JPH049569B2 - - Google Patents

Info

Publication number
JPH049569B2
JPH049569B2 JP62175665A JP17566587A JPH049569B2 JP H049569 B2 JPH049569 B2 JP H049569B2 JP 62175665 A JP62175665 A JP 62175665A JP 17566587 A JP17566587 A JP 17566587A JP H049569 B2 JPH049569 B2 JP H049569B2
Authority
JP
Japan
Prior art keywords
exhaust gas
absorption liquid
liquid
reaction tank
gas introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62175665A
Other languages
Japanese (ja)
Other versions
JPS6418429A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62175665A priority Critical patent/JPS6418429A/en
Publication of JPS6418429A publication Critical patent/JPS6418429A/en
Publication of JPH049569B2 publication Critical patent/JPH049569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、排ガス中に含まれるSO2、HF、
HCl、NH3、ダスト等の環境汚染物質を効率よ
く除去する排ガス処理装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention provides a method for reducing SO 2 , HF,
The present invention relates to an exhaust gas treatment device that efficiently removes environmental pollutants such as HCl, NH 3 and dust.

〔従来技術〕[Prior art]

従来、SO2やダスト等の環境汚染物質を含む排
ガスから、それらの環境汚染物質(以下、単に汚
染物質ともいう)を除去するために、排ガスを吸
収液と接触させる装置は、いわゆる湿式排ガス処
理装置として広く知られている。このような湿式
排ガス処理装置としては、これまで多くのものが
提案されてきたが、それらの中でも汚染物質の除
去率が高くかつ経済的にもすぐれたものとして、
ジエツトバブリングリアクターを用いる装置が知
られている(特公昭6−4726号公報、特公昭60−
51372号公報、特公昭55−37295号公報、「公害と
対策」vol19、No.11、p79〜88)。この装置は、排
ガス導入ダクト及び排ガス導出ダクトに各連結
し、内部に吸収液中への排ガスを導入分散する排
ガス導入管、吸収液中へ酸素含有ガスを分散する
酸素含有ガス噴出ノズル、吸収液の撹拌を行う撹
拌器及び吸収液排出口を有するジエツトバブリン
グ反応槽を備えたもので、吸収液面下に排ガスを
排ガス導入管を介して高速で噴出させて、吸収液
と排ガスとを激しく混合して、排ガスの微細気泡
を含む吸収液槽(ジエツトバブリング槽)を吸収
液の表面部に形成させるものである。この吸収液
の表面部に形成されたジエツトバブリング槽で
は、高速のガスが吸収液に衝突し気泡分裂する際
の激しい撹乱接触及び層内での分裂した微細気泡
間の撹乱接触が起り、気液接触界面が著しく増大
される。
Conventionally, in order to remove environmental pollutants (hereinafter also simply referred to as pollutants) from exhaust gas containing environmental pollutants such as SO 2 and dust, equipment that brings exhaust gas into contact with an absorbing liquid is called a wet exhaust gas treatment method. It is widely known as a device. Many types of wet exhaust gas treatment equipment have been proposed so far, but among them, the one that has a high pollutant removal rate and is economically superior is the
Devices using a jet bubbling reactor are known (Japanese Patent Publication No. 4726/1983, Japanese Patent Publication No. 1983/1983).
Publication No. 51372, Special Publication No. 55-37295, "Pollution and Countermeasures" vol. 19, No. 11, p. 79-88). This device is connected to an exhaust gas introduction duct and an exhaust gas output duct, and includes an exhaust gas introduction pipe that introduces and disperses exhaust gas into the absorption liquid, an oxygen-containing gas jet nozzle that disperses oxygen-containing gas into the absorption liquid, and an absorption liquid. This equipment is equipped with a jet bubbling reaction tank that has an agitator that stirs the absorption liquid and an absorption liquid outlet.The exhaust gas is ejected at high speed below the surface of the absorption liquid through an exhaust gas introduction pipe, and the absorption liquid and exhaust gas are violently mixed. By mixing, an absorption liquid tank (jet bubbling tank) containing fine exhaust gas bubbles is formed on the surface of the absorption liquid. In the jet bubbling tank formed on the surface of the absorbent liquid, when high-speed gas collides with the absorbent liquid and causes the bubbles to split, violently disturbed contact and disturbed contact between the split microbubbles within the layer occur. The liquid contact interface is significantly increased.

