JPH04104940A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH04104940A
JPH04104940A JP2220899A JP22089990A JPH04104940A JP H04104940 A JPH04104940 A JP H04104940A JP 2220899 A JP2220899 A JP 2220899A JP 22089990 A JP22089990 A JP 22089990A JP H04104940 A JPH04104940 A JP H04104940A
Authority
JP
Japan
Prior art keywords
composition
oxide superconductor
ground
superconductor
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220899A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
下田 修一郎
Shozo Yamana
章三 山名
Keiji Sumiya
圭二 住谷
Minoru Ishihara
稔 石原
Hideji Kuwajima
秀次 桑島
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2220899A priority Critical patent/JPH04104940A/en
Publication of JPH04104940A publication Critical patent/JPH04104940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide the subject superconductor improved in magnetic field dependency by mixing raw materials containing Tl, Ba, Ca, Cu, Pt and/or Pd so as to contain the Pt and/or Pd and to form a composition represented by the specific formula, and subsequently firing the composition. CONSTITUTION:The respective powdery raw materials of Ba, Ca, and Cu are weighed in prescribed amounts, mixed with each other, preliminarily fired and subsequently ground. The ground mixture is mixed with a prescribed amount of a powdery Tl raw material and ground to form a composition for oxide superconductors. The composition is press-molded and fired in a lidded ceramic container to prepare a material for the oxide superconductors. The material is ground and homogeneously mixed with prescribed amount of Pt powder and/or Pd powder. The mixture is press molded and subsequently fired at 800-900 deg.C in the atmosphere to provide an oxide superconductor containing the Pt and/or the Pd in an amount of 0.1-5wt.%, having a composition of the formula (A=1.6 to 2.2, B=1.8 to 2.4, 0.9<=B/A<=1.4; the numbers are each an atomic ratio) and improved in the dependency of the superconductive characteristics on magnetic field.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and a method for manufacturing the same.

(従来の技術) Tr−Ba−Ca−Cu−0系の酸化物超電導体は。(Conventional technology) Tr-Ba-Ca-Cu-0 based oxide superconductor.

一般にタリウム(T/)、バリウム(Ba)、カルシウ
ム(Ca)、銅(Cu)等を含む出発原料を同時に混合
するか又はBa −Ca −Cu −0,Ba −Cu
−0,Ca −0sCu−0等の化合物とT//合物と
を混合して超電導体用原料とし、これを成形、焼成する
ことにより得ることができる。
Generally, starting materials including thallium (T/), barium (Ba), calcium (Ca), copper (Cu), etc. are mixed simultaneously or Ba-Ca-Cu-0, Ba-Cu
It can be obtained by mixing a compound such as -0, Ca -0sCu-0 and a T//compound to prepare a raw material for a superconductor, and then molding and firing the raw material.

TI!−Ba−Ca−Cu−0系の酸化物超電導体は。TI! -Ba-Ca-Cu-0 based oxide superconductor.

120に以上の高い臨界温度(以下Tc  とする)を
有する材料であることが知られている。
It is known that this material has a high critical temperature (hereinafter referred to as Tc) of 120° C. or higher.

(発明が解決しようとする課題) しかしながら上記の方法で製造されたT/−Ba−Ca
−Cu−0系の酸化物超電導体(以下T/系超超電導体
する)は空隙が多く、高密度のものが得られにくい。こ
のため結晶粒子同士のつながりが悪<、Tc  *臨界
電流密度(以下Jcとする)等の超電導特性が低下し、
また機械的強度なども低下する。
(Problem to be solved by the invention) However, T/-Ba-Ca produced by the above method
-Cu-0 based oxide superconductors (hereinafter referred to as T/based superconductors) have many voids and are difficult to obtain with high density. For this reason, the connections between crystal grains are poor, and superconducting properties such as Tc *critical current density (hereinafter referred to as Jc) are reduced,
In addition, mechanical strength and the like are also reduced.

上記の欠点を改善する方法として、熱処理工程の他に、
圧延加工、粉砕、プレス成形等の工程を導入し、これら
の工程を組み合わせ、数回繰り返す方法が一般的に知ら
れている。この方法を用いれば*TC、Jc等の超電導
特性がある程度向上されるが、しかしこの方法では製造
工程が増え。
In addition to the heat treatment process, as a method to improve the above drawbacks,
A generally known method is to introduce processes such as rolling, crushing, and press forming, combine these processes, and repeat the process several times. If this method is used, the superconducting properties such as *TC and Jc can be improved to some extent, but this method increases the number of manufacturing steps.

