JPH0543233A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH0543233A
JPH0543233A JP3200942A JP20094291A JPH0543233A JP H0543233 A JPH0543233 A JP H0543233A JP 3200942 A JP3200942 A JP 3200942A JP 20094291 A JP20094291 A JP 20094291A JP H0543233 A JPH0543233 A JP H0543233A
Authority
JP
Japan
Prior art keywords
oxide superconductor
superconductor
magnetic field
present
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3200942A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
修一郎 下田
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3200942A priority Critical patent/JPH0543233A/en
Publication of JPH0543233A publication Critical patent/JPH0543233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an oxide superconductor which undergoes very slight or the no lowering of the Tc, Jc, etc., and undergoes slight lowering of the Jc when a magnetic field is applied. CONSTITUTION:Starting materials contg. Tl, Ba, Ca, Cu and Mg are weighed so as to obtain a compsn. represented by a general formula Tl1.4-2 BaACABCU2.8-3.6MG0.05-2Ox (where 1.6<=A<=2.3, 1.8<=B<=2.6, 0.9<=B/A<=1.62 and the numbers show atomic ratio). They are mixed and fired to produce an oxide superconductor having the above-mentioned compsn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導体及びその
製造法に関する。
TECHNICAL FIELD The present invention relates to an oxide superconductor and a method for producing the same.

【0002】[0002]

【従来の技術】Tl−Ba−Ca−Cu−O系の酸化物
超電導体は、一般にタリウム(Tl)、バリウム(B
a)、カルシウム(Ca)、銅(Cu)等を含む出発原
料を同時に混合するか又はBa−Ca−Cu−O、Ba
−Cu−O、Ca−O、Cu−O等の化合物とTl化合
物とを混合して超電導体用原料とし、これを成形、焼成
することにより得ることができる。Tl−Ba−Ca−
Cu−O系の酸化物超電導体は、120K以上の高い臨
界温度(以下Tcとする)を有する材料であることが知
られている。
2. Description of the Related Art Tl-Ba-Ca-Cu-O-based oxide superconductors are generally thallium (Tl) and barium (B).
a), calcium (Ca), copper (Cu), and other starting materials are mixed at the same time, or Ba-Ca-Cu-O, Ba
It can be obtained by mixing a compound such as —Cu—O, Ca—O or Cu—O and a Tl compound as a raw material for a superconductor, and molding and firing this. Tl-Ba-Ca-
It is known that a Cu-O-based oxide superconductor is a material having a high critical temperature (hereinafter referred to as Tc) of 120K or higher.

【0003】[0003]

【発明が解決しようとする課題】一般にTl−Ba−C
a−Cu−O系の超電導体はY−Ba−Cu−O系の酸
化物超電導体に比べて磁場の印加によってJcが低下し
やすいと言われており、磁気シールドなどへの応用を図
るには、上記のような問題点を改善し、磁束のピン止め
点を導入することが必須課題となっている。
Generally, Tl-Ba-C is used.
It is said that Jc of an a-Cu-O-based superconductor is more likely to be lowered by application of a magnetic field than that of an Y-Ba-Cu-O-based oxide superconductor. It is essential to improve the above problems and introduce pinning points for magnetic flux.

【0004】本発明は、Tc、Jc等が低下せず、低下
してもごくわずかで、かつJcの磁場依存性を改善した
酸化物超電導体及びその製造法を提供することを目的と
するものである。
It is an object of the present invention to provide an oxide superconductor and a method for producing the same, in which Tc, Jc, etc. are not lowered, are slight even if they are lowered, and improve the magnetic field dependence of Jc. Is.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の欠点
について種々検討した結果、従来のTl−Ba−Ca−
Cu−O系の酸化物超電導体中にマグネシアを添加した
ところ、Jcの磁場特性の改善に有効であることを見出
し本発明を完成するに至った。
As a result of various studies on the above-mentioned drawbacks, the present inventors have found that the conventional Tl-Ba-Ca-
When magnesia was added to a Cu—O-based oxide superconductor, the inventors found that it was effective in improving the magnetic field characteristics of Jc, and completed the present invention.

