JPH0570138A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH0570138A
JPH0570138A JP3234277A JP23427791A JPH0570138A JP H0570138 A JPH0570138 A JP H0570138A JP 3234277 A JP3234277 A JP 3234277A JP 23427791 A JP23427791 A JP 23427791A JP H0570138 A JPH0570138 A JP H0570138A
Authority
JP
Japan
Prior art keywords
oxide superconductor
powder
bismuth
mixed
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234277A
Other languages
Japanese (ja)
Inventor
Keiji Sumiya
圭二 住谷
秀次 ▲くわ▼島
Hideji Kuwashima
Shozo Yamana
章三 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3234277A priority Critical patent/JPH0570138A/en
Publication of JPH0570138A publication Critical patent/JPH0570138A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To suppress lowering of critical electric current density by the application of magnetic field. CONSTITUTION:Raw material powder of Bi2O3, SrCO3, CaCO3 and CuO, etc., is weighted and these components are mixed in moistened state using a ball mill, etc., and then dried to prepare mixed powder having prescribed weight ratio. Then Ru powder is blended so as to become 0.1-2wt.% based on total composition and ethyl acetate, etc., is added thereto and these components are mixed in moistened state and dried and then molded under pressure. The resultant molded article is heated to about 800-900 deg.C in atmosphere to provide the objective oxide superconductor reduced in lowering of critical temperature and hardly lowering critical electric current density by application of magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導体及びその
製造法に関する。
TECHNICAL FIELD The present invention relates to an oxide superconductor and a method for producing the same.

【0002】[0002]

【従来の技術】従来の酸化物超電導体としては、198
8年1月20日、金属材料技術研究所の前田総合研究官
らによって発見されたビスマス、ストロンチウム、カル
シウム及び銅を主成分とするBi−Sr−Ca−Cu−
O系の酸化物超電導体が一般に知られており、またこの
Bi−Sr−Ca−Cu−O系の酸化物超電導体の電気
抵抗が零になる臨界温度(以下TCとする)は110K
であり、タリウム、バリウム、カルシウム及び銅を主成
分とするTl−Ba−Ca−Cu−O系に次いで高いこ
とが知られている。
2. Description of the Related Art As a conventional oxide superconductor, 198
Bi-Sr-Ca-Cu- containing bismuth, strontium, calcium and copper as the main components, which was discovered by Dr. Maeda of the Research Institute for Metals, January 20, 8
O-based oxide superconductors are generally known, and the critical temperature (hereinafter referred to as T C ) at which the electric resistance of the Bi-Sr-Ca-Cu-O-based oxide superconductor becomes zero is 110K.
It is known that it is the second highest in the Tl-Ba-Ca-Cu-O system containing thallium, barium, calcium and copper as main components.

【0003】一方Bi−Sr−Ca−Cu−O系の酸化
物超電導体は、Tl−Ba−Ca−Cu−O系の酸化物
超電導体よりも毒性が弱いという特徴を有するが、結晶
相においてTCが110Kとなる2223相よりも、TC
が80Kの2212相又はTCが20Kの2201相が
生成し易いという欠点がある。
On the other hand, the Bi-Sr-Ca-Cu-O-based oxide superconductor has a characteristic that it is less toxic than the Tl-Ba-Ca-Cu-O-based oxide superconductor, but in the crystalline phase. T C 2223 than the phase composed is a 110K, T C
However, there is a drawback that a 2212 phase of 80K or a 2201 phase of T C of 20K is easily generated.