複雑であるという問題がめる。The problem is that it is complex.

またTj化合物は蒸発しやすく、高価格である。Furthermore, Tj compounds easily evaporate and are expensive.

このためT/の蒸発を抑制することが重要であるが。Therefore, it is important to suppress the evaporation of T/.

熱処理工程が増えると、 TI!の蒸発を抑制すること
が難しく、T/の蒸発に伴う組成のずれが生じ易くなる
When the heat treatment process increases, TI! It is difficult to suppress the evaporation of T/, and composition shifts are likely to occur due to the evaporation of T/.

一般にT/系超超電導体Y−Ba−Cu−0系の酸化物
超電導体に比べて磁場の印加によってJcが低下しやす
いと言われており、磁気シールドなどへの応用を図るに
は、上記のような問題点を改善し。
In general, it is said that Jc is more likely to decrease when a magnetic field is applied than T/based superconductors and Y-Ba-Cu-0 based oxide superconductors. Improve problems such as.

磁束のビン止め点を導入することが必須課題となってい
る。
It is essential to introduce a stop point for magnetic flux.

本発明は*TC+JC等が低下せず、低下してもごくわ
ずかで、かつJcの磁場依存性を改善した酸化物超電導
体及びその製造法を提供することを目的とするものであ
る。
An object of the present invention is to provide an oxide superconductor in which *TC+JC, etc. do not decrease, or even if it decreases, it decreases only slightly, and the magnetic field dependence of Jc is improved, and a method for producing the same.

(11題を解決するための手段) 本発明者らは上記の欠点について種々検討した結果、従
来のTr系超電導体中に白金及び/又はパラジウムを含
有させたところ+ T:ero、 Jc等の向上、磁場
特性などの改善に有効であることを見い出し本発明を完
成するに散った。
(Means for Solving Problem 11) As a result of various studies on the above-mentioned drawbacks, the present inventors found that by incorporating platinum and/or palladium into a conventional Tr-based superconductor, + T: ero, Jc, etc. They discovered that this method is effective in improving magnetic field characteristics, etc., and completed the present invention.

本発明は白金及び/又はパラジウムを0.1〜5重量%
含み、かつ一般式Tl 1.4〜2BaACanCuz
s〜a、5Ox(但しA=1.6〜22.  B=1.
8−44.0.9≦B/A≦1.4.数字は原子比を表
わす)で示される組成からなる酸化物超電導体並びに上
記の組成となるように白金及び/又はパラジウムとタリ
ウム、バリウム、カルシウム及び銅を含む各原料を秤量
し、ついで混合した後焼成する酸化物超電導体の製造法
に関する。
The present invention contains 0.1 to 5% by weight of platinum and/or palladium.
and has the general formula Tl 1.4-2BaACanCuz
s~a, 5Ox (however, A=1.6~22.B=1.
8-44.0.9≦B/A≦1.4. After weighing the oxide superconductor having the composition shown in (numbers represent atomic ratios) and each raw material containing platinum and/or palladium and thallium, barium, calcium and copper so as to have the above composition, and then mixing them. This invention relates to a method for producing an oxide superconductor to be fired.

本発明において酸化物超電導体を構成する主成分のタリ
ウム、バリウム、カルシウム及び銅を含む原料(出発原
料)については特に制限はないが。
In the present invention, there are no particular limitations on the raw materials (starting raw materials) containing thallium, barium, calcium, and copper, which are the main components constituting the oxide superconductor.

例えばこれらの酸化物、炭酸塩、硝酸塩、蓚酸塩等の1
種又は2種以上が用いられる。
For example, one of these oxides, carbonates, nitrates, oxalates, etc.
A species or two or more species may be used.

一般式Tl1.4〜2BaACai+Cuzs 〜11
.60Xにおいて。
General formula Tl1.4~2BaACai+Cuzs~11
.. At 60X.

タリウムは原子比で1.4〜2の範囲とされ、この範囲
から外れるとTc  が120に以上の高温相(T/x
BatcatcusOto相、2223相)の生成量が
低下する。
Thallium has an atomic ratio in the range of 1.4 to 2, and outside this range it forms a high temperature phase with Tc of 120 or more (T/x
Batcatcus Oto phase, 2223 phase) production amount decreases.

