JPH04104942A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH04104942A
JPH04104942A JP2221698A JP22169890A JPH04104942A JP H04104942 A JPH04104942 A JP H04104942A JP 2221698 A JP2221698 A JP 2221698A JP 22169890 A JP22169890 A JP 22169890A JP H04104942 A JPH04104942 A JP H04104942A
Authority
JP
Japan
Prior art keywords
composition
superconductor
oxide superconductor
powder
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2221698A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
下田 修一郎
Shozo Yamana
章三 山名
Keiji Sumiya
圭二 住谷
Minoru Ishihara
稔 石原
Hideji Kuwajima
秀次 桑島
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2221698A priority Critical patent/JPH04104942A/en
Publication of JPH04104942A publication Critical patent/JPH04104942A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the subject superconductor improved in magnetic field dependency by mixing the respective raw materials of Tl, Ba, Sr, Ca, Cu, Ag and pt so as to form a composition containing the Ag and Pt and represented by a specific formula, and firing the composition. CONSTITUTION:The respective powdery raw materials of Ba, Sr, Ca and Cu are weighed in prescribed amounts, mixed with each other, preliminarily fired and ground. The ground product is mixed with a prescribed amount of the raw material powder of Tl and ground to prepare a composition force superconductors. The composition is press-molded and fired in a lidded ceramic container to form a material for oxide superconductors. The material is ground, homogeneously mixed with prescribed amounts of Ar powder and Pt powder, press-molded and fired at 800 to 900 deg.C to provide an oxide superconductor containing 1-25wt.% of Ag and 0.1-5wt.% of Pt, having a composition represented by the formula [A=1.2 to 1.9; B<=1; (A+B)<=2.2; C=1,8 to 2.4; the numbers are each an atomic ratio] and improved in the dependency of the superconductive characteristics on magnetic field.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and a method for manufacturing the same.

(従来の技術) Tj−Ba−8r−Ca−Cu−0系(Dll化物st
a体は、一般にタリウム(T7)、バリウム(Ba)、
ストロンチウム(Sr)、カルシウム(Ca)、銅(C
u)叫を含む出発原料を同時に混合するか、又はBa−
8r−Ca−Cu−0,Ba−8r−Cu−0,Ca−
0゜Cu−0等の化合物とT/化合物とを混合して超電
導体用原料とし、これを成形、焼成することにより得る
ことができる。
(Prior art) Tj-Ba-8r-Ca-Cu-0 system (Dll compound st
The a-forms are generally thallium (T7), barium (Ba),
Strontium (Sr), Calcium (Ca), Copper (C
u) Simultaneously mixing the starting materials containing Ba-
8r-Ca-Cu-0, Ba-8r-Cu-0, Ca-
It can be obtained by mixing a compound such as 0°Cu-0 and a T/compound to prepare a raw material for a superconductor, and then molding and firing this.

Tl−Ba−8r−Ca−Cu−0系OS化物超電導体
は、120に程度の高い臨界温度(以下Tc  とする
)を有する材料であることが知られている。
The Tl-Ba-8r-Ca-Cu-0 based OS compound superconductor is known to be a material having a high critical temperature (hereinafter referred to as Tc) of about 120°C.

(発明が解決しようとする課題) しかしながら、上記の方法で製造されたTI!−Ba−
8r−Ca−Cu−0系の酸化物超電導体(以下TI!
系超電導体とする)は空隙が多く、高密度のものが得ら
れにくい。このため結晶粒子同士のつながりが悪<、T
c  や臨界電流密度(以下Jcとする)等の超電導特
性が低下し、また機械的強度なども低下する。
(Problem to be Solved by the Invention) However, the TI produced by the above method! -Ba-
8r-Ca-Cu-0 based oxide superconductor (hereinafter referred to as TI!
superconductors) have many voids and are difficult to obtain with high density. For this reason, the connections between crystal grains are poor <,T
Superconducting properties such as c and critical current density (hereinafter referred to as Jc) are reduced, and mechanical strength and the like are also reduced.

上記の欠点を改善する方法として、熱処理工程の他に、
圧延加工、粉砕、プレス成形等の工程を導入し、これら
の工程を組み合わせ、数回繰り返す方法が一般的に知ら
れている。この方法を用いれば、Tc  、J嬶の超電
導特性がある程度向上されるが、しかしこの方法では製
造工程が増え。
In addition to the heat treatment process, as a method to improve the above drawbacks,
A generally known method is to introduce processes such as rolling, crushing, and press forming, combine these processes, and repeat the process several times. If this method is used, the superconducting properties of Tc and J can be improved to some extent, but this method increases the number of manufacturing steps.