【0006】本発明は一般式Tl1.4〜2BaACaBCu
2.8〜3.6Mg0.05〜2X(ただし、A=1.6〜2.
3、B=1.8〜2.6、0.9≦B/A≦1.62
5、数字は原子比を表わす)で示される組成からなる酸
化物超電導体並びに上記の組成となるように、タリウ
ム、バリウム、カルシウム、銅及びマグネシウムを含む
各原料を秤量し、ついで混合した後焼成する酸化物超電
導体の製造法に関する。
The present invention has the general formula Tl 1.4-2 Ba A Ca B Cu.
2.8-3.6 Mg 0.05-2 O x (where A = 1.6-2.
3, B = 1.8 to 2.6, 0.9 ≦ B / A ≦ 1.62
5, numbers represent atomic ratios) and oxide superconductors having a composition shown by the formula (1), and each raw material containing thallium, barium, calcium, copper and magnesium is weighed so as to have the above composition, and then mixed and baked. The present invention relates to a method for producing an oxide superconductor.

【0007】本発明において酸化物超電導体を構成する
主成分のタリウム、バリウム、カルシウム、銅及びマグ
ネシウムを含む原料(出発原料)については特に制限は
ないが、例えばこれらの酸化物、炭酸塩、硝酸塩、蓚酸
塩等の1種又は2種以上が用いられる。
In the present invention, the raw material (starting raw material) containing thallium, barium, calcium, copper and magnesium, which are the main components of the oxide superconductor, is not particularly limited. For example, these oxides, carbonates and nitrates can be used. One or more of oxalate and the like are used.

【0008】一般式Tl1.4〜2BaACaBCu2.8〜3.6
Mg0.05〜2Xにおいて、タリウムは原子比で1.4〜
2の範囲とされ、この範囲から外れるとTcが120K
以上の高温相(Tl2Ba2Ca2Cu310相、2223
相)の生成量が低下する。
General formula Tl 1.4-2 Ba A Ca B Cu 2.8-3.6
In mg 0.05 to 2 O X, thallium 1.4 in atomic ratio
It is set to the range of 2, and when it deviates from this range, Tc is 120K
The above high temperature phase (Tl 2 Ba 2 Ca 2 Cu 3 O 10 phase, 2223
The amount of phase) produced is reduced.

【0009】バリウム(A)は原子比で1.6〜2.3
の範囲とされ、この範囲から外れると超電導体相以外の
結晶相が生成し易く、超電導体の含有率が低下する。
Barium (A) has an atomic ratio of 1.6 to 2.3.
If it deviates from this range, a crystal phase other than the superconductor phase is likely to be generated, and the content rate of the superconductor is lowered.

【0010】カルシウム(B)は原子比で1.8〜2.
6の範囲とされ、1.8未満であると高温相の生成量が
低下し、2.4を越えると超電導体相以外の結晶相が生
成し易くなり超電導体の含有率が低下する。
Calcium (B) has an atomic ratio of 1.8-2.
When it is within the range of 6, the amount of the high temperature phase produced is reduced when it is less than 1.8, and when it exceeds 2.4, the crystal phase other than the superconductor phase is easily produced and the content rate of the superconductor is reduced.

【0011】銅は原子比で2.8〜3.6の範囲とさ
れ、2.8未満であると、高温相の生成量が低下し、
3.6を越えると超電導体の含有率が低下する。
The atomic ratio of copper is in the range of 2.8 to 3.6, and if it is less than 2.8, the amount of high-temperature phase produced decreases,
If it exceeds 3.6, the content rate of the superconductor decreases.

【0012】マグネシウムは原子比で0.05〜2の範
囲とされ、0.05未満であると、Jcの磁場特性の改
善効果が小さく、2を越えるとTcが大きく低下する。
[0012] Magnesium has an atomic ratio in the range of 0.05 to 2. When it is less than 0.05, the effect of improving the magnetic field characteristics of Jc is small, and when it exceeds 2, Tc is greatly reduced.

【0013】マグネシウムの添加法については特に制限
はないが、例えばバリウム、ストロンチウム、カルシウ
ム及び銅を含む出発原料と共にマグネシウムを含む原料
を、ボールミル、らいかい機(自動混練機)、乳鉢等を
用いて湿式又は乾式で混合、均一化する方法などがあ
る。
The method of adding magnesium is not particularly limited, but for example, a starting material containing barium, strontium, calcium and copper together with a material containing magnesium can be used in a ball mill, a raker machine (automatic kneader), a mortar or the like. There are methods such as wet or dry mixing and homogenizing.

【0014】混合方法についても特に制限はなく、例え
ばらいかい機で乾式混合する方法、合成樹脂製のボール
ミル内に合成樹脂で被覆したボールそれにエタノール、
メタノール等の溶媒及び原料を充てんし、湿式混合する
ことが好ましい。
The mixing method is also not particularly limited, for example, a method of dry mixing with a raker machine, a ball coated with a synthetic resin in a ball mill made of a synthetic resin, and ethanol,
It is preferable to fill a solvent such as methanol and raw materials and wet mix.

