JPH0465342A - Superconductor and its production - Google Patents

Superconductor and its production

Info

Publication number
JPH0465342A
JPH0465342A JP2176577A JP17657790A JPH0465342A JP H0465342 A JPH0465342 A JP H0465342A JP 2176577 A JP2176577 A JP 2176577A JP 17657790 A JP17657790 A JP 17657790A JP H0465342 A JPH0465342 A JP H0465342A
Authority
JP
Japan
Prior art keywords
superconductor
weight
bismuth
powder
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2176577A
Other languages
Japanese (ja)
Inventor
Minoru Ishihara
稔 石原
Keiji Sumiya
圭二 住谷
Shuichiro Shimoda
下田 修一郎
Toranosuke Ashizawa
寅之助 芦沢
Shozo Yamana
章三 山名
Hideji Kuwajima
秀次 桑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2176577A priority Critical patent/JPH0465342A/en
Publication of JPH0465342A publication Critical patent/JPH0465342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve the critical temp. and current density of the semiconductor by incorporating an oxide consisting essentially of Bi, Sr, Ca and Cu, Ag and Pd into the total composition. CONSTITUTION:A starting material obtained by mixing Bi, Sr, Ca and Cu in the atomic ratio of 2:2:1:2 or 2:2:2:3 or the material, in which 10-30mol% of the Bi is replaced by Pb, is mixed with methanol and crushed in a ball mill, and the product is dried at 100 deg.C for 24hr. The material is placed on an alumina burning plate, calcined at about 800 deg.C for about 24 hr in the atmosphere using an electric furnace, then wet-crushed and dried. The powder for synthesis is placed on an alumina burning plate, heated at about 840 deg.C for about 50hr in a low-oxygen-pressure atmosphere at O:N=1:10 to obtain a bismuth-based superconductor. The material is wet-crushed and mixed with 10-35wt.% Ag (e.g. silver powder having 0.8mum average grain diameter) and 0.1-2wt.% Pd (e.g. Pd powder having 1.0mum average grain diameter), the mixture is pelletized at about 147MPa and sintered at about 840 deg.C for 10hr in the atmosphere to obtain the superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導体及びその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a superconductor and a method for manufacturing the same.

(従来の技術) 従来の超電導体としては、1988年1月20日、金属
材料技術研究所の前88!!合研究官らによって発見さ
れたビスマス、ストロンチウム、カル/ラム及び銅を主
成分とするB1−8r−Ca−CuO系の酸化物超電導
体が一般に知られており、′またこのBi −5r−C
a−Cu −0系の酸化物超電導体の電気抵抗が零にな
る臨界温度(以下T’3erOとする)はll0Kであ
り、タリウム、バリウム、カルシウム及び銅を主成分と
するTl−Ba−Ca−CuO系に次いで高いことが知
られている。
(Prior art) As a conventional superconductor, on January 20, 1988, 88! ! A B1-8r-Ca-CuO-based oxide superconductor whose main components are bismuth, strontium, Cal/Rum, and copper discovered by joint researchers is generally known;
The critical temperature at which the electrical resistance of the a-Cu -0-based oxide superconductor becomes zero (hereinafter referred to as T'3erO) is 10K, and Tl-Ba-Ca whose main components are thallium, barium, calcium, and copper It is known that it is the second highest after the -CuO system.

一方B1−8r−Ca−Cu−0系の酸化物超電導体は
、  Tl−Ba−Ca−Cu−0系の酸化物超電導体
よりも毒性が弱いという特徴を有するが、結晶相におい
てT2erOが110にとなる2223相よシも。
On the other hand, the B1-8r-Ca-Cu-0-based oxide superconductor is characterized by being less toxic than the Tl-Ba-Ca-Cu-0-based oxide superconductor; There are also 2223 phases.

Tぎ0が80にの2212相又はT■0が20にの22
01相が生成し易いという欠点がある。
2212 phase when Tg0 is 80 or 22 when T0 is 20
There is a drawback that 01 phase is easily generated.