【0004】その後、ジャパニーズ・ジャーナル・オブ
・アプライド・フイジックス(Japanese Jo
urnal of Applied Physics)
Vol.27,6号(1988年6月刊)、L1041
〜L1043頁に示されるように、鉛を添加したBi−
Pb−Sr−Ca−Cu−O系の酸化物超電導体で22
23相が多く得られることが明らかになった。
Then, the Japanese Journal of Applied Physics
urn of of Applied Physics)
Vol. 27, 6 (June 1988), L1041
~ L1043, as shown on page 104
22 in Pb-Sr-Ca-Cu-O-based oxide superconductor
It became clear that many 23 phases were obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のB
i−Pb−Sr−Ca−Cu−O系の酸化物超電導体
(以下ビスマス系超電導体とする)は、2223相の他
に少量の2212相、Ca2PbO4等の異相が残留し易
く、2223相の含有量を多くするためには長時間の焼
成が必要である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the i-Pb-Sr-Ca-Cu-O-based oxide superconductor (hereinafter referred to as bismuth-based superconductor), a small amount of a different phase such as 2212 phase, Ca 2 PbO 4 and the like easily remain, In order to increase the content of the 2223 phase, long-time firing is necessary.

【0006】上記の異相のうち2212相は、TCが8
0K程度と低いが、容易に生成することができ、とりあ
えず液体窒素温度(77K)での応用は可能である。し
かし超電導体でないCa2PbO4が多量残留すると超電
導体の含有率が低下して臨界電流密度(以下Jcとす
る)の低下を引き起こす問題がある。
Of the different phases, 2212 phase has a T C of 8
Although it is as low as 0K, it can be easily produced and can be applied at liquid nitrogen temperature (77K) for the time being. However, if a large amount of Ca 2 PbO 4 that is not a superconductor remains, there is a problem that the content rate of the superconductor decreases and the critical current density (hereinafter referred to as Jc) decreases.

【0007】さらに磁場の印加によりJcが低下し易い
という問題があると共に焼結体の密度を高くすることが
困難であり、粒子同士のつながりの改善が強く求められ
ていた。
Further, there is a problem that Jc tends to be lowered by applying a magnetic field, and it is difficult to increase the density of the sintered body, and improvement of connection between particles has been strongly demanded.

【0008】本発明は上記のような問題のない酸化物超
電導体及びその製造法を提供することを目的とするもの
である。
An object of the present invention is to provide an oxide superconductor which does not have the above problems and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明はビスマス、スト
ロンチウム、カルシウム及び銅を主成分とした酸化物並
びに全組成物中にルテニウムを0.1〜2重量%含有し
てなる酸化物超電導体及びビスマス、ストロンチウム、
カルシウム及び銅の混合粉末に上記に示す量のルテニウ
ムを添加して均一に混合した後焼成する酸化物超電導体
の製造法に関する。
The present invention relates to an oxide containing bismuth, strontium, calcium and copper as a main component, and an oxide superconductor containing 0.1 to 2% by weight of ruthenium in the entire composition. Bismuth, strontium,
The present invention relates to a method for producing an oxide superconductor in which the above-mentioned amount of ruthenium is added to a mixed powder of calcium and copper, uniformly mixed, and then fired.

【0010】本発明においてビスマス、ストロンチウ
ム、カルシウム及び銅の配合割合については特に制限は
ないが、Bi:Sr:Ca:Cuが原子比で2:2:
1:2又は2:2:2:3であれば超電導体になり易い
ので好ましく、特に2:2:2:3の場合、ビスマス中
の10〜30モル%を鉛に置換すればTCの高い酸化物
超電導体が得られるので好ましい。また液体窒素温度以
下の温度で使用する場合、超電導体が2212相と22
23相との混合物であっても差し支えない。
In the present invention, the blending ratio of bismuth, strontium, calcium and copper is not particularly limited, but Bi: Sr: Ca: Cu is 2: 2: in atomic ratio.
If it is 1: 2 or 2: 2: 2: 3, it is easy to become a superconductor, and in particular, in the case of 2: 2: 2: 3, if 10 to 30 mol% of bismuth is replaced with lead, T C It is preferable because a high oxide superconductor can be obtained. When used at a temperature below the liquid nitrogen temperature, the superconductor has 2212 phases and 22
It may be a mixture with 23 phases.