複雑であるという問題がおる。The problem is that it is complicated.

またTj化合物は蒸発しやすく、高価格である。Furthermore, Tj compounds easily evaporate and are expensive.

このためTEの蒸発を抑制することが重要であるが、熱
処理工程が増えるとTlの蒸発を抑制することが難しく
、T7の蒸発に伴う組成のずれが生じ易くなる。
Therefore, it is important to suppress the evaporation of TE, but as the number of heat treatment steps increases, it becomes difficult to suppress the evaporation of Tl, and a shift in composition due to the evaporation of T7 is likely to occur.

一般にTI!系超電導体はY−Ba−Cu−0系の酸化
物超電導体に比べて磁場の印加によってJcが低下しや
すいと言われておシ、磁気シールド材などへの応用を図
るには1以上のような問題点を改善し、磁束のビン止め
点を導入することが必須課題となっている。
Generally TI! It is said that the Jc of Y-Ba-Cu-0 based superconductors is more likely to decrease when a magnetic field is applied than Y-Ba-Cu-0 based oxide superconductors. It is essential to improve these problems and introduce a magnetic flux binding point.

本発明は+TC、Jc等が低下しないか、低下してもご
くわずかで、かつJcの磁場依存性を改善した酸化物超
電導体及びその製造方法を提供することを目的とするも
のである。
An object of the present invention is to provide an oxide superconductor in which +TC, Jc, etc. do not decrease or decrease only slightly, and the magnetic field dependence of Jc is improved, and a method for manufacturing the same.

(l!題を解決するための手段) 不発明者らは上記の欠点について種々検討した結果、従
来のT/系超超電導体中銀及び白金を含有させたところ
+ TCHJC等の向上、磁場特性などの改善に有効で
あることを見い出し不発明を完成するに散った。
(l!Means for solving the problem) As a result of various studies on the above-mentioned drawbacks, the inventors discovered that by adding silver and platinum to the conventional T/based superconductor, improvements in TCHJC, etc., magnetic field properties, etc. It was discovered that it was effective in improving the invention, and it was scattered to complete the invention.

本発明は銀′t−1〜25重量%及び白金を0.1〜5
重量%含み、かつ一般式T11.4−2BaAS rB
caOcu7B−3,60x(但しA = 1.2〜L
、 9 、 B≦1.(A十B)≦Z2.C=1.8〜
2..4.数字Fi原子比を表わす)で示される組成か
らなる酸化物超電導体並びに上記の組成となるよう銀及
び白金とタリウム、バリウム、ストロンチウム、カルシ
ウム及びat含む各原料を秤量し、ついで混合した後、
焼成する酸化物超電導体の製造方法に関する。
The present invention contains 1 to 25% by weight of silver and 0.1 to 5% by weight of platinum.
% by weight, and general formula T11.4-2BaAS rB
caOcu7B-3,60x (A = 1.2~L
, 9, B≦1. (A1B)≦Z2. C=1.8~
2. .. 4. After weighing the oxide superconductor having the composition shown by the number Fi (representing the atomic ratio) and the raw materials including silver, platinum, thallium, barium, strontium, calcium, and at to have the above composition, and then mixing them,
The present invention relates to a method for producing an oxide superconductor to be fired.

本発明において酸化物超電導体を構成する主成分のタリ
ウム、バリウム、ストロンチウム、カルシウム及び銅を
含む原料(出発原料)については特に制限はないが9例
えばこれらの酸化物、炭酸塩、硝酸塩、蓚酸塩等の1種
又は2種以上が用いられる。
In the present invention, the raw materials (starting raw materials) containing thallium, barium, strontium, calcium, and copper, which are the main components constituting the oxide superconductor, are not particularly limited; One or more of the following may be used.

一般式T/1;、、−2Ba*5rnCaoCul@〜
3,60xにおいて。
General formula T/1;,, -2Ba*5rnCaoCul@~
At 3,60x.

タリウムは原子比で1.4〜2の範囲とされ、この範囲
から外れるとTc  が120に以上の高温和(TI!
zBazcatcuscho相、2223相)の生成量
が低下する。
Thallium has an atomic ratio in the range of 1.4 to 2, and if it is outside this range, the Tc is high (TI!) of 120 or more.
zBazcatcuscho phase, 2223 phase) production amount decreases.

バリウム(5)は原子比で1.2〜1.9の範囲とされ
Barium (5) has an atomic ratio in the range of 1.2 to 1.9.

