JPH046147A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH046147A
JPH046147A JP2109276A JP10927690A JPH046147A JP H046147 A JPH046147 A JP H046147A JP 2109276 A JP2109276 A JP 2109276A JP 10927690 A JP10927690 A JP 10927690A JP H046147 A JPH046147 A JP H046147A
Authority
JP
Japan
Prior art keywords
oxide superconductor
platinum
phase
superconductor
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2109276A
Other languages
Japanese (ja)
Inventor
Keiji Sumiya
圭二 住谷
Hideji Kuwajima
秀次 桑島
Toranosuke Ashizawa
寅之助 芦沢
Shuichiro Shimoda
下田 修一郎
Shozo Yamana
章三 山名
Minoru Ishihara
稔 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2109276A priority Critical patent/JPH046147A/en
Publication of JPH046147A publication Critical patent/JPH046147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To suppress the lowering of critical temp. at which electric resistance becomes zero and the lowering of critical current density by the application of a magnetic field by rendering a specified compsn. and incorporating Ag and Pt. CONSTITUTION:Powdery starting materials contg. Ag, Pt, Bi, Pb, Sr, Ca, Mg, Ba and Cu are weighed in a prescribed ratio, mixed, optionally calcined at 835+ or -20 deg.C for 20-200 hr and then sintered at 820-870 deg.C to obtain an oxide superconductor having a compsn. represented by the formula (where A is 0.15-0.35, B is 0.8-1.1, B' is 0.8-1.2, C is 0.05-0.3, D is < 0.2 and the numerals show atomic ratio) and contg. 10-35 wt.% Ag and 0.1-2 wt.% Pt.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明ii酸化物超電導体及びその製°造法に関する。[Detailed description of the invention] (Industrial application field) The present invention ii relates to an oxide superconductor and its manufacturing method.

(従来の技術) 従来の酸化物超電導体としては、1988年。(Conventional technology) As a conventional oxide superconductor, in 1988.

金属材料技術研究所の前出総合研究官らによって発見さ
れたビスマス、ストロンチウム、カルシウム及び銅を主
成分とするBi −Sr −Ca −Cu −0系の酸
化物超電導体があるが、このBi −Sr −Ca −
Cu−0系の酸化物超電導体は、1!気抵抗が零になる
臨界温度(以下T:erOとする)が110に付近であ
シ、タリウム、バリウム、カルシウム及び銅を主成分と
するTl −Ba −Ca −Cu −0系の酸化物超
電導体についで高いことが知られている。
There is a Bi-Sr-Ca-Cu-0 system oxide superconductor whose main components are bismuth, strontium, calcium, and copper, which was discovered by the above-mentioned general research staff of the Institute of Metals and Materials Technology. Sr-Ca-
The Cu-0 based oxide superconductor is 1! The critical temperature at which the air resistance becomes zero (hereinafter referred to as T: erO) is around 110, and the Tl-Ba-Ca-Cu-0 system oxide superconductor has thallium, barium, calcium, and copper as its main components. It is known to be the second highest in the body.

Bi −Sr −Ca −Cu −0系の酸化物超電導
体は。
Bi-Sr-Ca-Cu-0 based oxide superconductor.

Tl −Ba −Ca −Cu −0系の酸化物超電導
体よりも毒性が弱いという特徴を有するが、結晶相にお
いてTぎ0が110にとなる2223相よりも。
It is characterized by being less toxic than the Tl-Ba-Ca-Cu-0-based oxide superconductor, but more so than the 2223 phase in which Tg0 is 110 in the crystal phase.

T:ero カ80K(D2212相又1;tT:”0
カ20にの2201相が生成し易いという欠点がある。
T: ero force 80K (D2212 phase or 1; tT:”0
There is a drawback that the 2201 phase in the phase 20 is likely to be generated.

その後、ジャパニーズ・ジャーナル・オブ・アプライド
0フイジツクス(Japanese  Journal
  ofApplied Physics ) Vol
、 27.6号(1988年6月刊)、L1041−L
1043頁に示されるように、鉛を添加したBi −P
b −8r −Ca −Cu −0系の酸化物超電導体
(以下層系超電導体とする)で2223相が多く得られ
ることが明らかになった。
Later, the Japanese Journal of Applied Physics
of Applied Physics) Vol.
, No. 27.6 (June 1988), L1041-L
As shown on page 1043, lead-doped Bi-P
It has been revealed that a large amount of 2223 phase can be obtained in a b-8r-Ca-Cu-0-based oxide superconductor (hereinafter referred to as a layered superconductor).