その後、ジャパニーズ・ジャーナル・オブ・アプライド
・フィジックス(Japanese Journa l
of Applied Physics) Vol、 
27.6号(1988年6月刊)、L1041〜L10
43頁に示されるように、鉛を添加したB1−Pb−8
r−Ca−Cu−0系の酸化物超電導体で2223相が
多く得られることが明らかになった。
Later, the Japanese Journal of Applied Physics
of Applied Physics) Vol.
No. 27.6 (June 1988), L1041-L10
B1-Pb-8 with lead added as shown on page 43
It has been revealed that a large amount of 2223 phase can be obtained in the r-Ca-Cu-0-based oxide superconductor.

(発明が解決しようとする課題) しかしながら上記のB1−Pb−8r−Ca−Cu−0
系の酸化物超電導体(以下ビスマス系超電導体とする)
ii、2223相の他に少量の2212相。
(Problem to be solved by the invention) However, the above B1-Pb-8r-Ca-Cu-0
oxide superconductor (hereinafter referred to as bismuth-based superconductor)
ii, a small amount of 2212 phase in addition to 2223 phase.

CazPbO4等の異相が残留し易<、2223相の含
有量を多くするためには長時間の焼成が必要である。
Foreign phases such as CazPbO4 tend to remain, and long firing is required to increase the content of the 2223 phase.

上記の異相のうち2212相は、THeroが80に程
度と低いが、容易に生成することができ、とりあえず液
体窒素温度(77K)での応用は可能である。しかし超
電導体でないCazPbO<が多量残留すると超電導体
の含有率が低下して臨界電流密度(以下Jcとする)の
低下を引き起こす問題がある。
Among the above-mentioned different phases, the 2212 phase has a low THero of about 80, but it can be easily generated and can be applied at liquid nitrogen temperature (77 K). However, if a large amount of CazPbO<, which is not a superconductor, remains, there is a problem that the superconductor content decreases, causing a decrease in critical current density (hereinafter referred to as Jc).

さらに磁場の印加によF)Jcが低下し易いという問題
があると共に焼結体の密度を高くすることが困難であシ
1粒子同士のつながシの改善が強く求められていた。
Furthermore, there is a problem that F)Jc tends to decrease due to the application of a magnetic field, and it is also difficult to increase the density of the sintered body, and there has been a strong demand for improvement in the bonding between particles.

本発明は上記のような問題のない超電導体及びその製造
法を提供することを目的とするものである。
An object of the present invention is to provide a superconductor and a method for manufacturing the same that are free from the above-mentioned problems.

(!!題を解決するための手段) 本発明はビスマス、ストロンチウム、カルシウム及び銅
を主成分とした酸化物並びに全組成物中に銀を10〜3
5重量%及びパラジウムを0.1〜2重量%含有してな
る超電導体及びビスマス、ストロンチウム、カルシウム
及び銅の混合粉末に上記に示す量の銀及びパラジウムを
添加して均一に混合した後焼成する超電導体の製造法に
関する。
(!!Means for Solving the Problem) The present invention provides an oxide containing bismuth, strontium, calcium, and copper as main components, and a composition containing 10 to 3 silver in the entire composition.
The amounts of silver and palladium shown above are added to a superconductor containing 5% by weight and 0.1 to 2% by weight of palladium, and a mixed powder of bismuth, strontium, calcium, and copper, mixed uniformly, and then fired. Concerning a method for manufacturing superconductors.

本発明においてビスマス、ストロンチウム、カルシウム
及び銅の配合割合については特に制限はないが、  B
i: Sr: Ca: Cuが原子比で2:2:12又
は2:2:2 :3であれば超電導体になシ易いので好
ましく1%に2:2:2:3の場合ビスマス中の10〜
30モルチを鉛に置換すればTぎ0の高い超電導体が得
られるので好ましい。
In the present invention, there is no particular restriction on the blending ratio of bismuth, strontium, calcium, and copper, but B
i: Sr: Ca: Cu: If the atomic ratio is 2:2:12 or 2:2:2:3, it will easily form a superconductor, so if it is preferably 1% and 2:2:2:3, then the 10~
It is preferable to replace 30% of lead with lead because a superconductor with a high Tg0 can be obtained.

