JPH0492853A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH0492853A
JPH0492853A JP2209506A JP20950690A JPH0492853A JP H0492853 A JPH0492853 A JP H0492853A JP 2209506 A JP2209506 A JP 2209506A JP 20950690 A JP20950690 A JP 20950690A JP H0492853 A JPH0492853 A JP H0492853A
Authority
JP
Japan
Prior art keywords
oxide superconductor
superconductor
silver
palladium
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2209506A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
下田 修一郎
Shozo Yamana
章三 山名
Keiji Sumiya
圭二 住谷
Minoru Ishihara
稔 石原
Hideji Kuwajima
秀次 桑島
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2209506A priority Critical patent/JPH0492853A/en
Publication of JPH0492853A publication Critical patent/JPH0492853A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having durable superconducting property and exhibiting small lowering of the critical current density by the application of magnetic field by specifying the composition composed of Tl, Ba, Ca, Cu and O and adding specific amounts of Ag and Pd to the composition. CONSTITUTION:The objective oxide superconductor contains 1-25wt.% of Ag and 0.1-5 wt.% of Pd and is expressed by the general formula Tl1.4-2 BaACaBCu2.8-3.6OX (A is 1.6-2.2; B is 1.8-2.4; 0.9<=B/A<=1.4). The superconductor exhibits no or, if any, extremely little lowering of superconducting properties such as critical temperature and critical current density and has improved magnetic field dependency of the critical current density. The oxide superconductor can be easily produced by weighing and mixing the materials containing Ag, Pd, Tl, Ba, Ca and Cu at ratios to satisfy the above composition and baking the mixture in air at about 800-900 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and a method for manufacturing the same.

(従来の技術) Tl−Ba −Ca−Cu−0系の酸化物超電導体Fi
(Prior art) Tl-Ba-Ca-Cu-0 based oxide superconductor Fi
.

一般にタリウム(Tl)、バリウム(Ba )、カルシ
ウム(Ca ) 、鋼(Cu)等を含む出発原料を同時
に混合するか又はBa −Ca −Cu−0,Ba−C
u−0,Ca−0,Cu−0等の化合物とTl化合物と
を混合して超電導体用原料とし、これを成形、焼成する
ことKより得ることができる。
Generally, starting materials including thallium (Tl), barium (Ba), calcium (Ca), steel (Cu), etc. are mixed simultaneously or Ba-Ca-Cu-0, Ba-C
It can be obtained from K by mixing compounds such as u-0, Ca-0, Cu-0 and a Tl compound to prepare a superconductor raw material, and molding and firing this.

Tl−Ba−Ca −Cu−0系o11化物超を導体a
Tl-Ba-Ca-Cu-0 system o11 compound superconductor a
.

120に以上の高い臨界温度(以下Tzeroとする)
を有する材料であることが知られている。
High critical temperature of 120 or higher (hereinafter referred to as Tzero)
It is known that the material has

(発明が解決しようとする課題) しかしながら上記の方法で製造されたTl−Ba−Ca
 −Cu−0系の酸化物超電導体(以下TI系超超電導
体する)は空隙が多く、高密度のものが得られにくい。
(Problem to be solved by the invention) However, Tl-Ba-Ca produced by the above method
-Cu-0 based oxide superconductors (hereinafter referred to as TI based superconductors) have many voids and are difficult to obtain with high density.

このため結晶粒子同士のりながカが悪<、T舌ero 
、臨界電流帯[(以下Jeとする)等の超電導特性が低
下し、また機械的強度なども低下する。
For this reason, the bond between crystal particles is bad<, T tongue ero
, critical current band [(hereinafter referred to as Je), and other superconducting properties are reduced, and mechanical strength and the like are also reduced.

上記の欠点を改善する方法として、熱処理工程の他に、
圧延加工、粉砕、プレス成形等の工程を導入し、これら
の工程を組み合わせ、数回繰シ返す方法が一般的に知ら
れている。この方法を用いれば、Tc 、JC等の超電
導特性がめる程度向上されるが、しかしこの方法では製
造工程が増え。
In addition to the heat treatment process, as a method to improve the above drawbacks,
A generally known method is to introduce processes such as rolling, crushing, and press forming, combine these processes, and repeat the process several times. If this method is used, the superconducting properties such as Tc and JC can be improved to a certain extent, but this method increases the number of manufacturing steps.

複雑であるという問題がある。The problem is that it is complex.

またT//合物は蒸発しやすく、高価格である。Further, the T// compound easily evaporates and is expensive.