(発明が解決しようとする課題) しかしながら上記のBi系超超電導体、2223相を生
成する温度範囲が狭いという問題があると共に2223
相を多く生成させるためには長時間。
(Problem to be Solved by the Invention) However, the above-mentioned Bi-based superconductor has the problem that the temperature range for producing the 2223 phase is narrow, and
For a long time to generate many phases.

例えば100時間の焼成が必要である。For example, 100 hours of firing is required.

一方Bi系超電導体は、2223相の他にCa2P b
o4 。
On the other hand, Bi-based superconductors contain Ca2P b in addition to the 2223 phase.
o4.

PbCu0z等の異相が残留し易い。Ca2Pb04.
 PbCu0z等の異相が2223相中に共存すると超
電導体の含有率が低下して臨界電流密度(以下Jcとす
る)の低下を引き起こす問題がある。
Different phases such as PbCuOz tend to remain. Ca2Pb04.
If a different phase such as PbCuOz coexists in the 2223 phase, there is a problem in that the superconductor content decreases and the critical current density (hereinafter referred to as Jc) decreases.

またBi系超超電導体、YBa−Cu−0系超電導体に
比べ磁場の印加によってJcが低下し易いという問題が
あり、超電導電磁石、超電導磁気シールド材への適用の
面で不利であった。さらに焼結体の密度を高くすること
が困難であり2粒子同士のつながりの改善が強く求めら
れていた。
In addition, there is a problem that Jc is more likely to decrease when a magnetic field is applied than Bi-based superconductors and YBa-Cu-0-based superconductors, which is disadvantageous in terms of application to superconducting electromagnets and superconducting magnetic shielding materials. Furthermore, it is difficult to increase the density of the sintered body, and there has been a strong demand for improvement in the connection between two particles.

本発明は上記のような問題のない酸化物超電導体及びそ
の製造法を提供することを目的とするものである。
An object of the present invention is to provide an oxide superconductor and a method for producing the same that are free from the above-mentioned problems.

(課題を解決するための手段) 本発明は銀を10〜351.量チ及び白金を0.1〜2
重tチ含み、かつ 一般式Bib−APbASrBCaBr Mgof3a
Dcu1.7tO,30x(但しA=0.15〜0.3
5.B=0.8〜1.1.B’二〇、8〜1.2.C=
0.05〜0.3. D=0.2未満。
(Means for Solving the Problems) The present invention uses silver in the range of 10 to 351. Quantity and platinum 0.1-2
and general formula Bib-APbASrBCaBr Mgof3a
Dcu1.7tO, 30x (A=0.15~0.3
5. B=0.8-1.1. B'20, 8-1.2. C=
0.05-0.3. D=less than 0.2.

数字は原子比を表わす) で示される組成からなる酸化物超電導体及び上記の組成
となるように銀、白金、ビスマス、鉛、ストロンチウム
、カルシウム、マグネシウム、バリウム及び銅を含む各
原料を秤量し、ついで混合した後焼成する酸化物超電導
体の製造法に関する。
(Numbers represent atomic ratios) Weigh each raw material containing silver, platinum, bismuth, lead, strontium, calcium, magnesium, barium, and copper so as to have the composition shown above and the composition shown above, The present invention relates to a method for producing an oxide superconductor which is then mixed and then fired.

本発明において銀としては、銀粉末の他2.酸化釧、塩
化銀、硝酸銀等が用いられ焼成後鍋単位になる物質であ
れば特に制@はない。
In the present invention, as silver, in addition to silver powder, 2. There are no particular restrictions if oxide, silver chloride, silver nitrate, etc. are used and the material will be made into a pot unit after firing.

また白金としては、白金粉末の他、酸化白金などが用い
られ、焼成後白金単体になる物質であれば特に制限はな
い。
In addition to platinum powder, platinum oxide or the like may be used as the platinum, and there is no particular restriction as long as it becomes a simple platinum substance after firing.