銀の添加量は全組成物中に10〜35重量%の範囲とさ
れ、10重量%未満ではパラジウムの添加効果を均一化
する助剤としての効果が低く、35重量%を越えると該
効果はあるが、超電導体の体積率が低下する。
The amount of silver added is in the range of 10 to 35% by weight in the total composition. If it is less than 10% by weight, the effect as an auxiliary agent for uniformizing the effect of adding palladium is low, and if it exceeds 35% by weight, the effect is reduced. However, the volume fraction of the superconductor decreases.

一部パラジウムの添加量は全組成物中に0.1〜2重量
%の範囲とされ、0.1重量%未満ではパラジウムによ
る高Jc化、磁場特性の改善の効果が少なく、2重量%
を越えると高価になるという欠点が生じる。
The amount of palladium added is in the range of 0.1 to 2% by weight in the whole composition, and if it is less than 0.1% by weight, palladium has little effect of increasing Jc and improving magnetic field characteristics, and 2% by weight.
If the value exceeds 1, the disadvantage is that it becomes expensive.

超電導体を構成する原料のうち銀としては、銀粉末の他
、酸化鋏、塩化銀、硝酸鋏等が用いられ焼成後銀単位に
なる物質であれば特に制限はない。
Among the raw materials constituting the superconductor, silver is not particularly limited as long as silver powder, oxidized scissors, silver chloride, nitrate scissors, etc. are used, and the material becomes silver units after firing.

またパラジウムとしては、パラジウム粉末の他。Palladium is also available in addition to palladium powder.

酸化パラジウムなどが用いられ、焼成後パラジウム単体
になる物質であれば特に制限はない。
There is no particular restriction as long as palladium oxide or the like is used and the material becomes pure palladium after firing.

上記に示す原料の他のビスマス、鉛、ストロンチウム、
カルシウム及び銅を含む原料(出発原料)について特に
制限はないが1例えば、酸化物、炭酸塩、シュウ酸塩、
酢酸塩、硝酸塩、金属アルコキシド等の1種又は211
以上が用いられる。
Other raw materials listed above such as bismuth, lead, strontium,
There are no particular restrictions on the raw materials (starting raw materials) containing calcium and copper; for example, oxides, carbonates, oxalates,
One or 211 of acetates, nitrates, metal alkoxides, etc.
The above is used.

上記に示す原料の混合法については特に制限はないが1
例えば9合成樹脂製のボールミル内に合成樹脂で被覆し
たボール、エタノール等の溶媒及び原料を充てんし、湿
式混合する方法、溶媒中に原料を溶解した後に共沈生成
物を得る共沈法、アルコキシドなどの原料を加水分解さ
せてゾルを作製し、これをゲル化させるゾル−ゲル法等
を用いることができる。
There are no particular restrictions on the method of mixing the raw materials shown above, but 1
For example, 9 A method in which a ball mill made of synthetic resin is filled with balls coated with synthetic resin, a solvent such as ethanol, and raw materials and wet-mixed, a coprecipitation method in which a coprecipitated product is obtained after dissolving the raw materials in a solvent, and an alkoxide method. A sol-gel method or the like can be used in which a sol is prepared by hydrolyzing raw materials such as, and the sol is turned into a gel.

焼成温度及び焼成時間は、各原料の配合割合及び雰囲気
により適宜選定されるが、 Bi : Sr: Ca:
Cuが原子比で2:2:1:2の場合は、810〜90
0℃の温度で5〜50時間、  Bi: Sr: Ca
・Cuがおよそ2:2:2°3でビスマスの一部が鉛で
置換されている場合は、845土20℃好ましくは84
5土10℃の温度で20〜200時間焼成することが好
ましい。
The firing temperature and firing time are appropriately selected depending on the blending ratio of each raw material and the atmosphere, but Bi: Sr: Ca:
When Cu has an atomic ratio of 2:2:1:2, it is 810 to 90
5 to 50 hours at a temperature of 0°C, Bi: Sr: Ca
・If Cu is approximately 2:2:2°3 and some of the bismuth is replaced with lead, 845 soil at 20°C, preferably 84
5. It is preferable to bake at a temperature of 10° C. for 20 to 200 hours.