【0015】焼成は密閉容器内で焼成することが好まし
い。密閉容器としては、アルミナ、マグネシア等のセラ
ミックス製の容器を用いることが好ましい。
The firing is preferably performed in a closed container. As the closed container, it is preferable to use a container made of ceramics such as alumina or magnesia.

【0016】焼成温度は各原料の配合割合などにより適
宜選択されるが、750〜1000℃の範囲で焼成する
ことが好ましく、また焼成雰囲気については特に制限は
なく、酸素雰囲気中、大気中、空気気流中または低酸素
圧雰囲気中(酸素の含有量が1〜20体積%好ましくは
2〜20体積%の範囲)で焼成が可能である。
The firing temperature is appropriately selected depending on the mixing ratio of each raw material and the like, but it is preferable to perform firing in the range of 750 to 1000 ° C., and the firing atmosphere is not particularly limited, and may be in an oxygen atmosphere, air, or air. Firing is possible in an air stream or in an atmosphere of low oxygen pressure (oxygen content is in the range of 1 to 20% by volume, preferably 2 to 20% by volume).

【0017】本発明の組成においてO(酸素)の量は、
Cuの量及びCuの酸化状態によって定まる。しかし酸
化状態がどのようになっているかを厳密にそして精度よ
く測定することができず本発明においてはXで表わし
た。
In the composition of the present invention, the amount of O (oxygen) is
It depends on the amount of Cu and the oxidation state of Cu. However, it is not possible to measure exactly how the oxidation state is, so that it is represented by X in the present invention.

【0018】[0018]

【実施例】以下本発明の実施例を説明する。 実施例1 バリウム、カルシウム及びマグネシウムの比率が原子比
で表1に示す組成になるようにBaO(高純度化学研究
所製、純度99%以上)、CaO(高純度化学研究所
製、純度99.9%)、CuO(高純度化学研究所製、
純度99.9%)及びMgO(高純度化学研究所製、純
度99.9%)を秤量して出発原料とした。
EXAMPLES Examples of the present invention will be described below. Example 1 BaO (manufactured by Kojundo Chemical Laboratory, purity 99% or more), CaO (manufactured by Kojundo Chemical Laboratory, purity 99.) so that the ratios of barium, calcium and magnesium in atomic ratio are as shown in Table 1. 9%), CuO (manufactured by Kojundo Chemical Laboratory,
Purity 99.9%) and MgO (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) were weighed and used as starting materials.

【0019】この後、上記の出発原料をらいかい機を用
いて30分間、混合した。得られた混合粉を電気炉を用
いて大気中で900℃で10時間予備焼成し、ついでら
いかい機を用いて30分間粉砕した。
After that, the above starting materials were mixed for 30 minutes by using a raker. The obtained mixed powder was pre-baked at 900 ° C. for 10 hours in the air using an electric furnace, and then pulverized for 30 minutes using a raider machine.

【0020】次にこの予備焼成粉を1300℃で再焼成
し、ついで乳鉢で粗粉砕後、らいかい機で30分間粉砕
し、さらにTl23(高純度化学研究所製、純度99.
9%)を表1に示す組成になるように秤量して上記の粉
砕物中に添加し、乳鉢で均一に混合、粉砕して酸化物超
電導体用組成物を得た。
Next, the preliminary fired powder was re-fired at 1300 ° C., then coarsely crushed in a mortar and then crushed for 30 minutes by a raker machine, and further, Tl 2 O 3 (manufactured by Kojundo Chemical Laboratory, purity 99.
9%) was weighed so as to have the composition shown in Table 1 and added to the above pulverized product, and uniformly mixed and pulverized in a mortar to obtain a composition for oxide superconductor.

【0021】得られた酸化物超電導体用組成物を金型プ
レスで100MPaの圧力で成形して厚さ2mmの成形
体を得た。ついでこの成形体をふた付きのアルミナ容器
中で870℃で10時間焼成して酸化物超電導体を得
た。
The resulting composition for oxide superconductor was molded with a die press at a pressure of 100 MPa to obtain a molded body having a thickness of 2 mm. Then, this molded body was baked at 870 ° C. for 10 hours in an alumina container with a lid to obtain an oxide superconductor.