【0011】ルテニウムの添加量は全組成物中に0.1
〜2重量%の範囲とされ、0.1重量%未満ではルテニ
ウムによる高Jc化、磁場特性の改善の効果が少なく、
2重量%を越えると高価になるという欠点が生じる。
The amount of ruthenium added is 0.1 in the total composition.
The range is up to 2% by weight, and if it is less than 0.1% by weight, the effect of increasing Jc by ruthenium and improving the magnetic field characteristics is small.
If it exceeds 2% by weight, there is a drawback that it becomes expensive.

【0012】酸化物超電導体を構成する原料のうちルテ
ニウムとしては、ルテニウム粉末の他、酸化ルテニウム
などが用いられ、焼成後ルテニウム単体になる物質であ
れば特に制限はない。
Ruthenium among the raw materials constituting the oxide superconductor includes ruthenium powder, ruthenium oxide and the like, and is not particularly limited as long as it is a substance which becomes ruthenium simple substance after firing.

【0013】上記に示す原料の他のビスマス、鉛、スト
ロンチウム、カルシウム及び銅を含む原料(出発原料)
について特に制限はないが、例えば、酸化物、炭酸塩、
シュウ酸塩、酢酸塩、硝酸塩、金属アルコキシド等の1
種又は2種以上が用いられる。
In addition to the above raw materials, raw materials containing bismuth, lead, strontium, calcium and copper (starting raw materials)
There is no particular limitation about, for example, oxides, carbonates,
Oxalates, acetates, nitrates, metal alkoxides, etc. 1
One kind or two or more kinds are used.

【0014】上記に示す原料の混合法については特に制
限はないが、 例えば、合成樹脂製のボールミル内に合
成樹脂で被覆したボール、エタノール、酢酸エチル等の
溶媒及び原料を充てんし、湿式混合する方法、溶媒中に
原料を溶解した後に共沈生成物を得る共沈法、アルコキ
シドなどの原料を加水分解させてゾルを作製し、これを
ゲル化させるゾル−ゲル法等を用いることができる。
There are no particular restrictions on the method of mixing the above-mentioned raw materials, but for example, a ball mill made of synthetic resin is filled with a synthetic resin-coated ball, a solvent such as ethanol or ethyl acetate, and raw materials, and wet-mixed. A method, a coprecipitation method in which a raw material is dissolved in a solvent to obtain a coprecipitated product, a sol-gel method in which a raw material such as an alkoxide is hydrolyzed to prepare a sol, and the sol is gelated can be used.

【0015】焼成温度及び焼成時間は、各原料の配合割
合及び雰囲気により適宜選定されるが、Bi:Sr:C
a:Cuが原子比で2:2:1:2の場合は、810〜
900℃の温度で5〜50時間、Bi:Sr:Ca:C
uがおよそ2:2:2:3でビスマスの一部が鉛で置換
されている場合は、845±20℃好ましくは845±
10℃の温度で20〜200時間焼成することが好まし
い。
The firing temperature and firing time are appropriately selected depending on the blending ratio of each raw material and the atmosphere, but Bi: Sr: C
When the atomic ratio of a: Cu is 2: 2: 1: 2, it is 810.
Bi: Sr: Ca: C at a temperature of 900 ° C. for 5 to 50 hours
When u is approximately 2: 2: 2: 3 and part of the bismuth is replaced by lead, 845 ± 20 ° C., preferably 845 ±
It is preferable to bake at a temperature of 10 ° C. for 20 to 200 hours.