鎖及びパラジウムの添加法については特に制限はないが
2例えば銀及びパラジウムを含む原料の微粉を用いてビ
スマス、ストロンチウム、カルシウム及び銅を含む原料
の混合粉末と共にボールミル、乳鉢等を用いて乾式又は
湿式で混合、均一化する方法があげられる。この他にビ
スマス、ストロンチウム、カルシウム及び銅を含む原料
の混合粉末に銀及びパラジウムを含む原料の水溶液を添
加後、これを均一に加熱する方法があげられる。
There are no particular restrictions on the method of adding chains and palladium, but 2. For example, using fine powder of a raw material containing silver and palladium, a dry or wet method using a ball mill, mortar, etc., with a mixed powder of raw materials containing bismuth, strontium, calcium, and copper. One method is to mix and homogenize. Another method is to add an aqueous solution of raw materials containing silver and palladium to a mixed powder of raw materials containing bismuth, strontium, calcium, and copper, and then uniformly heat the solution.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 ビスマス、鉛、ストロンチウム、カルシウム及び銅の比
率が原子比で第1表に示す組成になるように、三酸化ビ
スマス(高純度化学研究所製、純度99,9%)、−酸
化鉛(黄色)(和光紬薬製。
Example 1 Bismuth trioxide (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9%), -lead oxide so that the ratio of bismuth, lead, strontium, calcium, and copper was as shown in Table 1 in atomic ratio. (yellow) (manufactured by Wako Tsumugi Pharmaceutical.

試薬%li&)、  炭酸ストロンチウム(レアメタリ
ック裂、純度99.9チ)、炭酸カルシウム(高純度化
学研究所製、純度99.9%)及び醗化第二銅(高純度
化学研究所製、純度99.9チ)を秤量し。
Reagent %li&), strontium carbonate (rare metallic crack, purity 99.9%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9%), and cupric fluoride (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9ch).

出発原料とした。It was used as a starting material.

次に上記の出発原料を合成樹脂製のボールミル内に合成
樹脂で被覆し次鋼球ボール及びメタノールと共に充てん
し、毎分50回転の条件で60時時間式混合及び粉砕し
た。この後、粉砕物をボールミルから取り呂して、10
0℃24時間で乾燥した後、これをアルミナ焼板にのせ
、電気炉を用いて大気中で800℃で24時間仮焼し、
ついで乳鉢で粗粉砕し念後1合成樹脂製ボールミル内に
−) ルコニア灸ボール、メタノールと共に充てンシ。
Next, the above starting materials were coated with a synthetic resin in a synthetic resin ball mill, filled together with steel balls and methanol, and mixed and pulverized for 60 hours at 50 revolutions per minute. After this, remove the crushed material from the ball mill and
After drying at 0°C for 24 hours, this was placed on an alumina baking plate and calcined in the air at 800°C for 24 hours using an electric furnace.
Then, it was coarsely ground in a mortar and poured into a synthetic resin ball mill together with Luconia moxibustion balls and methanol.

毎分50回転の条件で48時時間式粉砕し、乾燥して合
成用粉末を得た。
It was pulverized for 48 hours at 50 revolutions per minute and dried to obtain a powder for synthesis.