【0022】次に上記で得た酸化物超電導体を長さ20
mm×幅1mm×厚さ1mmの直方体に加工し、四端子
法で電気抵抗の温度変化を測定し、Tcを求めた。また
上記と同様の試料を用いて液体ヘリウム温度(4.2
K)でJc0を測定すると共に液体ヘリウム温度、10
テスラの磁場中でJc10を測定した。これらの結果及び
Jc10とJc0との比を表1に示す。
Next, the oxide superconductor obtained above was made to have a length of 20.
A rectangular parallelepiped having a size of mm × width 1 mm × thickness 1 mm was processed, and a temperature change of electric resistance was measured by a four-terminal method to obtain Tc. Also, using a sample similar to the above, the liquid helium temperature (4.2
K) was used to measure Jc 0 and the liquid helium temperature was set to 10
Jc 10 was measured in a Tesla magnetic field. The results and the ratio of Jc 10 to Jc 0 are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から本発明になる酸化物超電導体は、
試番1の従来の酸化物超電導体を基準としてTcの低下
が少なく、またJcが低下せず、かつ磁場の印加による
Jcの低下が小さいことが示される。
From Table 1, the oxide superconductor according to the present invention is
It is shown that the decrease in Tc is small with respect to the conventional oxide superconductor of trial number 1, the Jc does not decrease, and the decrease in Jc due to the application of the magnetic field is small.

【0025】[0025]

【発明の効果】本発明になる超電導体は、Tc、Jc等
が低下せず、低下してもごくわずかであり、また磁場の
印加によるJcの低下も小さく、工業的に極めて好適な
酸化物超電導体である。
INDUSTRIAL APPLICABILITY In the superconductor according to the present invention, Tc, Jc, etc. do not decrease, the decrease is negligible, and the decrease in Jc due to the application of a magnetic field is small. It is a superconductor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式Tl1.4〜2BaACaBCu
2.8〜3.6Mg0.05〜2X(ただし、A=1.6〜2.
3、B=1.8〜2.6、0.9≦B/A≦1.62
5、数字は原子比を表わす)で示される組成からなる酸
化物超電導体。
1. The general formula Tl 1.4 to 2 Ba A Ca B Cu
2.8-3.6 Mg 0.05-2 O x (where A = 1.6-2.
3, B = 1.8 to 2.6, 0.9 ≦ B / A ≦ 1.62
5, the numbers represent atomic ratios), which are oxide superconductors having a composition shown in FIG.
【請求項2】 請求項1記載の組成となるように、タリ
ウム、バリウム、カルシウム、銅及びマグネシウムを含
む各原料を秤量し、ついで混合した後焼成することを特
徴とする酸化物超電導体の製造法。
2. A method for producing an oxide superconductor, characterized in that raw materials containing thallium, barium, calcium, copper and magnesium are weighed so as to have the composition according to claim 1, then mixed and fired. Law.
JP3200942A 1991-08-09 1991-08-09 Oxide superconductor and production thereof Pending JPH0543233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200942A JPH0543233A (en) 1991-08-09 1991-08-09 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200942A JPH0543233A (en) 1991-08-09 1991-08-09 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH0543233A true JPH0543233A (en) 1993-02-23

Family

ID=16432862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200942A Pending JPH0543233A (en) 1991-08-09 1991-08-09 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH0543233A (en)

Similar Documents

Publication Publication Date Title
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH0543233A (en) Oxide superconductor and production thereof
JPH0543231A (en) Oxide superconductor and production thereof
JP2630397B2 (en) Superconductor manufacturing method
JPH0196055A (en) Superconductive ceramic composition
JPH05139741A (en) Oxide superconductor and production thereof
JP2637617B2 (en) Manufacturing method of superconducting material
JP2854338B2 (en) Copper oxide superconductor
JPH038754A (en) Oxide superconductor composition and production thereof
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPH05116949A (en) Oxide superconductor and production thereof
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JPH04104941A (en) Oxide superconductor and production thereof
JPH04104943A (en) Oxide superconductor and production thereof
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
JPH04104940A (en) Oxide superconductor and production thereof
JPH0274557A (en) Pottery device
JPH03103321A (en) Raw material for superconductor, production thereof and production of superconductor using same raw material
JPS63252925A (en) Production of superconductive material
JPH01160823A (en) Oxide based superconductor
JPH0570135A (en) Oxide superconductor and its production
JPH0570139A (en) Oxide superconductor and its production
JPH0570138A (en) Oxide superconductor and its production
JPH0492852A (en) Oxide superconductor and production thereof