バリウム囚は原子比で1.6〜22の範囲とされ。The atomic ratio of barium prisoners is said to be in the range of 1.6 to 22.

この範囲から外れると超電導体相以外の結晶相が生成し
易く、超電導体の含有率が低下する。
If it deviates from this range, crystal phases other than the superconductor phase are likely to be formed, and the superconductor content decreases.

カルシウム(B)は原子比で1.8〜24の範囲とされ
、1.8未満であると高温相の生成量が低下し。
Calcium (B) has an atomic ratio in the range of 1.8 to 24, and if it is less than 1.8, the amount of high temperature phase produced decreases.

24を越えると超電導体相以外の結晶相が生成し易くな
シ超電導体の含有率が低下する。
If it exceeds 24, crystal phases other than the superconductor phase tend to form, and the superconductor content decreases.

銅は原子比で28〜&6の範囲とされ、28未満である
と、高温和の生成量が低下し、λ6を越えると超電導体
の含有率が低下する。
Copper has an atomic ratio in the range of 28 to &6; when it is less than 28, the amount of high-temperature sum produced decreases, and when it exceeds λ6, the superconductor content decreases.

白金及び/又はパラジウムは、酸化物超電導体中に0.
1〜5重量−の範囲で含有されることが必要とされ、0
.1重量−未満であると白金及び/又はパラジウムによ
る磁場特性の改善効果が少なく。
Platinum and/or palladium is present in the oxide superconductor at a concentration of 0.
It is required to be contained in the range of 1 to 5 weight, and 0
.. If it is less than 1 weight, platinum and/or palladium will have little effect on improving magnetic field characteristics.

5重量−を越えると高価になるという欠点が生じる。If the weight exceeds 5 -, there will be a disadvantage that it will be expensive.

なお、白金としては、白金粉末の他9M化白金などが用
いられ、焼成後白金単体になる物質でろれば特に制限は
ない。
As platinum, 9M platinum or the like may be used in addition to platinum powder, and there are no particular limitations as long as the material becomes pure platinum after firing.

またパラジウムとしては、パラジウム粉末の他。Palladium is also available in addition to palladium powder.

酸化パラジウムなどが用いられ、焼成後パラジウム単体
になる物質であれば特に制限はない。
There is no particular restriction as long as palladium oxide or the like is used and the material becomes pure palladium after firing.

白金及び/又はパラジウムの添加法については特に制限
はないが9例えば酸化物超電導体用材料の粉末と共にボ
ールミル、らいかい機(自動混線機)、乳鉢等を用いて
乾式又は湿式で混合、均一化する方法、al化物超電導
体用材料に白金及び/又はパラジウムの水溶液を添加後
、これを均一加熱する方法などがおる。
There are no particular restrictions on the method of adding platinum and/or palladium, but for example, they can be mixed and homogenized in a dry or wet manner with the powder of the oxide superconductor material using a ball mill, sieve machine (automatic mixer), mortar, etc. There are methods such as adding an aqueous solution of platinum and/or palladium to the material for an aluminide superconductor and then uniformly heating the solution.

混合方法についても特に制限はなく9例えばらいかい機
で乾式混合する方法9合成樹脂製7ボールミル内に合成
樹脂で被覆したボールそれにエタノール、メタノール等
の溶媒及び原料を充填し。
There are no particular restrictions on the mixing method; 9 For example, there is a method of dry mixing in a sieve machine. 9 A ball coated with a synthetic resin is filled in a synthetic resin 7-ball mill with a solvent such as ethanol, methanol, etc. and raw materials.

湿式混合することが好ましい。Wet mixing is preferred.

焼成は密閉容器内で焼成することが好ましい。Firing is preferably performed in a closed container.

密閉容器としては、アルミナ、マグネシア等のセラミッ
クス製の容器を用いることが好ましい。
As the closed container, it is preferable to use a container made of ceramics such as alumina or magnesia.

焼成温度は各原料の配合割合などにより適宜選定される
が、800〜900℃の範囲で焼成することが好ましく
、また焼成雰囲気は、大気中、空気気流中、または低酸
素圧雰囲気中(酸素の含有量が1〜20体積囁好ましく
は2〜20体積チの範囲)で焼成することが好ましい。
The firing temperature is appropriately selected depending on the blending ratio of each raw material, but it is preferable to fire in the range of 800 to 900°C, and the firing atmosphere is in the air, in an air stream, or in a low oxygen pressure atmosphere (oxygen It is preferred that the firing be carried out at a content in the range of 1 to 20 volumes, preferably 2 to 20 volumes.