【0016】ルテニウムの添加法については特に制限は
ないが、例えば、ルテニウムを含む原料の微粉を用いて
ビスマス、ストロンチウム、カルシウム及び銅を含む原
料の混合粉末と共にボールミル、乳鉢等を用いて乾式又
は湿式で混合、均一化する方法があげられる。この他に
ビスマス、ストロンチウム、カルシウム及び銅を含む原
料の混合粉末に、四酸化ルテニウムの水溶液、アルコー
ル溶液、塩酸水溶液、硝酸水溶液又は塩化ルテニウムの
塩酸水溶液、硝酸水溶液などを添加した後、これを均一
に加熱する方法があげられる。
The method of adding ruthenium is not particularly limited. For example, fine powder of a raw material containing ruthenium is used together with a mixed powder of raw materials containing bismuth, strontium, calcium and copper in a ball mill, a mortar or the like to dry or wet. There is a method of mixing and homogenizing with. In addition to this, a mixed powder of raw materials containing bismuth, strontium, calcium and copper is added with an aqueous solution of ruthenium tetroxide, an alcohol solution, an aqueous solution of hydrochloric acid, an aqueous solution of nitric acid, an aqueous solution of ruthenium chloride such as hydrochloric acid, an aqueous solution of nitric acid, etc. There is a method of heating.

【0017】本発明における酸化物超電導体は、上記の
組成物にストロンチウム、カルシウム以外のアルカリ土
類金属、ビスマス及び銅を主成分とした酸化物にルテニ
ウムを添加した組成物を混合して用いても差し支えはな
く、またこれらの元素からなる異相を含んでいても差し
支えはなく、超電導体の相に対してルテニウムを含んで
いれば本発明の目的を達成することができる。
The oxide superconductor in the present invention is prepared by mixing the above composition with a composition obtained by adding ruthenium to an oxide containing strontium, an alkaline earth metal other than calcium, bismuth and copper as the main components. There is no problem, and there is no problem even if a hetero phase composed of these elements is contained. If ruthenium is contained in the phase of the superconductor, the object of the present invention can be achieved.

【0018】[0018]

【実施例】以下本発明の実施例を説明する。 実施例1〜5 ビスマス、ストロンチウム、カルシウム及び銅の比率が
原子比で表1に示す組成になるように、三酸化ビスマス
(高純度化学研究所製、純度99.9%)、炭酸ストロ
ンチウム(レアメタリック社製、純度99.9%)、炭
酸カルシウム(高純度化学研究所製、純度99.9%)
及び酸化第二銅(高純度化学研究所製、純度99.9
%)を秤量し、出発原料とした。
EXAMPLES Examples of the present invention will be described below. Examples 1 to 5 Bismuth trioxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%), strontium carbonate (rare) so that the ratio of bismuth, strontium, calcium and copper in atomic ratio is as shown in Table 1. Made by Metallic, purity 99.9%), calcium carbonate (made by Kojundo Chemical Laboratory, purity 99.9%)
And cupric oxide (manufactured by Kojundo Chemical Laboratory, purity 99.9)
%) Was weighed and used as the starting material.

【0019】次に上記の出発原料を合成樹脂製のボール
ミル内に合成樹脂で被覆した鋼球ボール及びメタノール
と共に充てんし、毎分50回転の条件で72時間湿式混
合及び粉砕した。この後、粉砕物をボールミルから取り
出して、100℃24時間で乾燥した後、これをアルミ
ナ匣鉢に入れ、電気炉を用いて大気中で800℃で10
時間仮焼し、ついで乳鉢で粗粉砕した後、合成樹脂製ボ
ールミル内にジルコニア製ボールミル、酢酸エチルと共
に原子比で表1に示す組成になるように一酸化鉛(黄
色、高純度化学研究所製、純度99.9%)を秤量して
充てんし、毎分50回転の条件で24時間湿式粉砕し、
乾燥して合成用粉末を得た。
Next, the above starting materials were filled in a ball mill made of synthetic resin together with a steel ball covered with the synthetic resin and methanol, and wet-mixed and pulverized for 72 hours under the condition of 50 rpm. Then, the crushed product is taken out of the ball mill and dried at 100 ° C. for 24 hours, then placed in an alumina sagger and placed in an electric furnace at 800 ° C. for 10 hours in the air.
After calcination for a while, and then coarsely crushing in a mortar, lead monoxide (yellow, manufactured by High Purity Chemical Laboratory Co., Ltd.) was mixed with a zirconia ball mill and ethyl acetate in a synthetic resin ball mill so as to have the composition shown in Table 1. , Purity 99.9%) is weighed and filled, and wet-ground for 24 hours under the condition of 50 rpm.
It was dried to obtain a powder for synthesis.

