (b) 該混合物を該仕切板上方の密閉空間内におい
て気液接触させる工程、 (c) 該密閉空間部から、排ガスを、冷却液微粒子
及び吸収液状粒子とともに、該仕切板の開口に
垂設した排ガス導入管を介して反応槽内の仕切
板下方に収容された吸収液中に導入分散してジ
エツトバブリング層を形成する工程、 (d) 該吸収液中に酸素含有ガスを導入分散させて
酸素含有ガスの微細気泡を形成する工程、 からなることを特徴とする排ガスの処理方法。
[Scope of Claims] 1. A method for removing environmental pollutants contained in exhaust gas that has not undergone dust removal treatment, including: (a) disposing a cooling liquid and an absorbing liquid horizontally in the middle of a reaction tank in the exhaust gas; The average particle size is
(b) Bringing the mixture into gas-liquid contact in the closed space above the partition plate; (c) Transferring the exhaust gas from the closed space to the coolant fine particles and the absorbed liquid. (d) forming a jet bubbling layer by introducing and dispersing the particles together with the absorption liquid contained below the partition plate in the reaction tank through an exhaust gas introduction pipe vertically installed in the opening of the partition plate; A method for treating exhaust gas, comprising the steps of: introducing and dispersing oxygen-containing gas into an absorption liquid to form microbubbles of oxygen-containing gas.
JP62175666A 1987-07-14 1987-07-14 Method for treating waste gas Granted JPS6418427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62175666A JPS6418427A (en) 1987-07-14 1987-07-14 Method for treating waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62175666A JPS6418427A (en) 1987-07-14 1987-07-14 Method for treating waste gas

Publications (2)

Publication Number Publication Date
JPS6418427A JPS6418427A (en) 1989-01-23
JPH049570B2 true JPH049570B2 (en) 1992-02-20

Family

ID=16000099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62175666A Granted JPS6418427A (en) 1987-07-14 1987-07-14 Method for treating waste gas

Country Status (1)

Country Link
JP (1) JPS6418427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843115B2 (en) 2015-04-01 2020-11-24 Chiyoda Corporation Method of removing impurities

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424763A (en) * 2011-08-29 2012-04-25 秦皇岛双轮环保科技有限公司 Blast furnace gas washing deacidification apparatus and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537295A (en) * 1978-08-08 1980-03-15 Grachev Konstantin A Rectilinear propagation type automatic lathe
JPS604726A (en) * 1983-06-23 1985-01-11 Matsushita Electric Ind Co Ltd Combustion apparatus for hot water supply
JPS6051372A (en) * 1983-08-31 1985-03-22 Toshiba Corp Clamping circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537295A (en) * 1978-08-08 1980-03-15 Grachev Konstantin A Rectilinear propagation type automatic lathe
JPS604726A (en) * 1983-06-23 1985-01-11 Matsushita Electric Ind Co Ltd Combustion apparatus for hot water supply
JPS6051372A (en) * 1983-08-31 1985-03-22 Toshiba Corp Clamping circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843115B2 (en) 2015-04-01 2020-11-24 Chiyoda Corporation Method of removing impurities

Also Published As

Publication number Publication date
JPS6418427A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
US4002722A (en) Process and apparatus for wet treatment of vent gas
JP3372246B2 (en) Method and apparatus for purifying harmful gases containing harmful substances such as dioxin
WO2019142715A1 (en) Exhaust gas treatment method and exhaust gas treatment device
US11027234B2 (en) Oxidization of ammonia desulfurization solution
CN102824824B (en) Amino wet combined desulfurization and denitration device and process
JPH049569B2 (en)
JP3621159B2 (en) Exhaust gas treatment method and apparatus
JPH01159027A (en) Method and apparatus for treating exhaust gas
JPH049570B2 (en)
JPH0780243A (en) Desulfurization method and apparatus by desulfurizing agent slurry with high concentration
JPS6134026Y2 (en)
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN106076091A (en) A kind of head-on collision injection gravity sedimentation type desulfurizer and method
CN211936364U (en) Limestone wet flue gas desulfurization additive adding system
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JPH09867A (en) Treatment process for exhaust gas
JPS6116491B2 (en)
JPH09866A (en) Process and device for treatment of exhaust gas
JPH091160A (en) Removing method of oxidizing substance and wet type flue gas desulfurization equipment
JP3590856B2 (en) Exhaust gas desulfurization method
CN1087068C (en) Chimney with dusting, desulfurizing and denitrating functions
JPH07155538A (en) Desulfurizing method of waste gas
JPS629998Y2 (en)
JPH10230128A (en) Flue gas desulfurization method and flue gas desulfurizing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 16