本発明の組成において0(aI素)の量は、CuO量及
びCuの酸化状態によって定まる。しかし酸化状態がど
のようKなっているかを厳密にそして精度よく測定する
ことができず本発明においてはXで表わした。
In the composition of the present invention, the amount of 0 (aI element) is determined by the amount of CuO and the oxidation state of Cu. However, the oxidation state of K cannot be measured strictly and accurately, so it is expressed by X in the present invention.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 バリウム、カルシウム及び銅の比率が原子比で第1表に
示す組成になるようにBad(高純度化学研究所製、純
度99チ以上)、Cab(高純度化学研究所製、純度9
9.996)及びCub(高純度化学研究所製、純度9
9.9%)を秤量し出発原料とした。
Example 1 Bad (manufactured by Kojundo Kagaku Kenkyusho, purity 99% or higher) and Cab (manufactured by Kojundo Kagaku Kenkyusho, purity 9) were prepared so that the ratios of barium, calcium and copper were as shown in Table 1 in atomic ratio.
9.996) and Cub (manufactured by Kojundo Kagaku Kenkyusho, purity 9
9.9%) was weighed and used as a starting material.

この後、上記の出発原料をらいかい機を用いて30分間
、混合した。得られた混合粉を電気炉を用いて大気中で
900℃で10時間予備焼成し。
Thereafter, the above starting materials were mixed for 30 minutes using a strainer. The obtained mixed powder was preliminarily calcined at 900° C. for 10 hours in the air using an electric furnace.

ついてらいかい機を用いて30分間粉砕した。The mixture was ground for 30 minutes using a grinder.

次KTムOs(高純度化学研究新製、純度99.9チ)
を第1表に示す組成になるように秤量して上記の粉砕物
中に添加し、乳鉢で均一に混合、粉砕して酸化物超電導
体用組成物を得た。
Next KT Mu Os (manufactured by High Purity Chemical Research, purity 99.9%)
were weighed so as to have the composition shown in Table 1, added to the above-mentioned pulverized material, mixed uniformly in a mortar, and pulverized to obtain a composition for oxide superconductor.

得られた酸化物超電導体用組成物を金溢プレスで100
MPaの圧力で成形して厚さ2mの成形体を得た。つい
でこの成形体をふた付きのアルミナ容器中で870℃で
3時間焼成して酸化物超電導体用材料を得た。
The obtained composition for oxide superconductor was pressed with a 100%
A molded product with a thickness of 2 m was obtained by molding at a pressure of MPa. This molded body was then fired at 870° C. for 3 hours in an alumina container with a lid to obtain a material for an oxide superconductor.

得られた酸化物超電導体用材料を乳鉢で粉末状に粉砕し
た後、白金粉(徳力本店製、純度99.9チ)及び/又
はパラジウム粉(徳力本店製、純度99.91G)を第
1表に示す組成になるように秤量して上記の粉砕粉中に
添加し、乳鉢で均一に混合した。
After pulverizing the obtained oxide superconductor material into a powder in a mortar, platinum powder (manufactured by Tokuriki Honten, purity 99.9g) and/or palladium powder (manufactured by Tokuriki Honten, purity 99.91G) was first ground. It was weighed so as to have the composition shown in the table, added to the above-mentioned pulverized powder, and mixed uniformly in a mortar.

得られた粉末を金型プレスで150MPJlの圧力で直
径20m、厚さ1■のペレットに成形後、大気中で87
0℃で5時間焼成して酸化物超電導体を得た。
The obtained powder was molded into pellets with a diameter of 20 m and a thickness of 1 cm using a mold press at a pressure of 150 MPJl, and then 87 cm in the air.
An oxide superconductor was obtained by firing at 0° C. for 5 hours.

次に上記で得た酸化物超電導体を長さ20閣X幅1■×
厚さ1mの直方体に加工し、四端子法で電気抵抗の温度
変化を測定し、 Tc  を求めた。
Next, add the oxide superconductor obtained above to a length of 20 cm x width of 1 cm.
It was processed into a rectangular parallelepiped with a thickness of 1 m, and the temperature change in electrical resistance was measured using the four-terminal method to determine Tc.