この範囲から外れると超電導体相以外の結晶相が生成し
易く、超電導体の含有率が低下する。
If it deviates from this range, crystal phases other than the superconductor phase are likely to be formed, and the superconductor content decreases.

ストロンチウム(Blは原子比で1以下とされ、1奢越
えるとTc  が大きく低下する。
Strontium (Bl) is kept at an atomic ratio of 1 or less, and if it exceeds 1, Tc will drop significantly.

カルシウムTC)は原子比で1.8〜2.4の範囲とさ
れ、1.8未満であると高温相の生成量が低下し。
Calcium TC) has an atomic ratio in the range of 1.8 to 2.4, and if it is less than 1.8, the amount of high temperature phase produced decreases.

z4を越えると超電導体相以外の結晶相が生成し易くな
シ超電導体の含有率が低下する。
If z4 is exceeded, crystal phases other than the superconductor phase are likely to be formed, and the superconductor content decreases.

鋼は原子比で28〜3.6の範囲とされ28未満である
と、高温相の生成量が低下し、3.6を越えると超電導
体の含有率が低下する。
Steel has an atomic ratio in the range of 28 to 3.6, and if it is less than 28, the amount of high temperature phase produced decreases, and if it exceeds 3.6, the superconductor content decreases.

銀は、lt化物超電導体中に1〜25重量−の範囲で含
有されることが必要とされ、1重量係未満であると結晶
粒子間のつながりを改善する効果や機械的強度などを向
上させる効果が小さくなり。
Silver is required to be contained in the LT-ride superconductor in an amount of 1 to 25% by weight, and if it is less than 1% by weight, it improves the effect of improving connections between crystal grains and improves mechanical strength. effect becomes smaller.

25重量%を越えると超電導体の含有率が低下する。If it exceeds 25% by weight, the superconductor content decreases.

白金は、酸化物超電導体中に0.1〜5重量−の範囲で
含有されることが必要とされ、0.1重量%未満である
と白金による磁場特性の改善効果が少なく、5重量%を
越えると高価になるという欠点が生じる。
Platinum is required to be contained in the oxide superconductor in an amount of 0.1 to 5% by weight, and if it is less than 0.1% by weight, platinum has little effect on improving magnetic field characteristics, If the value exceeds 1, the disadvantage is that it becomes expensive.

なお銀としては、銀粉末の他、酸化銀、塩化銀。In addition to silver powder, silver oxide and silver chloride can be used as silver.

硝酸銀等が用いられ、焼成後鍋単体になる物質であれば
特に制限はない。
There is no particular restriction as long as silver nitrate or the like is used and the material becomes a single pot after firing.

また白金としては、白金粉末の他、酸化白金などが用い
られ、焼成後白金単体になる物質であれば特に制限はな
い。
In addition to platinum powder, platinum oxide or the like may be used as the platinum, and there is no particular restriction as long as it becomes a simple platinum substance after firing.

銀及び白金の添加法については特に制限はないが9例え
ば酸化物超電導体用材料の粉末と共にボールミル、らい
かい機(自動混練機)、乳鉢等を用いて乾式又は湿式で
混合、均一化する方法、酸化物超電導体用材料に銀及び
白金の水溶液を添加後、これを均一加熱する方法などが
ある。
There are no particular restrictions on the method of adding silver and platinum, but for example, a method of mixing and homogenizing silver and platinum with powder of an oxide superconductor material in a dry or wet method using a ball mill, miller (automatic kneader), mortar, etc. There is a method in which an aqueous solution of silver and platinum is added to an oxide superconductor material and then uniformly heated.

混合方法についても特に制限はなく9例えば。There are no particular restrictions on the mixing method, and examples include 9.

らいかい機で乾式混合する方法9合成樹脂製のボールミ
ル内に合成樹脂で被種したボールそれにエタノール、メ
タノール等の溶媒及び原料を充填し。
Method 9: Dry mixing in a molding machine 9 Fill balls coated with synthetic resin with solvents such as ethanol, methanol, etc. and raw materials in a synthetic resin ball mill.

湿式混合することが好ましい。Wet mixing is preferred.

焼成は缶閉容器内で焼成することが好ましい。The firing is preferably performed in a closed can container.

密閉容器としては、アルミナ、マグネシア等のセラミッ
クス製の容器を用いることが好ましい。
As the closed container, it is preferable to use a container made of ceramics such as alumina or magnesia.