この後該合成用粉末をアルミナ焼板にのせ、電気炉を用
いて体積比で02 : N2 ” 1 : 10の低酸
素圧雰囲気中で840℃の温度で50時間加熱した後冷
却してビスマス系超電導体を合成した。ついで乳鉢で粗
粉砕し念後9合成樹脂製ボールミル内にジルコニア製ボ
ール、メタノールと共に充てんし、毎分50回転の条件
で48時時間式粉砕して粉砕物を得た。この粉砕物89
9重量%に銀粉(口中貴金属製、商品名AY−6080
,平均粒径0.8μm)を10重量%及びパラジウム粉
(徳力化学製、平均粒径1,0μm)を0.1重量%添
加し、さらに5時間混合して均一にした。
Thereafter, the synthesis powder was placed on an alumina baking plate, heated in an electric furnace at a temperature of 840°C for 50 hours in a low oxygen pressure atmosphere with a volume ratio of 02:N2''1:10, and then cooled to form a bismuth-based powder. A superconductor was synthesized.Then, it was coarsely pulverized in a mortar, and then filled in a 9-synthetic resin ball mill with zirconia balls and methanol, and pulverized for 48 hours at 50 revolutions per minute to obtain a pulverized product. This crushed material89
9% by weight of silver powder (manufactured by Noble Metals, product name AY-6080)
, average particle size 0.8 μm) and 0.1 weight % palladium powder (manufactured by Tokuriki Chemical Co., Ltd., average particle size 1.0 μm) were added, and the mixture was further mixed for 5 hours to make it uniform.

乾燥後得られた粉末を147MPaの圧力で直径30■
、厚さIImのペレットに成形後、大気中で840℃で
10時間焼成して超電導体を得た。
After drying, the obtained powder was heated to a diameter of 30 cm under a pressure of 147 MPa.
After molding into pellets with a thickness of IIm, the pellets were fired at 840° C. for 10 hours in the air to obtain a superconductor.

実施例2 ビスマス、ストロンチウム、カルンウム及ヒ銅の比率が
原子比で第1表に示す組成になるように秤量し、以下実
施例1と同様の工程を経てビスマス系超電導体を合成し
た。なお上記に示す原料は実施例1と同一メーカーの物
を使用した。以下同じ。
Example 2 Bismuth, strontium, carunium, and copper arsenate were weighed so as to have the atomic ratio shown in Table 1, and the same steps as in Example 1 were followed to synthesize a bismuth-based superconductor. The raw materials shown above were from the same manufacturer as in Example 1. same as below.

次に上記で得たビスマス系超電導体を実施例1と同様の
方法で湿式粉砕し、この粉砕物74.25重量%に実施
例1で用いたものと同じ銀粉を25重量%及びパラジウ
ム粉を0.75重量%添加し。
Next, the bismuth-based superconductor obtained above was wet-pulverized in the same manner as in Example 1, and 74.25% by weight of this pulverized material was mixed with 25% by weight of the same silver powder and palladium powder as used in Example 1. Added 0.75% by weight.

以下実施例1と同様の工程を経て超電導体を得意。Following the same steps as in Example 1, superconductors were produced.

実施例3 ビスマス、鉛、ストロンチウム、カルシウム及び銅の比
率が原子比で第1表に示す組成になるように秤量し、以
下実施例1と同様の工程を経てビスマス系超電導体を合
成した。
Example 3 Bismuth, lead, strontium, calcium, and copper were weighed so as to have the composition shown in Table 1 in atomic ratio, and the same steps as in Example 1 were followed to synthesize a bismuth-based superconductor.

次に上記で得たビスマス系超電導体を実施例1と同様の
方法で湿式粉砕し、この粉砕物69.4重量%に実施例
1で用いたものと同様の銀粉を30重量%及びパラジウ
ム粉を0.6重量%添加し、以下実施例1と同様の工程
を経て超電導体を得た。
Next, the bismuth-based superconductor obtained above was wet-pulverized in the same manner as in Example 1, and 69.4% by weight of this pulverized material was mixed with 30% by weight of silver powder and palladium powder similar to those used in Example 1. 0.6% by weight was added, and the same steps as in Example 1 were carried out to obtain a superconductor.

実施例4 実施例2で得九粉砕物64重量%に実施例1で用いた本
のと同様の銀粉を34重量%及びパラジウム粉を2重量
%添加し、以下実施例1と同様の工程を経て超電導体を
得た。
Example 4 34% by weight of silver powder similar to that used in Example 1 and 2% by weight of palladium powder were added to 64% by weight of the ground material obtained in Example 2, and the same steps as in Example 1 were carried out. Through this process, a superconductor was obtained.