このためTIの蒸発を抑制することが重要でるるが。Therefore, it is important to suppress evaporation of TI.

熱処理工程が増えると、 T/の蒸発を抑制することが
難しく、T/の蒸発に伴う組成のずれが生じ易くなる。
When the number of heat treatment steps increases, it becomes difficult to suppress the evaporation of T/, and compositional deviations due to the evaporation of T/ tend to occur.

一般にT/系超超電導体Y−Ba−Cu−0系の酸化物
超電導体に比べて磁場の印加によってJcが低下しやす
いと言われておシ、磁気シールドなどへの応用を図るに
は、上記のような問題点を改善し。
In general, it is said that Jc is more likely to decrease when a magnetic field is applied than T/based superconductors and Y-Ba-Cu-0 based oxide superconductors. Improved the problems mentioned above.

磁束のピン止め点を導入することが必須課題となってい
る。
It is essential to introduce a pinning point for magnetic flux.

本発明は、Tc、Je等が低下せず、低下してもごくわ
ずかで、かつJcの磁場依存性を改善した酸化物超電導
体及びその製造法を提供することを目的とするものでる
る。
An object of the present invention is to provide an oxide superconductor in which Tc, Je, etc. do not decrease, or even if they decrease, the decrease is minimal, and the magnetic field dependence of Jc is improved, and a method for manufacturing the same.

(課題を解決するための手段) 本発明者らは上記の欠点について種々検討した結果、従
来のTj系超超電導体中銀及びパラジウムを含有させた
ところ、’rc、Jc等の向上、磁場特性などの改善に
有効であることを見い出し本発明を完成するに員りた。
(Means for Solving the Problems) As a result of various studies on the above-mentioned drawbacks, the present inventors found that when silver and palladium were added to the conventional Tj-based superconductor, improvements in 'rc, Jc, etc., magnetic field properties, etc. The inventors have discovered that this method is effective in improving the method and have completed the present invention.

本発明は銀t=1.〜25重量%及びパラジウム【αl
〜5重量−含み、かつ一般式T/u−鵞B1ムCABC
uts−uo’C(但しλ=16−42.B=18〜2
.4.0.9≦B/A≦14.数字Fi原子比を表わす
)で示される組成からなる酸化物超電導体並びに上記の
組成となるように銀、パラジウム、タリウム、バリウム
、カルシウム及び鋼を含む各原料を秤量し、ついで混合
した後焼成する酸化物超電導体の製造法に関する。
In the present invention, silver t=1. ~25% by weight and palladium [αl
~5 weight-containing, and general formula T/u-B1mu CABC
uts-uo'C (where λ=16-42.B=18-2
.. 4.0.9≦B/A≦14. An oxide superconductor having the composition shown by the number Fi (representing the atomic ratio) and each raw material containing silver, palladium, thallium, barium, calcium, and steel so as to have the above composition are weighed, mixed, and fired. This invention relates to a method for producing an oxide superconductor.

本発明において酸化物超電導体を構成する主成分のタリ
ウム、バリウム、カルシウム及び鋼管含む原料(出発原
料)Kついては4IK制限はないが。
In the present invention, there is no 4IK limit for the main components thallium, barium, calcium, and raw material (starting material) K containing steel pipes constituting the oxide superconductor.

ガえはこれらの駿化物、炭酸塩、硝酸塩、蓚酸塩等の1
糧又は2種以上が用いられる。
Moths contain one of these fluorides, carbonates, nitrates, oxalates, etc.
Food or two or more types are used.

一般式T14−鵞Ba4Cal Cu 18−4@ O
x において。
General formula T14-Ba4Cal Cu 18-4@O
At x.

タリウムは原子比で−〜2の範囲とされ、この範囲から
外れるとTc   が120に以上の高温相(Tlz 
BJL! Ca2 C11s Owe相、2223相)
の生成量が低下する。
Thallium has an atomic ratio in the range of - to 2, and outside this range it forms a high-temperature phase with Tc of 120 or more (Tlz
BJL! Ca2 C11s Owe phase, 2223 phase)
The amount of production decreases.

バリウム因は原子比で1.6〜22の範囲とされ。The barium factor is said to have an atomic ratio in the range of 1.6 to 22.

この範囲から外れると超電導体相以外の結晶相が生成し
易く、超電導体の含有率が低下する。
If it deviates from this range, crystal phases other than the superconductor phase are likely to be formed, and the superconductor content decreases.