ところで、このようなジエツトバブリングリア
クターを用いる湿式排ガス処理において、従来
は、ジエツトバブリングリアクターの前段に、冷
却液循環ポンプを備えた除塵塔を設け、排ガスを
この除塵塔に導入し、ここで冷却液のスプレー液
滴と接触させ、排ガスの除塵と冷却を行つた後、
排ガスをジエツトバブリングリアクターに導入し
ている。しかしながら、このような従来技術の場
合、次のような欠点があつた。
By the way, in wet exhaust gas treatment using such a jet bubbling reactor, conventionally, a dust removal tower equipped with a coolant circulation pump is provided upstream of the jet bubbling reactor, and the exhaust gas is introduced into this dust removal tower. After contacting with spray droplets of coolant to remove dust and cool the exhaust gas,
Exhaust gas is introduced into the jet bubbling reactor. However, such conventional technology has the following drawbacks.

() 除塵塔における冷却液のスプレー液滴径
は、約2000μmという大きいために、排ガスの
冷却及び除塵を行うには、大量の冷却液のスプ
レーが必要とされる。従つて、除塵塔では、排
ガスから分離した大量の冷却液を循環再使用す
るための冷却液循環ポンプの設置が必要とさ
れ、そのための動力費を要した。
() Cooling liquid spray in the dust removal tower Since the droplet diameter is as large as approximately 2000 μm, a large amount of cooling liquid spray is required to cool the exhaust gas and remove dust. Therefore, in the dust removal tower, it is necessary to install a coolant circulation pump for circulating and reusing a large amount of coolant separated from the exhaust gas, which requires power costs.

() 排ガス処理系に導入する排ガス圧力は、除
塵塔設置による圧力損失のために、その分大き
くする必要があり、そのための動力費を要し
た。
() The pressure of the exhaust gas introduced into the exhaust gas treatment system had to be increased by that amount due to the pressure loss caused by installing the dust removal tower, which required additional power costs.

〔目的〕〔the purpose〕

本発明は、従来技術に見られる前記欠点を克服
することを目的とする。
The present invention aims to overcome the aforementioned drawbacks found in the prior art.

〔構成〕〔composition〕

本発明によれば、反応槽内に連絡する排ガス導
入ダクト及び排ガス導出ダクトを備えるととも
に、反応槽内部に吸収液中へ排ガスを導入分散す
る排ガス導入管、吸収液中へ酸素含有ガスを分散
する酸素含有ガス噴出ノズル、吸収液の撹拌を行
なう撹拌器及び吸収液排出口を各々有するジエツ
トバブリング反応槽を備えた排ガス処理装置にお
いて、該反応槽の中間に多数の開口を有する仕切
板を水平に配設するとともに、その仕切板の上方
には密閉空間を形成し、この密閉空間内には前記
排ガス導入ダクトを連結させ、かつ該仕切板の開
口には排ガス導入管を垂設させ、さらに、該仕切
板上の密閉空間内及び/又は該排ガス導入ダクト
内には、冷却液微粒子化ノズル及び吸収液微粒子
化ノズルを配置させたことを特徴とする除塵処理
を受けていない排ガス処理装置が提供される。
According to the present invention, an exhaust gas inlet duct and an exhaust gas outlet duct are provided which communicate with the inside of the reaction tank, and an exhaust gas inlet pipe for introducing and dispersing the exhaust gas into the absorption liquid is provided inside the reaction tank, and an oxygen-containing gas is dispersed into the absorption liquid. In an exhaust gas treatment device equipped with a jet bubbling reaction tank each having an oxygen-containing gas jetting nozzle, a stirrer for stirring the absorption liquid, and an absorption liquid outlet, a partition plate having a large number of openings is installed horizontally in the middle of the reaction tank. At the same time, an airtight space is formed above the partition plate, the exhaust gas introduction duct is connected to the airtight space, and an exhaust gas introduction pipe is vertically disposed at the opening of the partition plate. , an exhaust gas treatment device that has not undergone dust removal treatment, characterized in that a cooling liquid atomization nozzle and an absorption liquid atomization nozzle are arranged in the closed space on the partition plate and/or in the exhaust gas introduction duct. provided.

本発明の排ガス処理装置は、前記した従来のジ
エツトバブリングリアクターを用いる装置に比較
し、除塵塔を省略し得ると共に、排ガス中に冷却
液及び吸収液を微粒子化噴霧し、排ガスをこれら
の冷却液及び吸収液の各微粒子と共に吸収液中に
導入分散してジエツトバブリング層を形成する点
で相違する。このような排ガス処理装置では、除
塵塔の省略により、その設置及び運転に要する費
用が不要となり、さらに排ガスを処理系に供給す
る際の圧力も低減されることから、排ガスの加圧
に要する動力費も著しく節約される。
The exhaust gas treatment device of the present invention, compared to the device using the conventional jet bubbling reactor described above, can omit the dust removal tower, and also sprays the cooling liquid and absorption liquid into the exhaust gas to form fine particles, thereby cooling the exhaust gas. The difference is that the jet bubbling layer is formed by introducing and dispersing into the absorbing liquid together with the fine particles of the liquid and the absorbing liquid. In this kind of exhaust gas treatment equipment, the cost required for installation and operation is eliminated by omitting the dust removal tower, and the pressure when supplying the exhaust gas to the treatment system is also reduced, so the power required to pressurize the exhaust gas is reduced. Costs are also significantly saved.