比較例1 実施例1で得た粉砕物90重量%に実施例1で用いたも
のと同様の銀粉を10重量%添加し、以下実施例1と同
様の工程を経て超電導体を得た。
Comparative Example 1 10% by weight of the same silver powder as that used in Example 1 was added to 90% by weight of the pulverized material obtained in Example 1, and the same steps as in Example 1 were carried out to obtain a superconductor.

比較例2 実施例2で得た粉砕物75重量%に実施例1で用いた本
のと同様の銀粉を25重量%添加し、以下実施例1と同
様の工程を経て超電導体を得た。
Comparative Example 2 25% by weight of silver powder similar to that used in Example 1 was added to 75% by weight of the pulverized material obtained in Example 2, and the same steps as in Example 1 were carried out to obtain a superconductor.

比較例3 実施例アで得た粉砕物67.5重量−に実施例1で用い
たものと同様の銀粉を30重量%及びパラジウム粉を2
.5重量%添加し、以下実施例1と同様の工程を経て超
電導体を得た。
Comparative Example 3 30% by weight of silver powder similar to that used in Example 1 and 2% of palladium powder were added to 67.5% by weight of the pulverized material obtained in Example A.
.. A superconductor was obtained by adding 5% by weight and following the same steps as in Example 1.

比較例4 実施例2で得た粉砕物63重量1に実施例1で用いたも
のと同様の銀粉を34重量%及びパラジウム粉を3重量
%添加し、以下実施例1と同様の工程を経て超電導体を
得た。
Comparative Example 4 34% by weight of silver powder and 3% by weight of palladium powder similar to those used in Example 1 were added to 63% by weight of the pulverized material obtained in Example 2, and the same steps as in Example 1 were carried out. A superconductor was obtained.

次に各実施例及び比較例で得た超電導体を長さ20−X
幅3mX厚さ1mの直方体に加工し、四端子法で抵抗の
温度変化を測定し、TZeroを求めた。ま之上記と同
様の試料を用いて液体窒素温度(77,3K)でのJc
6を測定すると共に液体窒素中0.05テスラの磁場中
での’Jco、asを測定した。
Next, the superconductor obtained in each example and comparative example was
It was processed into a rectangular parallelepiped with a width of 3 m and a thickness of 1 m, and the temperature change in resistance was measured using a four-terminal method to determine TZero. Jc at liquid nitrogen temperature (77,3K) using the same sample as above.
6, and 'Jco, as in a magnetic field of 0.05 Tesla in liquid nitrogen.

これらの測定結果及びJc(LO5とJc6との比を合
わせて第1表に示す。
These measurement results and Jc (ratio of LO5 to Jc6) are shown in Table 1.

なお上記の組成においてO(酸素)の量は、銅の量及び
銅の酸化状態によって定まる。しかし酸化状態がどのよ
うになっているかを厳密にそして精度よく測定すること
ができず本発明においてはXで表わした。
Note that in the above composition, the amount of O (oxygen) is determined by the amount of copper and the oxidation state of copper. However, it was not possible to measure the oxidation state strictly and accurately, so it was expressed as X in the present invention.

また実施例1.比較例1及び比較例3は、ビスマス中の
25モルチを鉛に置換し、実施例3は。
Also, Example 1. In Comparative Example 1 and Comparative Example 3, 25 molti in bismuth was replaced with lead, and in Example 3.

ビスマス中の20モルチを鉛に置換した組成とした。The composition was such that 20 molti of bismuth was replaced with lead.

第1表から本発明の実施例になる超電導体は。Table 1 shows superconductors that are examples of the present invention.

T:eroが80に以上で、磁場の印加によるJcの低
下の小さいことが示される。これに対し比較例の超電導
体は r):erOは79に以上の値を示すが。
When T: ero is 80 or more, it is shown that the decrease in Jc due to the application of a magnetic field is small. On the other hand, the superconductor of the comparative example has r):erO of 79 or higher.