【0020】この後該合成用粉末を147MPaの圧力
でプレス成形後、電気炉を用いて体積比でO2:N2
1:10の低酸素圧雰囲気中で835℃の温度で100
時間焼成した後冷却してビスマス系超電導体を合成し
た。ついで乳鉢で粗粉砕した後、合成樹脂製ボールミル
内にジルコニア製ボール、酢酸エチルと共に充てんし、
毎分50回転の条件で48時間湿式粉砕して粉砕物を得
た。この粉砕物にルテニウム粉を表1に示す組成になる
ように添加し、さらに5時間混合して均一にした。なお
ルテニウム粉は田中貴金属製の純度は99.9%以上
で、平均粒径が1〜5μmの粉末を用いた。
Thereafter, the powder for synthesis was press-molded at a pressure of 147 MPa, and then the volume ratio of O 2 : N 2 = using an electric furnace.
100 at a temperature of 835 ° C in a low oxygen pressure atmosphere of 1:10.
After firing for a period of time, it was cooled to synthesize a bismuth-based superconductor. Then, after roughly crushing with a mortar, fill a synthetic resin ball mill with zirconia balls and ethyl acetate,
Wet pulverization was performed for 48 hours under the condition of 50 rpm to obtain a pulverized product. Ruthenium powder was added to this pulverized product so as to have the composition shown in Table 1, and the mixture was further mixed for 5 hours to be uniform. The ruthenium powder used was a powder made of Tanaka Kikinzoku, which has a purity of 99.9% or more and an average particle size of 1 to 5 μm.

【0021】乾燥後得られた粉末を147MPaの圧力
で直径30mm、厚さ1mmのペレットに成形後、大気
中で835℃で10時間焼成して酸化物超電導体を得
た。
The powder obtained after drying was molded into pellets having a diameter of 30 mm and a thickness of 1 mm at a pressure of 147 MPa, and then fired at 835 ° C. for 10 hours in the air to obtain an oxide superconductor.

【0022】比較例1〜5 表1に示す組成になるように各原料を秤量し、以下実施
例と同様の工程を経て酸化物超電導体を得た。
Comparative Examples 1 to 5 The respective raw materials were weighed so that the compositions shown in Table 1 were obtained, and the oxide superconductor was obtained through the same steps as in the following Examples.

【0023】次に各実施例及び各比較例で得た酸化物超
電導体を長さ20mm×幅3mm×厚さ1mmの直方体
に加工し、四端子法で抵抗の温度変以を測定し、Tc
求めた。また上記と同様の試料を用いて液体窒素温度
(77.3K)でのJc0を測定すると共に液体窒素中
0.05テスラの磁場中でのJc0.05を測定した。これ
らの測定結果及びJc0.05とJc0との比を合わせて表1
に示す。
Next, the oxide superconductors obtained in each of the examples and comparative examples were processed into a rectangular parallelepiped having a length of 20 mm, a width of 3 mm and a thickness of 1 mm, and the temperature variation of the resistance was measured by the four-terminal method. I asked for c . In addition, J c0 at the liquid nitrogen temperature (77.3 K) was measured using the same sample as described above, and J c0.05 was measured in a magnetic field of 0.05 Tesla in liquid nitrogen. The results of these measurements and the ratio of J c0.05 and J c0 are shown in Table 1.
Shown in.