鋼は酸化物超電導体中に10〜35重量%の範囲で含有
されることが必要とされ、10重量t%未満では白金の
添加効果を均一化する助剤としての効果が低く、35重
量%を越えると該効果はあるが、超電導体の体積率が低
下する。
Steel is required to be contained in the oxide superconductor in a range of 10 to 35% by weight, and if it is less than 10% by weight, the effect as an auxiliary agent for uniformizing the effect of platinum addition is low; If it exceeds this, although this effect is achieved, the volume fraction of the superconductor decreases.

一方白金は酸化物超電導体中に0.1〜2重量チの範囲
で含有されることが必要とされ、0.1’ijlチ未満
では白金による高Jc化、磁場特性の改善の効果が少な
く、2重量%を越えると高価になるという欠点が生じる
On the other hand, platinum is required to be contained in the oxide superconductor in an amount of 0.1 to 2% by weight, and if it is less than 0.1'ijl, platinum's effect of increasing Jc and improving magnetic field properties will be small. , if it exceeds 2% by weight, the disadvantage is that it becomes expensive.

上記成分の他にビスマス、鉛、ストロンチウム。In addition to the above ingredients, it also contains bismuth, lead, and strontium.

カルシウム、マグネシウム、バリウム及び銅を含む原料
については特に制限はないが2例えば酸化物、炭酸塩、
硝酸塩等の1種または2種以上が用いられる。
There are no particular restrictions on the raw materials containing calcium, magnesium, barium, and copper; for example, oxides, carbonates,
One or more types of nitrates are used.

一般式Bib−APbASrIICa、+MgoHaD
Cul、7±6,30xにおいて、 Alum原子比で
0.15〜0.35の範囲とされ、0.15未満である
とTぎ0が80に付近の中温相が生成し易くなるため1
10に付近の高温相の生成量が少なく々す、0.35を
越えると鉛とカルシウムとの酸化物であるCa2 P 
bo4などの異相が条目に生成し臨界温度が低下する。
General formula Bib-APbASrIICa, +MgoHaD
Cul, 7 ± 6, 30x, the Alum atomic ratio is in the range of 0.15 to 0.35, and if it is less than 0.15, a meso-temperature phase near Tg 0 of 80 is likely to be generated.
The amount of high-temperature phase produced near 10 is small, and when it exceeds 0.35, Ca2P, which is an oxide of lead and calcium, is produced.
A foreign phase such as bo4 is generated in the lines, and the critical temperature is lowered.

Bは原子比で0.8〜1.1の範囲とされ、0.8未満
であると高温相が生成する焼成条件の範囲が狭く、かつ
110に付近で安定して電気抵抗を零にすることが困難
であ5,1.1を越えると超電導体以外の異相が生成し
易< T%eToが低下する。
The atomic ratio of B is in the range of 0.8 to 1.1, and when it is less than 0.8, the range of firing conditions in which a high temperature phase is generated is narrow, and the electrical resistance is stabilized at around 110 and becomes zero. 5. If it exceeds 1.1, foreign phases other than superconductors are likely to be generated, resulting in a decrease in T%eTo.

B′は原子比で0.8〜1.2の範囲とされ08未満で
あると顕著な効果が認められず、1.2を越えると超電
導体以外の異相が生成し易い。
B' is in the range of 0.8 to 1.2 in terms of atomic ratio, and if it is less than 0.8, no significant effect will be observed, and if it exceeds 1.2, different phases other than superconductors are likely to be produced.

CFi原子比で0.05〜0.3の範囲とされ、0.0
5未満であると顕著な効果は認められず、0.3を越え
ると超電導体以外の異相が生成し易い。
The CFi atomic ratio is in the range of 0.05 to 0.3, and 0.0
If it is less than 5, no significant effect will be observed, and if it exceeds 0.3, a different phase other than the superconductor is likely to be generated.

Diii子比で0.2未満とされ、0.2以上であると
超電導体以外の異相が生成し易い。
The DIII ratio is less than 0.2, and when it is 0.2 or more, a different phase other than the superconductor is likely to be generated.

原料の混合方法については特に制限はないが。There are no particular restrictions on the method of mixing the raw materials.