次に、本発明を図面により詳述する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の処理装置の模式図である。こ
の図において、1は反応槽を示し、その中間部に
は中央部に貫通孔15を有し、表面に多数の開口
16を有する環状仕切板17が配設され、その環
状仕切板17の上方には、同じく中央部に貫通孔
を有する環状密閉板18が水平配置され、その環
状仕切板と環状密閉板の中央貫通孔側の環状端部
には、筒状側板19が配設されて、仕切板の上方
には、密閉空間(プレナム)12が形成されてい
る。そして、この密閉空間12には、排ガス導入
ダクト7が連結し、また、その密閉空間12の上
部には吸収液微粒子化ノズル3が配設されてい
る。さらに、仕切板17の開口16には、排ガス
導入管2が垂設されている。反応槽の下部に酸素
含有ガス噴出ノズル4、吸収液撹拌器5、吸収液
排出口が配置されている。また、この反応槽上部
には、排ガス導出ダクト10が連結されている。
密閉空間12に連結する排ガス導入ダクト内には
冷却液微粒子化ノズル8が配設されている。3′
は吸収液導入管、4′は酸素含有ガス導入管、6
は吸収液、8′は冷却液導入管、9は吸収液排出
口に連結する排液管を各示す。
FIG. 1 is a schematic diagram of the processing apparatus of the present invention. In this figure, reference numeral 1 denotes a reaction tank, and an annular partition plate 17 having a through hole 15 in the center and a large number of openings 16 on the surface is disposed in the middle part of the reaction tank. An annular sealing plate 18 having a through hole in the center thereof is horizontally arranged, and a cylindrical side plate 19 is arranged at the annular end of the annular partition plate and the annular sealing plate on the side of the central through hole. A closed space (plenum) 12 is formed above the partition plate. An exhaust gas introduction duct 7 is connected to this closed space 12, and an absorption liquid atomization nozzle 3 is disposed above the closed space 12. Furthermore, the exhaust gas introduction pipe 2 is vertically installed in the opening 16 of the partition plate 17 . An oxygen-containing gas jetting nozzle 4, an absorption liquid stirrer 5, and an absorption liquid outlet are arranged at the bottom of the reaction tank. Moreover, an exhaust gas derivation duct 10 is connected to the upper part of this reaction tank.
A coolant atomization nozzle 8 is disposed within the exhaust gas introduction duct connected to the sealed space 12 . 3′
is an absorption liquid introduction pipe, 4′ is an oxygen-containing gas introduction pipe, and 6
8 indicates an absorption liquid, 8' indicates a cooling liquid inlet pipe, and 9 indicates a drain pipe connected to an absorption liquid outlet.

本発明の装置を用いて排ガスの処理を実施する
には、冷却液をその微粒子化ノズル8から微粒子
状で噴出させかつ吸収液をその微粒子化ノズル3
から微粒子状で噴出させると共に、排ガスをその
導入ダクト7から装置内の仕切板上に形成された
密閉空間(プレナム)12内へ導入する。導入さ
れた排ガスは、この密閉空間(プレナム)12に
おいて、冷却液及び吸収液の各微粒子との間で気
液接触を行う。この気液接触により、排ガス中の
汚染物質はそれらの液体微粒子に捕捉吸収される
と共に、排ガスの増湿冷却が行われる。また、こ
のプレナム12においては、排ガス中の酸素及び
冷却液と吸収液の微粒子化に用いられた空気中の
酸素による汚染物質の酸化も行われる。
In order to treat exhaust gas using the apparatus of the present invention, the cooling liquid is ejected in the form of fine particles from the atomizing nozzle 8, and the absorption liquid is ejected from the atomizing nozzle 3.
At the same time, the exhaust gas is ejected in the form of fine particles from the exhaust gas, and the exhaust gas is introduced from the introduction duct 7 into a closed space (plenum) 12 formed on a partition plate inside the device. In this closed space (plenum) 12, the introduced exhaust gas makes gas-liquid contact with each of the particles of the cooling liquid and the absorption liquid. Due to this gas-liquid contact, pollutants in the exhaust gas are captured and absorbed by these liquid particles, and the exhaust gas is humidified and cooled. Further, in this plenum 12, pollutants are oxidized by oxygen in the exhaust gas and oxygen in the air used to atomize the cooling liquid and absorption liquid.