カルシウム(B)Fi原子比でL8〜2−4の範囲とさ
れ、1.8未満であると高温相の生成量が低下し。
Calcium (B) Fi atomic ratio is in the range of L8 to 2-4, and if it is less than 1.8, the amount of high temperature phase produced decreases.

24を越えると超電導体相以外の結晶相が生成し易くな
シ超電導体の含有率が低下する。
If it exceeds 24, crystal phases other than the superconductor phase tend to form, and the superconductor content decreases.

鋼は原子比で28〜16の範囲とされ、28未満である
と、高温相の生成量が低下し、  3.61−越えると
超電導体の含有率が低下する。
Steel has an atomic ratio in the range of 28 to 16; if it is less than 28, the amount of high temperature phase produced decreases, and if it exceeds 3.61, the superconductor content decreases.

銀は、酸化物超電導体中に1〜25重量%の範囲で含有
されることが必要とされ、1重量嘩未満では結晶粒子間
のつながシを改善する効果1機械的強度などを向上させ
る効果が少なく、25重量%を越えると該効果#′iお
るが超電導体の含有率が低下する。
Silver is required to be contained in the oxide superconductor in a range of 1 to 25% by weight, and if it is less than 1% by weight, it has the effect of improving the bond between crystal grains 1. The effect of improving mechanical strength etc. If the amount exceeds 25% by weight, the superconductor content decreases.

一方パラジウムは、酸化物超電導体中に0.1〜5重量
%の範囲で含有されることが必要とされ。
On the other hand, palladium is required to be contained in the oxide superconductor in an amount of 0.1 to 5% by weight.

0.1重量慢未満でるると白金及び/又はパラジウムに
よる磁場特性の改善効果が少なく、5重量係を越えると
磁場特性の改善効果はあるか、TcJc等が低下すると
いう欠点が生じる。
If the weight ratio is less than 0.1, the effect of improving the magnetic field characteristics by platinum and/or palladium will be small, and if it exceeds 5 weight ratio, there will be no effect of improving the magnetic field characteristics, or there will be a drawback that TcJc etc. will decrease.

なお銀としては、銀粉末の他、酸化銀、塩化銀。In addition to silver powder, silver oxide and silver chloride can be used as silver.

硝酸銀等が用いられ、焼成後銀単体になる物質でろれば
特に制限はない。
Silver nitrate or the like is used, and there is no particular restriction as long as it is a substance that becomes pure silver after firing.

またパラジウムとしては、パラジウム粉末の他。Palladium is also available in addition to palladium powder.

酸化パラジウムなどが用いられ、焼成後パラジウム本体
になる物質であれば特に制限はない。
There is no particular restriction as long as palladium oxide or the like is used and the material becomes the palladium body after firing.

銀及びパラジウムの添加法については特に制限はないが
、 filえば酸化物超電導体用材料の粉末と共にボー
ルミル、らいかい機(自動混練機)、乳鉢等を用いて乾
式又は湿式で混合、均一化する方法、酸化物超電導体用
材料に銀及びパラジウムの水溶液を添加後、これを均一
加熱する方法などがある。
There are no particular restrictions on the method of adding silver and palladium, but if they are added, they can be mixed and homogenized together with the powder of the oxide superconductor material in a dry or wet method using a ball mill, a mill (automatic kneader), a mortar, etc. There is a method in which an aqueous solution of silver and palladium is added to an oxide superconductor material and then uniformly heated.

混合方法についても特に制限はなく0例えばらいかい機
で乾式混合する方法1合成樹脂製でポールミル内に合成
樹脂で被覆したボールそれにエタノール、メタノール等
の溶媒及び原料を充填し。
There are no particular restrictions on the mixing method. For example, dry mixing using a sieve machine. 1. A ball made of synthetic resin and coated with synthetic resin in a pole mill is filled with solvents such as ethanol, methanol, etc. and raw materials.

湿式混合することが好ましい。Wet mixing is preferred.

焼成は密閉容器内で焼成することが好ましい。Firing is preferably performed in a closed container.

密閉容器としては、アルミナ、マグネシア等のセラミッ
クス製の容器を用いることが好ましい。
As the closed container, it is preferable to use a container made of ceramics such as alumina or magnesia.

焼成湯度は各原料の配合割合などによシ適宜選定される
が、800〜900℃の範囲で焼成することが好ましく
、また焼成雰囲気は、大気中、空気気流中、または低酸
素圧雰囲気中(酸素の含有量が1〜20体積チ好ましく
a2〜20体積−の範囲)で焼成することが好ましい。
The firing temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to fire in the range of 800 to 900°C, and the firing atmosphere is in the air, in an air stream, or in a low oxygen pressure atmosphere. (The oxygen content is preferably in the range of 1 to 20 volumes, preferably 2 to 20 volumes).