焼成温度は各原料の配合割合などによシ適宜選定きれる
が、800〜900℃の範囲で焼成することが好ましく
、また焼成雰囲気は、大気中、空気気流中、″または低
酸素圧雰囲気中(a素の含有量が1〜20体積チ好まし
くは2〜20体積チの範囲)で焼成することが好ましい
The firing temperature can be selected as appropriate depending on the blending ratio of each raw material, but it is preferable to perform firing in the range of 800 to 900°C, and the firing atmosphere can be in the atmosphere, in an air stream, or in a low oxygen pressure atmosphere ( It is preferable to carry out the firing in such a manner that the content of element a is in the range of 1 to 20 volume units, preferably 2 to 20 volume units.

本発明の組成においてOf素)の量は、 CuO量及び
Cuの酸化状態によって定まる。しかし酸化状態がどの
ようになっているかを厳πにそして精度よく測定するこ
とができず2本発明においてはXで表わした。
In the composition of the present invention, the amount of Of element is determined by the amount of CuO and the oxidation state of Cu. However, it was not possible to precisely and precisely measure the oxidation state of the oxidation state, so in the present invention, it was expressed as X.

(実施例) 以下9本発明の詳細な説明する。(Example) Hereinafter, nine aspects of the present invention will be described in detail.

実施例1 バリウム、ストロンチウム、カルシウム及び銅の比率が
原子比で第1表に示す組成になるようにBadf高純度
高純度化学研究所産99チ以上)。
Example 1 Badf high-purity (high-purity chemical research laboratory produced 99% or higher) so that the ratio of barium, strontium, calcium, and copper becomes the composition shown in Table 1 in terms of atomic ratio.

8rO(高純度化学研究所製、純度99%以上)。8rO (manufactured by Kojundo Kagaku Kenkyusho, purity 99% or more).

Cab(高純度化学研究新製、純度99.9%)及びC
uO(高純度化学研究新製、純度99,9チ)を秤量し
、出発原料とした。
Cab (Kojundo Kagaku Kenkyushin, purity 99.9%) and C
uO (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) was weighed and used as a starting material.

この後、上記の出発原料をらいかい機を用いて30分間
、混合した。得られた混合粉を電気炉を用いて大気中で
900℃で10時間予備焼成し。
Thereafter, the above starting materials were mixed for 30 minutes using a strainer. The obtained mixed powder was preliminarily calcined at 900° C. for 10 hours in the air using an electric furnace.

ついてらいかい機を用いて30分間粉砕した。The mixture was ground for 30 minutes using a grinder.

次にTh1s (高純度化学研究新製、純度99,9チ
)を第1表に示す組成になるように秤量し又上記の粉砕
物中に添加し、乳鉢で均一に混合、粉砕して酸化物超電
導体用組成物を得た。
Next, Th1s (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) was weighed to have the composition shown in Table 1, added to the above pulverized material, mixed uniformly in a mortar, pulverized, and oxidized. A composition for a physical superconductor was obtained.

得られた酸化物超電導体用組成物を金型プレスで100
MPaの圧力で成形して厚さ21!Illの成形体を得
た。ついで、この成形体をふた付きのアルミナ容器中で
870℃で3時間焼成して酸化物超電導体用材料を得た
The obtained composition for oxide superconductor was pressed with a mold press to 100%
Molded with a pressure of MPa and has a thickness of 21! A molded body of Ill was obtained. Next, this molded body was fired at 870° C. for 3 hours in an alumina container with a lid to obtain a material for an oxide superconductor.

得られた酸化物超電導体用材料を乳鉢で粉末状に粉砕し
た後、銀粉(徳力本店製、純度99.9チ)及び白金粉
(徳力本店製、純度99.9チ)を第1表に示す組成に
なるように秤量して上記の粉砕粉中に添加し、乳鉢で均
一に混合した。
After grinding the obtained oxide superconductor material into powder in a mortar, silver powder (manufactured by Tokuriki Honten, purity 99.9chi) and platinum powder (manufactured by Tokuriki Honten, purity 99.9chi) were added as shown in Table 1. It was weighed so as to have the composition shown, added to the above-mentioned pulverized powder, and mixed uniformly in a mortar.

得られた粉末を金型プレスで150 MPaの圧力で直
径30m、厚さ1mのベレットに成形後、大気中で87
0℃で5時間焼成して酸化物超電導体を得た。
The obtained powder was molded into a pellet with a diameter of 30 m and a thickness of 1 m using a die press at a pressure of 150 MPa, and then molded into a pellet with a diameter of 30 m and a thickness of 1 m.
An oxide superconductor was obtained by firing at 0° C. for 5 hours.