例えば合成樹脂製のボールミル内に合成樹脂で被接した
ボール、エタノール、メタノール等の溶媒及び原料を充
填し、湿式混合する方法、溶媒中に原料を溶解した後に
共沈生成物を得る共沈法、アルコキシド等の原料を加水
分解させてゾルを作製し、これをゲル化させるゾル−ゲ
ル法等を用いることができる。
For example, a method of filling a ball mill made of synthetic resin with balls coated with synthetic resin, a solvent such as ethanol or methanol, and raw materials and wet mixing, and a coprecipitation method of obtaining a coprecipitated product after dissolving the raw materials in a solvent. A sol-gel method or the like can be used in which a sol is prepared by hydrolyzing raw materials such as , alkoxides, etc., and the sol is turned into a gel.

本発明では混合した後必喪に応じ仮焼を行うが。In the present invention, calcining is performed as necessary after mixing.

その仮焼条件において、仮焼温度及び時間は各原料の配
合割合などにより適宜選定されるが、835℃±20℃
好着しくけ835℃±10℃で20〜200時間仮焼す
ることが好ましく、また仮焼雰囲気は、大気中、酸素雰
囲気中、真空中、還元雰囲気中等で仮焼することができ
特に制限はない。
Under the calcination conditions, the calcination temperature and time are appropriately selected depending on the blending ratio of each raw material, etc.
Preferably, calcination is carried out at 835°C ± 10°C for 20 to 200 hours, and the calcination atmosphere can be air, oxygen atmosphere, vacuum, reducing atmosphere, etc., and there are no particular restrictions. do not have.

粉砕及び成形については特に制限はなく、従来公知の方
法で行うものとする。
There are no particular restrictions on crushing and molding, and conventionally known methods may be used.

焼成条件において、焼成温度は各原料の配合割合などに
より適宜選定されるが、820〜870℃の範囲で焼成
することが好ましく、−また焼成雰囲気は、大気中、空
気気流中、または低酸素圧雰囲気中(酸素の含有量が1
〜20体槓チ好1しくに2〜20体積−の範囲)で焼成
することが好ましい。
Regarding the firing conditions, the firing temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to perform firing in the range of 820 to 870°C, and the firing atmosphere is air, air current, or low oxygen pressure. In the atmosphere (oxygen content is 1
It is preferable to fire in a range of 20 to 20 volumes, preferably 2 to 20 volumes.

本発明の組成においてO(酸素)の量は、 Cuの1及
びCuの酸化状態によって定まる。しかし酸化状態がど
のようになっているかを厳密にそして精度よく測定する
ことができず本発明においてはXで表わされる。
The amount of O (oxygen) in the composition of the present invention is determined by the oxidation state of Cu and the oxidation state of Cu. However, it is not possible to measure the oxidation state strictly and accurately, so it is represented by X in the present invention.

(実施例) 以下9本発明の詳細な説明する。(Example) Hereinafter, nine aspects of the present invention will be described in detail.

実施例1〜6 ビスマス、鉛、ストロンチウム、マグネシウム。Examples 1-6 Bismuth, lead, strontium, magnesium.

バリウム、カルシウム及び銅の比率が原子比で第1表に
示す組成になるように三酸化ビスマス(高純度化学研究
新製、純度99.9%)、炭酸ストロンチウム(レアメ
タリック製、純度99.9%)酸化マグネシウム(高純
度化学研究新製、純度99,9%)、炭酸バリウム(高
純度化学研究新製、純度99.9%)、炭酸カルシウム
(高純度化学研究新製、純度99.9%)及び酸化第2
銅(高純度化学研究新製、純度99.9%)を秤量し出
発原料とした。
Bismuth trioxide (manufactured by Kojun Kagaku Kenkyushin, purity 99.9%) and strontium carbonate (manufactured by Rare Metallic, purity 99.9) were prepared so that the ratio of barium, calcium and copper was as shown in Table 1 in atomic ratio. %) Magnesium oxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%), barium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9) %) and oxidized second
Copper (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) was weighed and used as a starting material.