プレナム12に導入された排ガスは、液体微粒
子と共に排ガス導入管2を通して吸収液6中に分
散導入され、ジエツトバブリング層Aを形成す
る。このジエツトバブリング層Aは、排ガスの微
細気泡と吸収液とからなる液相連続の気液接触層
であつて、排ガスを排ガス導入管2の下部から吸
収液中に水平方向に噴出分散させることによつて
形成することができる。第2図に排ガス導入管2
の構造を示す。このガス導入管は下端開口したも
ので、その下端部に噴出部21を有し、ガス導入
管に導入された排ガスはその噴出部21から吸収
液中に水平方向に向けて噴出される。このジエツ
トバブリング層については、前記特公昭6−4726
号公報、特公昭60−51372号公報等に詳述されて
いる。
The exhaust gas introduced into the plenum 12 is dispersed and introduced into the absorption liquid 6 through the exhaust gas introduction pipe 2 together with liquid particles to form a jet bubbling layer A. This jet bubbling layer A is a continuous liquid phase gas-liquid contact layer consisting of fine bubbles of exhaust gas and an absorption liquid, and is a gas-liquid contact layer in which the exhaust gas is ejected and dispersed horizontally from the lower part of the exhaust gas introduction pipe 2 into the absorption liquid. It can be formed by Figure 2 shows the exhaust gas introduction pipe 2.
The structure of This gas introduction pipe is open at the bottom and has a jetting part 21 at the bottom end, and the exhaust gas introduced into the gas introducing pipe is jetted horizontally into the absorption liquid from the jetting part 21. Regarding this jet bubbling layer, the above-mentioned Japanese Patent Publication No. 6-4726
This method is described in detail in Japanese Patent Publication No. 60-51372, etc.

前記のようにして排ガスを液体の微粒子と共に
吸収液中に導入分散させると、プレナム12にお
いて液体微粒子に捕捉されなかつた汚染物質はこ
のジエツトバブリング層において吸収液に捕捉吸
収され、また排ガスに同伴された液体微粒子もこ
の吸収液に捕捉吸収される。さらに、このジエツ
トバブリング層においては汚染物質の酸化も行わ
れる。この場合、汚染物質の酸化に要する酸素と
しては、排ガス中の酸素及び酸素含有ガス噴出ノ
ズル4から供給される酸素が用いられる。
When the exhaust gas is introduced and dispersed into the absorption liquid together with the liquid particles as described above, the contaminants that were not captured by the liquid particles in the plenum 12 are captured and absorbed by the absorption liquid in this jet bubbling layer, and are also entrained in the exhaust gas. The absorbed liquid particles are also captured and absorbed by this absorption liquid. Furthermore, oxidation of contaminants also takes place in this jet bubbling layer. In this case, oxygen in the exhaust gas and oxygen supplied from the oxygen-containing gas jetting nozzle 4 are used as the oxygen required for oxidizing the pollutants.

吸収液と接触し、汚染物質の除去された排ガス
は、ジエツトバブリング層から反応槽上部の排ガ
ス出口部空間14に放出され、排ガス導出ダクト
10を通つて反応槽外へ抜出され、ミストエリミ
ネーター11でその中に含まれるミストを除去し
た後、大気へ放出される。反応槽上部の排ガス入
口部空間12と排ガス出口部空間14とは相互に
隔壁等により区画され、導入排ガスは必ず吸収液
中を通つた後、系外へ導出されるようになつてい
る。
The exhaust gas that has come into contact with the absorption liquid and from which pollutants have been removed is released from the jet bubbling layer into the exhaust gas outlet space 14 in the upper part of the reaction tank, and is extracted to the outside of the reaction tank through the exhaust gas outlet duct 10. After removing the mist contained therein in step 11, it is released into the atmosphere. The exhaust gas inlet space 12 and the exhaust gas outlet space 14 in the upper part of the reaction tank are separated from each other by a partition wall or the like, so that the introduced exhaust gas always passes through the absorption liquid before being led out of the system.

酸素含有ガス噴出ノズル4から吸収液中に噴出
された酸素含有ガスは、微細気泡となつて吸収液
中を上昇すると共に、吸収液中に溶解し、汚染物
質を酸化する。また、この微細気泡の上昇は、吸
収液の撹拌を促進させる効果も示す。
The oxygen-containing gas ejected from the oxygen-containing gas ejection nozzle 4 into the absorption liquid becomes fine bubbles and rises in the absorption liquid, dissolves in the absorption liquid, and oxidizes contaminants. Moreover, the rise of these fine bubbles also has the effect of promoting stirring of the absorption liquid.