本発明の組成においてO(酸素)の量は、CuO量及び
Cuの酸化状態によって定まる。しかし酸化状態がどの
ようになっているかを厳密にそして精度よく測定するこ
とができないため1本発明において#′iXで表わすこ
とにした。
In the composition of the present invention, the amount of O (oxygen) is determined by the amount of CuO and the oxidation state of Cu. However, since it is not possible to precisely and accurately measure the oxidation state, it is expressed as #'iX in the present invention.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 バリウム、カルシウム及び鋼の比率が原子比で第1表に
示す組成になるようにBaO(高純度化学研究新製、純
[99チ以上)、Cab(高純度化学研究新製、純度9
9.9%)及びCuO(高純度化学研究新製、純度99
.9%)を秤量し出発原料とした。
Example 1 BaO (manufactured by Kojundo Kagaku Kenkyushin, pure [99% or more), Cab (manufactured by Kojundo Kagaku Kenkyushin, pure 9
9.9%) and CuO (manufactured by Kojundo Kagaku Kenkyushin, purity 99%)
.. 9%) was weighed and used as a starting material.

この後、上記の出発原料金らいかい機を用いて30分間
、混合した。得られた混合粉を電気炉を用いて大気中で
900℃で10時間予備焼成し。
This was followed by mixing for 30 minutes using the starting material sieve described above. The obtained mixed powder was preliminarily calcined at 900° C. for 10 hours in the air using an electric furnace.

ついてらいかい機を用いて30分間粉砕した。The mixture was ground for 30 minutes using a grinder.

次にT/1Ox(高純度化学研究新製、純[99,9チ
)を第1表に示す組成になるように秤量して上記の粉砕
物中に添加し、乳鉢で均一に混合、粉砕して酸化物超電
導体用組成物を得た。
Next, T/1Ox (manufactured by Kojundo Kagaku Kenkyushin, pure [99.9%) was weighed to have the composition shown in Table 1, added to the above pulverized material, mixed uniformly in a mortar, and pulverized. A composition for oxide superconductor was obtained.

得られた酸化物超電導体用組成物を金型ブレスで100
 MPaの圧力で成形して厚さ2011の成形体を得た
。ついでこの成形体をふた付きのアルミナ容器中で87
0℃で3時間焼成して酸化物超電導体用材料を得た。
The obtained composition for oxide superconductor was molded with a mold press for 100%
A molded body having a thickness of 2011 mm was obtained by molding at a pressure of MPa. This molded body was then placed in an alumina container with a lid for 87 hours.
The material was fired at 0° C. for 3 hours to obtain an oxide superconductor material.

得られた酸化物超電導体用材料を乳鉢で粉末状に粉砕し
た後、銀粉(徳力本店製、純度99.9チ)及びパラジ
ウム粉(遣方本店製、純度99.9嗟)を第1表に示す
組成になるように秤量して上記の粉砕粉中に添加し、乳
鉢で均一に混合した。
After pulverizing the obtained oxide superconductor material into powder in a mortar, silver powder (manufactured by Tokuriki Honten, purity 99.9cm) and palladium powder (manufactured by Kirikata Honten, purity 99.9cm) were added to Table 1. It was weighed out so as to have the composition shown below, added to the above-mentioned pulverized powder, and mixed uniformly in a mortar.

得られた粉末を金型プレスで150MPmの圧力で直径
20m、厚さ1■のベレットに成形後、大気中で870
℃で5時間焼成して酸化物超電導体を得た。
The obtained powder was molded into a pellet with a diameter of 20 m and a thickness of 1 cm using a die press at a pressure of 150 MPm, and then heated at 870 m in the air.
An oxide superconductor was obtained by firing at ℃ for 5 hours.

次に上記で得た酸化物超電導体を長さ20mX幅1mm
X厚さ1mの直方体に加工し、四端子法で電気抵抗の温
度変化t−m定し、Tc  を求めた。
Next, the oxide superconductor obtained above was 20 m long x 1 mm wide.
It was processed into a rectangular parallelepiped with a thickness of 1 m, and the temperature change in electrical resistance (t-m) was determined using the four-probe method to determine Tc.