次に上記の出発原料を合成樹脂製のボールミル内に合成
樹脂で被覆した鋼球ボール及びメタノールと共に充てん
し毎分50回転の条件で72時時間式混合した。乾燥後
アルミナ匣鉢に入れ電気炉を用いて大気中800℃で1
0時間仮焼し、ついで乳鉢で粗粉砕した後9合成樹脂製
ボールミル内にジルコニア製ボール、酢酸エチルと共に
原子比で第1表に示す組成になるように一酸化鉛(黄色
Next, the above starting materials were filled in a synthetic resin ball mill together with steel balls coated with synthetic resin and methanol, and mixed for 72 hours at 50 revolutions per minute. After drying, place it in an alumina sagger and heat it in the air at 800°C using an electric furnace.
Calcined for 0 hours, then coarsely ground in a mortar, placed in a synthetic resin ball mill with zirconia balls and ethyl acetate so that lead monoxide (yellow) has the composition shown in Table 1 in terms of atomic ratio.

高純度化学研究新製、純度99.9%)を秤量して充て
んし、毎分50回転の条件で24時時間式混合後、乾燥
し、酸化物超電導体用組成物を得た。
(manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) was weighed and filled, mixed 24 hours a day at 50 rotations per minute, and then dried to obtain a composition for an oxide superconductor.

この後酸化物超電導体用組成物を147MPaの圧力で
プレス成形後9体積比で02 : Nz =1 : 1
0の低酸素圧雰囲気中で835℃で100時間焼成して
厚さ1閣の酸化物超電導体用材料を得た。
Thereafter, the composition for oxide superconductor was press-molded at a pressure of 147 MPa, and the volume ratio was 02:Nz =1:1.
The material was fired at 835° C. for 100 hours in a low oxygen pressure atmosphere of 0.0° C. to obtain a material for an oxide superconductor with a thickness of one inch.

この後上記の酸化物超電導体用材料を乳鉢で粗粉砕した
後2合成樹脂製ボールミル内にジルコニア製ボール、酢
酸エチルと共に充てんし毎分50回転の条件で48時時
間式粉砕後、銀粉及び白金粉を第1表に示す組成になる
ように添加し、さらに5時間混合して均一にした。なお
銀粉及び白金粉は日中貴金属製の純度99.9チ以上で
、平均粒径が1〜5μmの粉末を用いた。
After that, the above-mentioned material for oxide superconductor was coarsely ground in a mortar, then filled in a synthetic resin ball mill with zirconia balls and ethyl acetate, and ground at 50 revolutions per minute for 48 hours, followed by silver powder and platinum. The powder was added to the composition shown in Table 1 and mixed for an additional 5 hours to make it homogeneous. The silver powder and platinum powder used were powders manufactured by Nichia Precious Metals, which had a purity of 99.9 cm or more and an average particle size of 1 to 5 μm.

乾燥後得られた粉末を147MPaの圧力で直径30m
m、厚さImのベレットに成形後、大気中で840℃で
10時間焼成して酸化換起1導体を得た。
The powder obtained after drying was heated to a diameter of 30 m under a pressure of 147 MPa.
After forming the pellet into a pellet having a thickness of Im and a thickness of Im, it was fired in the atmosphere at 840° C. for 10 hours to obtain an oxidized conductor.

比較例1〜6 第1表に示す組成になるように各原料を秤量し。Comparative examples 1 to 6 Weigh each raw material so that it has the composition shown in Table 1.

以下実施例と同様の工程を軽で酸化物超電導体を得た。An oxide superconductor was obtained by following the same steps as in the example.

次に各実施例及び比較例で得た酸化物超電導体を長さ2
0胴×幅3闘×厚さ1画の直方体に加工し、四端子法で
抵抗の温度変化を測定しTぎ0を求めた。また上記と同
様の試料を用いて液体窒素温度(77,3K)でのJc
6を測定すると共に液体窒素中0.05テスラの磁場中
でのJCO8,を測定した。これらの測定結果及びJ 
CO,05とJcOとの比を合わせて第1表に示す。
Next, the oxide superconductor obtained in each example and comparative example was
It was processed into a rectangular parallelepiped with dimensions of 0 body x 3 width x 1 thickness, and the temperature change in resistance was measured using the four-terminal method to determine Tg 0. Also, using the same sample as above, Jc at liquid nitrogen temperature (77.3K)
6 and JCO8 in a magnetic field of 0.05 Tesla in liquid nitrogen. These measurement results and J
The ratios of CO,05 and JcO are shown in Table 1.