排ガス中の汚染物質と吸収液との反応により生
成した物質は、排液管9を通して吸収液と共に反
応槽外へ抜出される。
Substances generated by the reaction between pollutants in the exhaust gas and the absorption liquid are discharged from the reaction tank together with the absorption liquid through the drain pipe 9.

本発明において、冷却液及び吸収液を微粒子化
する場合、その微粒子の粒径はできるだけ微細に
するのが有利であり、本発明の場合、平均粒径
300μm以下、殊に100μm以下にするのが有利で
ある。この平均粒径が300μmを超えるようにな
ると、プレナム12において排ガス中の汚染物質
の捕捉が困難になると共に、排ガスの冷却効果が
不十分になる。冷却液及び吸収液の微粒子化は、
通常、空気を用いて実施されるが、この微粒子化
に用いた空気は、プレナム12及びジエツトバブ
リング層Aにおける汚染物質の酸化剤としても作
用する。また、微粒子化する冷却液及び吸収液の
量は、排ガスを飽和温度まで増湿冷却するのに必
要な量以上である。噴霧に用いる吸収液は、水に
対して吸収剤を添加したものであるが、この噴霧
による吸収液の供給のみでは吸収剤量が不足する
場合には、反応層に対して吸収剤供給管13を設
けて必要量の吸収剤を供給する。
In the present invention, when the cooling liquid and the absorption liquid are made into fine particles, it is advantageous to make the particle size of the fine particles as fine as possible, and in the case of the present invention, the average particle size is
Advantageously it is less than 300 μm, in particular less than 100 μm. When this average particle size exceeds 300 μm, it becomes difficult to capture pollutants in the exhaust gas in the plenum 12, and the cooling effect of the exhaust gas becomes insufficient. Atomization of cooling liquid and absorption liquid is
Usually carried out using air, the air used for this atomization also acts as an oxidizing agent for contaminants in the plenum 12 and jet bubbling layer A. Further, the amount of the cooling liquid and absorption liquid to be turned into fine particles is greater than or equal to the amount required to humidify and cool the exhaust gas to the saturation temperature. The absorption liquid used for spraying is water with an absorbent added to it, but if the amount of absorbent is insufficient just by supplying the absorption liquid by spraying, an absorbent supply pipe 13 is connected to the reaction layer. to supply the necessary amount of absorbent.

本発明において、冷却液としては、通常、水
が、用いられ、吸収液としては、排ガス中の汚染
物質の種類に応じて適当な吸収剤を添加した水が
用いられる。例えば、排ガスがSO2、SO3、NO、
N2O3、NO2、N2O4、N2O5、HCl、HF、有機酸
等の酸性汚染物質を含む場合には、吸収剤として
は、アルカリ金属化合物、アルカリ土類金属化合
物、アンモニア等の前記汚染物質に反応性を示す
物質が用いられる。この場合、NOはアルカリ性
吸収液への吸収性が悪いのでNO2の形に酸化し
て処理するのがよい。また、排ガスがアンモニア
等のアルカリ性物質を含む場合には、酸性水溶液
を吸収液として用いればよい。
In the present invention, water is generally used as the cooling liquid, and water to which an appropriate absorbent is added as the absorbing liquid is used as the absorbing liquid. For example, if the exhaust gas is SO 2 , SO 3 , NO,
When containing acidic pollutants such as N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 , HCl, HF, and organic acids, the absorbent may include alkali metal compounds, alkaline earth metal compounds, A substance that is reactive with the contaminant, such as ammonia, is used. In this case, NO is poorly absorbed into the alkaline absorption liquid, so it is best to treat it by oxidizing it into NO 2 form. Further, when the exhaust gas contains an alkaline substance such as ammonia, an acidic aqueous solution may be used as the absorption liquid.

本発明においては、種々の変更が可能であり、
例えば、冷却液及び吸収液の噴霧は共に排ガス導
入ダクト7中に行うことができるし、また、両者
共に反応槽の上部空間12で行うことができる
し、さらに、吸収液を排ガス導入ダクト及び冷却
液を反応槽上部空間に微粒子化噴霧することがで
きる。さらに、反応槽内には、バツフル板等のこ
の種技術に慣用の付属装置を配設することができ
る。
Various changes are possible in the present invention,
For example, the cooling liquid and the absorption liquid can both be sprayed into the exhaust gas introduction duct 7, or both can be performed in the upper space 12 of the reaction tank, and the absorption liquid can be sprayed into the exhaust gas introduction duct 7 and the cooling liquid. The liquid can be atomized and sprayed into the upper space of the reaction tank. Furthermore, accessories customary for this type of technology, such as baffle plates, can be arranged in the reaction vessel.