また上記と同様の試料を用いて液体窒素温度(770・
I K)でJcoを測定すると共に液体窒素m度、…テスラ
の磁場中でJ c、W’を測定した。これらの結果及び
JcμとJc、との比を第1表に示す。
In addition, using the same sample as above, liquid nitrogen temperature (770
Jco was measured using IK), and Jc and W' were also measured in a magnetic field of liquid nitrogen m degrees...Tesla. These results and the ratio between Jcμ and Jc are shown in Table 1.

第1表から本発明になる酸化物超電導体は、試香Jの従
来の酸化物超電導体を基準として、Her。
From Table 1, the oxide superconductors of the present invention are based on the conventional oxide superconductors of Saiko J. Her.

の低下が少なく、ま九はとんどJcが低下せず。There was little decrease in Jc, and in Maku there was no decrease in Jc.

低下してもごくわずかでわシ、かつ磁場の印加によるJ
eの低下が小さいことが示される。
Even if it decreases, it is very small, and the J
It is shown that the decrease in e is small.

(発明の効果) 本発明になる酸化物超電導体は* ’rcl Jc等が
低下せず、低下してもごくわずかでめり、また磁場の印
加によるJCO低下も小さく、工業的に極めて好適な酸
化物超電導体でるると共に上記のような効果を有する酸
化物超電導体の製造法を提供することができる。
(Effects of the Invention) The oxide superconductor of the present invention does not exhibit a decrease in *'rcl Jc, etc., and even if it decreases, it is only a small amount, and the decrease in JCO due to the application of a magnetic field is also small, making it extremely suitable for industrial use. It is possible to provide a method for manufacturing an oxide superconductor having the above effects as well as an oxide superconductor.

Claims (1)

【特許請求の範囲】 1 銀を1〜25重量%及びパラジウムを0.1〜5重
量%含み、かつ一般式Tl_1_._4_〜_2Ba_
ACa_BCu_2_._8_〜_3_._6OX(但
しA=1.6〜2.2、B=1.8〜2.4、0.9≦
B/A≦1.4、数字は原子比を表わす)で示される組
成からなる酸化物超電導体。 2 請求項1記載の組成となるように銀、パラジウム、
タリウム、バリウム、カルシウム及び鋼を含む各原料を
秤量し、ついで混合した後焼成することを特徴とする酸
化物超電導体の製造法。
[Scope of Claims] 1 Containing 1 to 25% by weight of silver and 0.1 to 5% by weight of palladium, and having the general formula Tl_1_. _4_~_2Ba_
ACa_BCu_2_. _8_~_3_. _6OX (A=1.6~2.2, B=1.8~2.4, 0.9≦
An oxide superconductor having a composition represented by B/A≦1.4 (numbers represent atomic ratios). 2 Silver, palladium,
A method for producing an oxide superconductor, which comprises weighing raw materials including thallium, barium, calcium, and steel, mixing them, and then firing them.
JP2209506A 1990-08-07 1990-08-07 Oxide superconductor and production thereof Pending JPH0492853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209506A JPH0492853A (en) 1990-08-07 1990-08-07 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209506A JPH0492853A (en) 1990-08-07 1990-08-07 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH0492853A true JPH0492853A (en) 1992-03-25

Family

ID=16573931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209506A Pending JPH0492853A (en) 1990-08-07 1990-08-07 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH0492853A (en)

Similar Documents

Publication Publication Date Title
JPH0492853A (en) Oxide superconductor and production thereof
JPH0492852A (en) Oxide superconductor and production thereof
JPH04104943A (en) Oxide superconductor and production thereof
JPH04104940A (en) Oxide superconductor and production thereof
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
JPH04104942A (en) Oxide superconductor and production thereof
JPH04104941A (en) Oxide superconductor and production thereof
JPH0292826A (en) Oxide superconductor
JPH0442815A (en) Oxide superconductor and its production
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2637617B2 (en) Manufacturing method of superconducting material
JPH0477315A (en) Oxide superconductor and its production
JPH04124027A (en) Oxide superconductor and its production
JPH04124016A (en) Oxide superconductor and its production
JPH03290318A (en) Oxide superconductor and production thereof
JPH03279253A (en) Production of oxide superconducting material
JPH0465342A (en) Superconductor and its production
JPH0259466A (en) Oxide superconducting sintered body
JPH042611A (en) Production of superconductor
JPH0421561A (en) Oxide superconductor and production thereof
JPH04124015A (en) Oxide superconductor and its production
JPH03290319A (en) Oxide superconductor and production thereof
JPH04124025A (en) Oxide superconductor and its production
JPH03223118A (en) Production of oxide superconductor
JPH04124031A (en) Oxide superconductor and its production