第1表から本発明の実施例になる酸化物超電導体は T
:erOが高く、磁場の印加によるJcの低下が小さい
ことが示される。これに対し比較例の酸化物超電導体は
 TZerOは実施例になる酸化物超電導体とあ甘り変
わらないが、磁場の印加によシJcの低下が大きいこと
が示される。
From Table 1, the oxide superconductors that are examples of the present invention are T
: It is shown that erO is high and the decrease in Jc due to the application of a magnetic field is small. On the other hand, the oxide superconductor of the comparative example TZerO is not much different from the oxide superconductor of the example, but it is shown that the Jc decreases significantly when a magnetic field is applied.

(発明の効果) 本発明になる酸化物超電導体は、T:erOの低下が少
なく、また磁場の印加によるJcの低下も/J・さく、
工業的に極めて好適な酸化物超電導体である。
(Effects of the Invention) The oxide superconductor of the present invention has a small decrease in T:erO, and also a decrease in Jc due to the application of a magnetic field.
It is an industrially very suitable oxide superconductor.

Claims (1)

【特許請求の範囲】 1、銀を10〜35重量%及び白金を0.1〜2重量%
含み,かつ一般式Bi_1_−_APb_ASr_BC
a_B^´Mg_CBa_DCu_1.7_±_0_.
_3O_X(但しA=0.15〜0.35,B=0.8
〜1.1,B´=0.8〜1.2,C=0.05〜0.
3,D=0.2未満,数字は原子比を表わす)で示され
る組成からなる酸化物超電導体。 2、請求項1記載の組成となるように銀,白金,ビスマ
ス,鉛,ストロンチウム,カルシウム,マグネシウム,
バリウム及び銅を含む各原料を秤量し,ついで混合した
後焼成することを特徴とする酸化物超電導体の製造法。
[Claims] 1. 10 to 35% by weight of silver and 0.1 to 2% by weight of platinum
and the general formula Bi_1_-_APb_ASr_BC
a_B^´Mg_CBa_DCu_1.7_±_0_.
_3O_X (A=0.15-0.35, B=0.8
~1.1, B'=0.8~1.2, C=0.05~0.
3, D=less than 0.2, the number represents an atomic ratio). 2. Silver, platinum, bismuth, lead, strontium, calcium, magnesium,
A method for producing an oxide superconductor, which comprises weighing raw materials containing barium and copper, mixing them, and then firing them.
JP2109276A 1990-04-25 1990-04-25 Oxide superconductor and production thereof Pending JPH046147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109276A JPH046147A (en) 1990-04-25 1990-04-25 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109276A JPH046147A (en) 1990-04-25 1990-04-25 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH046147A true JPH046147A (en) 1992-01-10

Family

ID=14506065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109276A Pending JPH046147A (en) 1990-04-25 1990-04-25 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH046147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510587A (en) * 1999-09-24 2003-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Capacitive sensing array device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510587A (en) * 1999-09-24 2003-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Capacitive sensing array device

Similar Documents

Publication Publication Date Title
JPH046147A (en) Oxide superconductor and production thereof
JPH0477315A (en) Oxide superconductor and its production
JPH0416516A (en) Oxide superconductor and its production
JPH0421561A (en) Oxide superconductor and production thereof
JPH0465342A (en) Superconductor and its production
JPH0442815A (en) Oxide superconductor and its production
JPH046145A (en) Superconductor and production thereof
JPH0477316A (en) Oxide superconductor and its production
JPH04193718A (en) Oxide superconductor and its production
JP2854338B2 (en) Copper oxide superconductor
JPH0597440A (en) Oxide superconductor and its production
JPH0570149A (en) Oxide superconductor and its production
JPH0570138A (en) Oxide superconductor and its production
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH0543245A (en) Oxide superconductor and production thereof
JPH04124032A (en) Superconductor and its synthesis
JPH0570135A (en) Oxide superconductor and its production
JP2596021B2 (en) Manufacturing method of superconducting material
JPH0570133A (en) Oxide superconductor and its production
JPH02223111A (en) Oxide superconducting tape-shaped wire rod
JPH0570139A (en) Oxide superconductor and its production
JPH01212225A (en) Oxide superconducting material
JPH0558639A (en) Oxide superconductor and its production
JPH04104942A (en) Oxide superconductor and production thereof
JPH02208225A (en) Oxide superconductor