〔効果〕〔effect〕

本発明では、排ガス中に冷却液及び吸収液を直
接微粒子化噴霧する冷却液微粒子化ノズル及び吸
収液微粒子化ノズルを配設し、排ガスの増湿冷却
と同時に汚染物質の捕捉除去を行うことから、従
来の湿式排ガス処理装置に比べて、排ガス処理を
非常に効率的に行うことができ、従来必要とされ
ていた除塵塔の設置は省略される。従つて、本発
明では、除塵塔の建設費、運転費は削減されると
共に、装置系へ供給する排ガス圧力も低減し得る
ので、その動力費もその分節約することができ
る。
In the present invention, a cooling liquid atomizing nozzle and an absorption liquid atomizing nozzle are installed to directly atomize the cooling liquid and absorption liquid into exhaust gas, and capture and remove pollutants at the same time as humidifying and cooling the exhaust gas. Compared to conventional wet exhaust gas treatment equipment, exhaust gas treatment can be performed very efficiently, and the installation of a dust removal tower, which was conventionally required, is omitted. Therefore, according to the present invention, the construction cost and operating cost of the dust removal tower can be reduced, and the pressure of the exhaust gas supplied to the device system can also be reduced, so that the power cost can be reduced accordingly.

また、本発明では、プレナム12において、冷
却液及び吸収液の各微粒子と排ガスとが緊密に接
触し、排ガス処理の相当部分が達成されているこ
とから、その後のジエツトバブリング槽Aにおけ
る汚染物質の捕捉吸収の負荷は著しく軽減され、
排ガス導入管2の開口先端の吸収液中深度を浅く
しても十分な処理効果を得ることができる。従つ
て、本発明では、排ガス導入管の吸収液中深度を
浅くすることにより排ガスの供給圧を減少させる
ことができ、排ガスの加圧動力費をその分減少さ
せることができる。
In addition, in the present invention, in the plenum 12, the fine particles of the cooling liquid and the absorption liquid come into close contact with the exhaust gas, and a considerable part of the exhaust gas treatment is achieved. The capture and absorption load is significantly reduced,
A sufficient treatment effect can be obtained even if the depth of the opening end of the exhaust gas introduction pipe 2 in the absorption liquid is made shallow. Therefore, in the present invention, the supply pressure of exhaust gas can be reduced by reducing the depth of the exhaust gas introduction pipe in the absorption liquid, and the power cost for pressurizing exhaust gas can be reduced accordingly.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 排ガス処理に使用した装置の形式は第1図に示
すものであり、断面円形の反応槽1は直径1000
mm、液面高さを2000mmとし、排ガス導入管2とし
て直径4インチの管12本を使用し、その開口部先
端の深さは液面下100mmとした。この反応槽1に
は撹拌器5を設けた。なお、吸収液微粒子化ノズ
ル3は、冷却液微粒子ノズル8の下流のダクト7
内に設けた。
Example The type of equipment used for exhaust gas treatment is shown in Figure 1, and the reaction tank 1, which has a circular cross section, has a diameter of 1000 mm.
mm, the liquid level height was 2000 mm, 12 pipes with a diameter of 4 inches were used as the exhaust gas introduction pipe 2, and the depth of the opening tip was 100 mm below the liquid level. This reaction tank 1 was equipped with a stirrer 5. Note that the absorption liquid atomization nozzle 3 is connected to a duct 7 downstream of the cooling liquid atomization nozzle 8.
It was set up inside.

SO2800ppm、ダスト80mg/Nm3、O23%を含む
排煙4000Nm3/hを排ガス導入ダクト7より入口
プレナム12に導入し、撹拌しながら液面下1800
mmに設けた空気噴出ノズル4より空気を40Nm3
hで吹込んだ。この場合、吸収液としては、
CaCO3約14Kg/hを石膏濃度5%のスラリー400
/hに混ぜたもの(石灰石スラリー)を用い、
これを排ガス導入ダクト7に設けられた二流体ス
プレーノズルより空気により微粒化噴霧した。ま
た、このスプレーの上流ダクト7内にもう1つの
二流体スプレーノズル8を設け、冷却液としての
工業用水約300/hをガス冷却のために空気に
より微粒化噴霧した。この時の微粒子の平均粒径
は吸収液及び冷却液ともに約60μmであつた。
4000Nm 3 /h of flue gas containing 800ppm SO 2 , 80mg/Nm 3 dust, and 3% O 2 is introduced into the inlet plenum 12 from the exhaust gas introduction duct 7, and is heated 1800Nm 3 /h below the liquid level while stirring.
40Nm 3 /
I blew it with h. In this case, the absorption liquid is
Approximately 14Kg/h of CaCO 3 in slurry of 5% gypsum concentration 400
/h (limestone slurry) mixed with
This was atomized and sprayed with air from a two-fluid spray nozzle provided in the exhaust gas introduction duct 7. Further, another two-fluid spray nozzle 8 was installed in the upstream duct 7 of this sprayer, and about 300/h of industrial water as a cooling liquid was atomized and sprayed with air for gas cooling. The average particle size of the fine particles at this time was about 60 μm for both the absorption liquid and the cooling liquid.