【0024】なお実施例1、実施例2、比較例1及び比
較例2はビスマス中の30モル%を鉛に置換し、実施例
3、実施例4、比較例3及び比較例4はビスマス中の2
0モル%を鉛に置換した組成とした。
In Example 1, Example 2, Comparative Example 1 and Comparative Example 2, 30 mol% of bismuth was replaced with lead, and Example 3, Example 4, Comparative Example 3 and Comparative Example 4 were in bismuth. Of 2
The composition was such that 0 mol% was replaced with lead.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から本発明の実施例になる酸化物超電
導体は、Tcが高く、磁場の印加によるJcの低下の小さ
いことが示される。これに対し比較例の酸化物超電導体
は、Tcは実施例になる酸化物超電導体とあまり変わら
ないが、磁場の印加によりJcの低下が大きいことが示
される。
Table 1 shows that the oxide superconductors according to the examples of the present invention have a high T c and a small decrease in J c due to the application of a magnetic field. On the other hand, the oxide superconductor of the comparative example has a T c that is not much different from that of the oxide superconductors of the examples, but it is shown that the application of a magnetic field causes a large decrease in J c .

【0027】[0027]

【発明の効果】本発明になる超電導体は、Tcの低下が
少なく、また磁場の印加によるJcの低下も小さく、工
業的に極めて好適な酸化物超電導体である。
INDUSTRIAL APPLICABILITY The superconductor according to the present invention is an oxide superconductor industrially extremely suitable because it has a small decrease in T c and a small decrease in J c due to the application of a magnetic field.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月15日[Submission date] May 15, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】[0025]

【表1】 [Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビスマス、ストロンチウム、カルシウム
及び銅を主成分とした酸化物並びに全組成物中にルテニ
ウムを0.1〜2重量%含有してなる酸化物超電導体。
1. An oxide superconductor containing bismuth, strontium, calcium and copper as main components and an oxide superconductor containing 0.1 to 2% by weight of ruthenium in the entire composition.
【請求項2】 ビスマスの一部を鉛で置換してなる請求
項1記載の酸化物超電導体。
2. The oxide superconductor according to claim 1, wherein part of bismuth is replaced with lead.
【請求項3】 ビスマス、ストロンチウム、カルシウム
及び銅の混合粉末に、請求項1記載に示す量のルテニウ
ムを添加して均一に混合した後焼成することを特徴とす
る酸化物超電導体の製造法。
3. A method for producing an oxide superconductor, which comprises adding ruthenium in an amount as set forth in claim 1 to a mixed powder of bismuth, strontium, calcium and copper, uniformly mixing and firing the mixture.
JP3234277A 1991-09-13 1991-09-13 Oxide superconductor and its production Pending JPH0570138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234277A JPH0570138A (en) 1991-09-13 1991-09-13 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234277A JPH0570138A (en) 1991-09-13 1991-09-13 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH0570138A true JPH0570138A (en) 1993-03-23

Family

ID=16968454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234277A Pending JPH0570138A (en) 1991-09-13 1991-09-13 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH0570138A (en)

Similar Documents

Publication Publication Date Title
JPH0570138A (en) Oxide superconductor and its production
JPH0570133A (en) Oxide superconductor and its production
JPH0570135A (en) Oxide superconductor and its production
JPH0570139A (en) Oxide superconductor and its production
JPH0570149A (en) Oxide superconductor and its production
JPH0543245A (en) Oxide superconductor and production thereof
JPH0196055A (en) Superconductive ceramic composition
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JP2555706B2 (en) Manufacturing method of Bi-based superconducting oxide powder containing lead and sintered body thereof
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JP3461654B2 (en) Manufacturing method of oxide superconductor
JP2596021B2 (en) Manufacturing method of superconducting material
JPH04193718A (en) Oxide superconductor and its production
JP2854338B2 (en) Copper oxide superconductor
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2785263B2 (en) Superconductor manufacturing method
JPH0477316A (en) Oxide superconductor and its production
JP2637617B2 (en) Manufacturing method of superconducting material
JPH0465342A (en) Superconductor and its production
JPH0477315A (en) Oxide superconductor and its production
JPH0597440A (en) Oxide superconductor and its production
JP2597579B2 (en) Superconductor manufacturing method
JPH046147A (en) Oxide superconductor and production thereof
JPH0416516A (en) Oxide superconductor and its production
JPH0558639A (en) Oxide superconductor and its production