次に上記で得た酸化物超電導体を長さ20mnX幅1m
X厚さ1閣の直方体に加工し、四端子法で電気抵抗の温
度変化を測定し+TCを求めた。
Next, the oxide superconductor obtained above is 20 m long x 1 m wide.
It was processed into a rectangular parallelepiped with a thickness of 1 cm, and the temperature change in electrical resistance was measured using the four-terminal method to determine +TC.

また上記と同様の試料を用いて液体窒素温度(77K)
でJCOを測定すると共に液体音素温度、0.1テスラ
の磁場中でJCo、1を測定した。これらの結果及びJ
co、1とJc(、との比を第1表に示す。
Also, using the same sample as above, liquid nitrogen temperature (77K)
At the same time, the liquid phoneme temperature and JCo, 1 were measured in a magnetic field of 0.1 Tesla. These results and J
Table 1 shows the ratio between co,1 and Jc(,).

第1表から本発明になる酸化物超電導体は、賦香13の
従来の酸化物超電導体を基準としてT:erOの低下が
少なく、またJcが低下ぜす、かつ磁場の印加によるJ
cの低下が小さいことが示される。
From Table 1, the oxide superconductor of the present invention has a small decrease in T:erO and a decrease in Jc when compared with the conventional oxide superconductor of Fragrance 13, and J
It is shown that the decrease in c is small.

(発明の効果) 本発明になる酸化物超電導体は+ TC+ Jc等が低
下せず、低下してもごくわずかであり、また磁場の印加
によるJcの低下も小ざく、工業的に極めて好適な酸化
物超電導体である。
(Effects of the Invention) The oxide superconductor of the present invention does not have a decrease in + TC + Jc, etc., and even if it does, the decrease in Jc is small, and it is extremely suitable for industrial use. It is an oxide superconductor.

Claims (2)

【特許請求の範囲】[Claims] 1.銀を1〜25重量%及び白金を0.1〜5重量%含
み,かつ一般式Tl_1_._4_〜_2Ba_ASr
_BCa_CCu_2_._8_〜_3_._6O_X
(但しA=1.2〜1.9,B≦1,(A+B)≦2.
2,C=1.8〜2.4,数字は原子比を表わす)で示
される組成からなる酸化物超電導体。
1. It contains 1 to 25% by weight of silver and 0.1 to 5% by weight of platinum, and has the general formula Tl_1_. _4_〜_2Ba_ASr
_BCa_CCu_2_. _8_~_3_. _6O_X
(However, A=1.2-1.9, B≦1, (A+B)≦2.
2, C=1.8 to 2.4, numbers represent atomic ratios).
2.請求項1記載の組成となるように銀及び白金とタリ
ウム,バリウム,ストロンチウム,カルシウム及び銅を
含む各原料を秤量し,ついで混合した後焼成することを
特徴とする酸化物超電導体の製造方法。
2. A method for producing an oxide superconductor, which comprises weighing each raw material containing silver, platinum, thallium, barium, strontium, calcium, and copper so as to have the composition according to claim 1, and then mixing and firing.
JP2221698A 1990-08-23 1990-08-23 Oxide superconductor and production thereof Pending JPH04104942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221698A JPH04104942A (en) 1990-08-23 1990-08-23 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221698A JPH04104942A (en) 1990-08-23 1990-08-23 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH04104942A true JPH04104942A (en) 1992-04-07

Family

ID=16770877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221698A Pending JPH04104942A (en) 1990-08-23 1990-08-23 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH04104942A (en)

Similar Documents

Publication Publication Date Title
JPH04104942A (en) Oxide superconductor and production thereof
EP0371453A2 (en) Bismuth system oxide superconductors and preparation thereof
JPH04104941A (en) Oxide superconductor and production thereof
JPH04104943A (en) Oxide superconductor and production thereof
JPH0492852A (en) Oxide superconductor and production thereof
JPH04104940A (en) Oxide superconductor and production thereof
JPH03242322A (en) Production of oxide superconductor
JPH0477315A (en) Oxide superconductor and its production
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH0492853A (en) Oxide superconductor and production thereof
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
JPH04144916A (en) Oxide superconductor and its production
JP2854338B2 (en) Copper oxide superconductor
JPH0421561A (en) Oxide superconductor and production thereof
JPH0465342A (en) Superconductor and its production
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH09508344A (en) Superconducting material and method of manufacturing superconducting material
JPH0292826A (en) Oxide superconductor
JPH046147A (en) Oxide superconductor and production thereof
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
JPH0375261A (en) Oxide superconductor and production thereof
JPH0416516A (en) Oxide superconductor and its production
JPH0477316A (en) Oxide superconductor and its production
JPH02248321A (en) Oxide superconductor
JPH0543233A (en) Oxide superconductor and production thereof