以上のような排ガス処理の結果、脱硫率は94〜
96%と高脱硫率が得られた。また、出口ダクト濃
度は1〜6mg/Nm3に維持され、除塵塔とその循
環ポンプがなくても非常に高い除塵性能が得られ
ることが判明した。得られた石膏の性状は次に示
すように高品質であつた。
As a result of the above exhaust gas treatment, the desulfurization rate is 94~
A high desulfurization rate of 96% was obtained. It was also found that the outlet duct concentration was maintained at 1 to 6 mg/Nm 3 and very high dust removal performance could be obtained even without a dust removal tower and its circulation pump. The properties of the obtained gypsum were of high quality as shown below.

表−1 CaSO4・2H2O:99.1重量%(ただしダスト分は
除く) CaCO3 :0.3 〃 CaSO3 :0 PH :6〜7 平均粒径 :60〜80μm 次に、本発明を従来技術と比較をするために、
石灰石スラリーの微粒化噴霧を停止し、石灰石ス
ラリーを反応槽1の排ガス導入管2の開口部の位
置の吸収液中に直接供給したところ、同じ脱硫率
を得るためには、開口部先端の液面下の深さを約
200mmにする必要があることが判明した。この結
果、本発明によれば、除塵塔の省略による圧力損
失の低減100mmと合わせて約200mmの排ガス供給圧
の削減が可能となり大幅な動力費の削減が可能と
なることが判明した。
Table 1 CaSO 4 2H 2 O: 99.1% by weight (excluding dust) CaCO 3 : 0.3 〃 CaSO 3 : 0 PH: 6-7 Average particle size: 60-80 μm Next, the present invention was compared with the prior art. In order to make a comparison,
When the atomization spraying of the limestone slurry was stopped and the limestone slurry was directly supplied into the absorption liquid at the opening of the exhaust gas introduction pipe 2 of the reaction tank 1, in order to obtain the same desulfurization rate, it was necessary to The depth below the surface is approx.
It turned out that it needed to be 200mm. As a result, it was found that according to the present invention, it is possible to reduce the exhaust gas supply pressure by about 200 mm, including the 100 mm reduction in pressure loss due to the omission of the dust removal tower, and it is possible to significantly reduce power costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の排ガス処理装置の模式図を示
し、第2図は排ガス導入管の構造図を示す。 1……反応槽、2……排ガス導入管、3……吸
収液微粒子化ノズル、4……酸素含有ガス噴霧ノ
ズル、5……撹拌器、6……吸収液、7……排ガ
ス導入ダクト、8……冷却液微粒子化ノズル、9
……排液管、10……排ガス導出ダクト、11…
…ミストエリミネーター、12……プレナム、2
1……噴出部、A……ジエツトバブリング層。
FIG. 1 shows a schematic diagram of the exhaust gas treatment apparatus of the present invention, and FIG. 2 shows a structural diagram of the exhaust gas introduction pipe. DESCRIPTION OF SYMBOLS 1... Reaction tank, 2... Exhaust gas introduction pipe, 3... Absorption liquid atomization nozzle, 4... Oxygen-containing gas spray nozzle, 5... Stirrer, 6... Absorption liquid, 7... Exhaust gas introduction duct, 8... Coolant atomization nozzle, 9
...Drainage pipe, 10...Exhaust gas outlet duct, 11...
...Mist Eliminator, 12...Plenum, 2
1...Gushing part, A...Jet bubbling layer.