また上記と同様の試料を用いて液体窒素温度(77K)
でJCOを測定すると共に液体窒素温度、0.1テスラ
の磁場中でJc(11を測定した。これらの結果以下余
白 第1表から本発明になる酸化物超電導体は、賦香1の従
来の酸化物超電導体を基準としてTcの低下が少なく、
またJcが低下せず、かつ磁場の印加によるJcの低下
が小さいことが示される・(発明の効果) 本発明になる酸化物超電導体は、Tc、Jc等が低下せ
ず、低下してもごくわずかでメジ、また磁場の印加によ
るJcの低下も小さく、工業的に極めて好適な酸化物超
電導体である。
Also, using the same sample as above, liquid nitrogen temperature (77K)
At the same time, JCO was measured at liquid nitrogen temperature and Jc (11) was measured in a magnetic field of 0.1 Tesla.These results are shown in Table 1 below. There is little decrease in Tc compared to oxide superconductors,
It is also shown that Jc does not decrease and the decrease in Jc due to the application of a magnetic field is small (effects of the invention) The oxide superconductor of the present invention does not decrease in Tc, Jc, etc. The decrease in Jc due to the application of a magnetic field is very small, and it is an industrially very suitable oxide superconductor.

6−+丁ニー 代理人 弁理士 若 林 邦 11’6-+Ding Knee Agent Patent Attorney Kuni Wakabayashi 11’

Claims (2)

【特許請求の範囲】[Claims] 1.白金及び/又はパラジウムを0.1〜5重量%含み
,かつ一般式Tl_1_._4_〜_2Ba_ACa_
BCu_2_._8_〜_3_._6O_X(但しA=
1.6〜2.2,B=1.8〜2.4,0.9≦B/A
≦1.4,数字は原子比を表わす)で示される組成から
なる酸化物超電導体。
1. Contains 0.1 to 5% by weight of platinum and/or palladium, and has the general formula Tl_1_. _4_~_2Ba_ACa_
BCu_2_. _8_~_3_. _6O_X (However, A=
1.6-2.2, B=1.8-2.4, 0.9≦B/A
An oxide superconductor having a composition of ≦1.4 (numbers represent atomic ratios).
2.請求項1記載の組成となるように白金及び/又はパ
ラジウムとタリウム,バリウム,カルシウム及び銅を含
む各原料を秤量し,ついで混合した後焼成することを特
徴とする酸化物超電導体の製造法。
2. A method for producing an oxide superconductor, which comprises weighing raw materials containing platinum and/or palladium, thallium, barium, calcium, and copper so as to have the composition according to claim 1, and then mixing and firing.
JP2220899A 1990-08-21 1990-08-21 Oxide superconductor and production thereof Pending JPH04104940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220899A JPH04104940A (en) 1990-08-21 1990-08-21 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220899A JPH04104940A (en) 1990-08-21 1990-08-21 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH04104940A true JPH04104940A (en) 1992-04-07

Family

ID=16758278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220899A Pending JPH04104940A (en) 1990-08-21 1990-08-21 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH04104940A (en)

Similar Documents

Publication Publication Date Title
JPH04104940A (en) Oxide superconductor and production thereof
JPH04104941A (en) Oxide superconductor and production thereof
JPH04104943A (en) Oxide superconductor and production thereof
JPH04104942A (en) Oxide superconductor and production thereof
JPH0492852A (en) Oxide superconductor and production thereof
JPS63236753A (en) Production of superconductive ceramic
JPH0492853A (en) Oxide superconductor and production thereof
JPH04124025A (en) Oxide superconductor and its production
JPH04124016A (en) Oxide superconductor and its production
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
JPH04124020A (en) Oxide superconductor and its production
JPH04124022A (en) Oxide superconductor and its production
JPH04124031A (en) Oxide superconductor and its production
JPH04124027A (en) Oxide superconductor and its production
JPH04124023A (en) Oxide superconductor and its production
JPH04124024A (en) Oxide superconductor and its production
JPH01188458A (en) Production of superconducting ceramic
JPH01141871A (en) Production of superconducting material
JPH04144916A (en) Oxide superconductor and its production
JPH04124021A (en) Oxide superconductor and its production
JPH0292826A (en) Oxide superconductor
JPH01278467A (en) Production of superconductor
JPH0375261A (en) Oxide superconductor and production thereof
JPH042611A (en) Production of superconductor
JPH02271920A (en) Production of superconductor oxide material