磁場の印加によりJcの低下が大きいことが示される。It is shown that the decrease in Jc is large due to the application of a magnetic field.

(発明の効果) 本発明になる超電導体Jf1.  T:erOの低下が
少なく、ま九磁場の印加によるJcの低下本小さく。
(Effect of the invention) Superconductor Jf1 according to the invention. T: The decrease in erO is small, and the decrease in Jc due to the application of a magnetic field is small.

代理人 弁理士 若 林 邦伸、!Agent: Patent attorney Kuninobu Wakabayashi!

Claims (1)

【特許請求の範囲】 1、ビスマス、ストロンチウム、カルシウム及び銅を主
成分とした酸化物並びに全組成物中に銀を10〜35重
量%及びパラジウムを0.1〜2重量%含有してなる超
電導体。 2、ビスマスの一部を鉛で置換してなる請求項1記載の
超電導体。 3、ビスマス、ストロンチウム、カルシウム及び銅の混
合粉末に請求項1記載に示す量の銀及びパラジウムを添
加して均一に混合した後焼成することを特徴とする超電
導体の製造法。
[Claims] 1. A superconductor comprising an oxide containing bismuth, strontium, calcium and copper as main components, and a total composition containing 10 to 35% by weight of silver and 0.1 to 2% by weight of palladium. body. 2. The superconductor according to claim 1, wherein a part of bismuth is replaced with lead. 3. A method for producing a superconductor, which comprises adding silver and palladium in the amounts shown in claim 1 to a mixed powder of bismuth, strontium, calcium, and copper, mixing the mixture uniformly, and then firing.
JP2176577A 1990-07-04 1990-07-04 Superconductor and its production Pending JPH0465342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176577A JPH0465342A (en) 1990-07-04 1990-07-04 Superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176577A JPH0465342A (en) 1990-07-04 1990-07-04 Superconductor and its production

Publications (1)

Publication Number Publication Date
JPH0465342A true JPH0465342A (en) 1992-03-02

Family

ID=16015996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176577A Pending JPH0465342A (en) 1990-07-04 1990-07-04 Superconductor and its production

Country Status (1)

Country Link
JP (1) JPH0465342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525189A (en) * 1999-07-30 2003-08-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Pb-Bi-Sr-Ca-Cu-oxide powder mixture with improved reactivity and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525189A (en) * 1999-07-30 2003-08-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Pb-Bi-Sr-Ca-Cu-oxide powder mixture with improved reactivity and method for producing the same

Similar Documents

Publication Publication Date Title
JPH0465342A (en) Superconductor and its production
JPH02133322A (en) Bi-pb-sr-ba-ca-cu-o superconducting material
JPH01100056A (en) Manufacture of high temperature superconductive material
JPH046145A (en) Superconductor and production thereof
JPH046147A (en) Oxide superconductor and production thereof
JPH0477315A (en) Oxide superconductor and its production
JPH0421561A (en) Oxide superconductor and production thereof
JPH0416516A (en) Oxide superconductor and its production
JPH0477316A (en) Oxide superconductor and its production
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JPH04193718A (en) Oxide superconductor and its production
JPH0442815A (en) Oxide superconductor and its production
JPH0570138A (en) Oxide superconductor and its production
JPH04124032A (en) Superconductor and its synthesis
JPH0570149A (en) Oxide superconductor and its production
JPS63236753A (en) Production of superconductive ceramic
JPH0570133A (en) Oxide superconductor and its production
JPH0543245A (en) Oxide superconductor and production thereof
JP2596021B2 (en) Manufacturing method of superconducting material
JPH0570135A (en) Oxide superconductor and its production
JPH0570139A (en) Oxide superconductor and its production
JPH03223118A (en) Production of oxide superconductor
JPH04108604A (en) Production of oxide superconductor
JPH04104942A (en) Oxide superconductor and production thereof
JPH02248321A (en) Oxide superconductor