Claims (1)

【特許請求の範囲】[Claims] 1 反応槽内に連絡する排ガス導入ダクト及び排
ガス導出ダクトを備えるとともに、内部に吸収液
中へ排ガスを導入分散する排ガス導入管、吸収液
中へ酸素含有ガスを分散する酸素含有ガス噴出ノ
ズル、吸収液の撹拌を行なう撹拌器及び吸収液排
出口を各々有するジエツトバブリング反応槽を備
えた排ガス処理装置において、該反応槽の中間に
多数の開口を有する仕切板を水平に配設するとと
もに、その仕切板の上方には密閉空間を形成し、
この密閉空間内には前記排ガス導入ダクトを連結
させ、かつ該仕切板の開口には排ガス導入管を垂
設させ、さらに、該仕切板上の密閉空間内及び/
又は該排ガス導入ダクト内には、冷却液微粒子化
ノズル及び吸収液微粒子化ノズルを配置させたこ
とを特徴とする除塵処理を受けていない排ガス処
理装置。
1 Equipped with an exhaust gas introduction duct and an exhaust gas outlet duct that communicate with the inside of the reaction tank, an exhaust gas introduction pipe that introduces and disperses exhaust gas into the absorption liquid, an oxygen-containing gas jet nozzle that disperses oxygen-containing gas into the absorption liquid, and an absorption In an exhaust gas treatment device equipped with a jet bubbling reaction tank each having an agitator for stirring a liquid and an absorption liquid outlet, a partition plate having a large number of openings is disposed horizontally in the middle of the reaction tank, and A sealed space is formed above the partition plate,
The exhaust gas introduction duct is connected in this sealed space, and the exhaust gas introduction pipe is vertically installed in the opening of the partition plate.
Alternatively, an exhaust gas treatment device that has not undergone dust removal processing, characterized in that a cooling liquid atomization nozzle and an absorption liquid atomization nozzle are arranged in the exhaust gas introduction duct.
JP62175665A 1987-07-14 1987-07-14 Waste gas treatment device Granted JPS6418429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62175665A JPS6418429A (en) 1987-07-14 1987-07-14 Waste gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62175665A JPS6418429A (en) 1987-07-14 1987-07-14 Waste gas treatment device

Publications (2)

Publication Number Publication Date
JPS6418429A JPS6418429A (en) 1989-01-23
JPH049569B2 true JPH049569B2 (en) 1992-02-20

Family

ID=16000082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62175665A Granted JPS6418429A (en) 1987-07-14 1987-07-14 Waste gas treatment device

Country Status (1)

Country Link
JP (1) JPS6418429A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844776B2 (en) * 1994-06-13 2006-11-15 千代田化工建設株式会社 Gas dispersion tube for gas-liquid contact and gas-liquid contact method and apparatus using the same
JPH0768132A (en) * 1994-06-17 1995-03-14 Chiyoda Corp Desulfurizing and denitrifying method
JP5177859B2 (en) * 2008-03-25 2013-04-10 千代田化工建設株式会社 Desulfurization decarburization equipment
FI20126379A (en) * 2012-12-27 2014-06-28 Outotec Oyj A method for scrubbing gas in a cascade type wet scrubber and a cascade scrubber
JP2019122934A (en) 2018-01-18 2019-07-25 千代田化工建設株式会社 Exhaust gas treatment method and exhaust gas treatment equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604726A (en) * 1983-06-23 1985-01-11 Matsushita Electric Ind Co Ltd Combustion apparatus for hot water supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604726A (en) * 1983-06-23 1985-01-11 Matsushita Electric Ind Co Ltd Combustion apparatus for hot water supply

Also Published As

Publication number Publication date
JPS6418429A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
WO2014156985A1 (en) Seawater flue-gas desulfurization device and method for operating same
WO2007066443A1 (en) Wet flue-gas desulfurization apparatus and method of wet flue-gas desulfurization
JP3372246B2 (en) Method and apparatus for purifying harmful gases containing harmful substances such as dioxin
WO2019142715A1 (en) Exhaust gas treatment method and exhaust gas treatment device
JP3332678B2 (en) Wet flue gas desulfurization equipment
JP3621159B2 (en) Exhaust gas treatment method and apparatus
JPH049569B2 (en)
JPH01159027A (en) Method and apparatus for treating exhaust gas
JPH049570B2 (en)
JPS6134026Y2 (en)
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP3996968B2 (en) Flue gas desulfurization method and apparatus
CN106076091A (en) A kind of head-on collision injection gravity sedimentation type desulfurizer and method
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JP2002153727A (en) Double chamber type wet flue gas desulfurization device
JPS6116491B2 (en)
JPH09867A (en) Treatment process for exhaust gas
JP3590856B2 (en) Exhaust gas desulfurization method
JP3842706B2 (en) Wet flue gas desulfurization apparatus and method
JPH09866A (en) Process and device for treatment of exhaust gas
CN211936364U (en) Limestone wet flue gas desulfurization additive adding system
JPH06218227A (en) Method and device for desulfurizing stack gas
KR102301350B1 (en) Toxic gas removal system and method of removing toxic gas by using metal acid treatment of the toxic gas using that device
CN215086076U (en) Low temperature denitration treatment device
JPS629998Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 16