JPH04124025A - Oxide superconductor and its production - Google Patents
Oxide superconductor and its productionInfo
- Publication number
- JPH04124025A JPH04124025A JP2243294A JP24329490A JPH04124025A JP H04124025 A JPH04124025 A JP H04124025A JP 2243294 A JP2243294 A JP 2243294A JP 24329490 A JP24329490 A JP 24329490A JP H04124025 A JPH04124025 A JP H04124025A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- copper
- strontium
- calcium
- nitrogen atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000010949 copper Substances 0.000 claims abstract description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 16
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 16
- 239000011575 calcium Substances 0.000 claims abstract description 16
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 15
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 15
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052788 barium Inorganic materials 0.000 claims abstract description 13
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 13
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 13
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 238000010304 firing Methods 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000001354 calcination Methods 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 7
- 238000010791 quenching Methods 0.000 abstract description 5
- 230000000171 quenching effect Effects 0.000 abstract description 5
- 238000000465 moulding Methods 0.000 abstract description 4
- 238000000227 grinding Methods 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium dichloride Chemical compound Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229960004643 cupric oxide Drugs 0.000 description 2
- AXTYOFUMVKNMLR-UHFFFAOYSA-N dioxobismuth Chemical compound O=[Bi]=O AXTYOFUMVKNMLR-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001627 beryllium chloride Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超電導体及びその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an oxide superconductor and a method for manufacturing the same.
(従来の技術)
従来の酸化物超電導体としては、1988年金属材料技
術研究所の前出総合研究官らによって発見されたビスマ
ス、ストロンチウム、カルシウム及び銅を主成分とする
B1−8r−Ca−Cu−〇系(以下Bi系とする)の
酸化物超電導体があるが、このBi系の酸化物超電導体
は、電気抵抗が零になる臨界温度(以下Tczeroと
する)が110に付近の2223相が生成しにくいとい
う問題があった。このためT 02eroは低いが、生
成温度領域が広い2212相の活用が試みられている。(Prior art) As a conventional oxide superconductor, B1-8r-Ca-, which has bismuth, strontium, calcium, and copper as its main components, was discovered in 1988 by the above-mentioned general researcher of the Institute of Metals and Materials Technology. There is a Cu-〇-based (hereinafter referred to as Bi-based) oxide superconductor, but this Bi-based oxide superconductor has a critical temperature (hereinafter referred to as Tczero) at which the electrical resistance becomes zero at a temperature of 2223 around 110. There was a problem in that it was difficult to form a phase. For this reason, attempts have been made to utilize the 2212 phase, which has a low T 02ero but a wide temperature range of formation.
(発明が解決しようとする課題)
しかしながらBユ系の酸化物超電導体の2212相は
T 02eroが80に付近であるため液体窒素の冷却
(77K)ではTO2@toとの差が小さく超電導特性
が不安定で使用できないおそれがある。(Problem to be solved by the invention) However, the 2212 phase of the B-based oxide superconductor is
Since T02ero is around 80, the difference from T02@to is small when cooling with liquid nitrogen (77K), and the superconducting properties are unstable and there is a possibility that it cannot be used.
2212相のTc2e′。を高める方法として、ジャパ
ニーズ、ジャーナル、オブ、アプライド、フィジックス
(Japanese Journalof App
lied Physics)Vo127.9号(19
88年9月刊)、L1626γL 1628頁及び同V
o127,12号(1988年12月刊)、L2327
かL2329号並びにアトパンセス、イン、スーパーコ
ンダクティビイテイII (Advances in
5uperへ
conductivityU)、149〜IF52頁に
示されるように500〜880”Cの温度で熱処理した
後、?!!体窒体中素中空気中で急冷して得る方法が報
告されている。2212 phase Tc2e'. Japanese Journal of Applied Physics (Japanese Journal of App)
Lied Physics) Vo127.9 (19
Published September 1988), L1626γL 1628 pages and the same V
o127, No. 12 (December 1988), L2327
L2329 and Atopances, In, Superconductivity II (Advances in
As shown on pages 149 to IF 52 of 5uper conductivity U), a method has been reported in which the material is obtained by heat treatment at a temperature of 500 to 880''C and then quenching it in air in nitrogen.
この方法は急冷する工程を含むため小型の成形体を作製
することは出来ても大型の成形体を作製することは困難
であるという欠点がある。Since this method includes a step of rapid cooling, it has the disadvantage that although it is possible to produce a small molded body, it is difficult to produce a large molded body.
本発明は急冷工程を経ることなしに90により高いT
czeroを示す2212相のBi系の酸化物超電導体
及びその製造法を提供することを目的とするものである
。The present invention achieves a higher T than 90 without going through a quenching process.
The object of the present invention is to provide a 2212-phase Bi-based oxide superconductor exhibiting czero and a method for producing the same.
(課題を解決するための手段)
本発明はビスマス、ストロンチウム、カルシウム、ベリ
リウム、バリウム及び銅を主成分とし。(Means for Solving the Problems) The present invention contains bismuth, strontium, calcium, beryllium, barium, and copper as main components.
一般式B i +、oS rAc aBB ecB a
r+c u t、。General formula B i +, oS rAc aBB ecB a
r+cut,.
太Q、20X
(但しA=0.6〜1.2.B=0.35〜0.7゜C
=0.05〜0.2.D=0.05〜0.2.数字は原
子比を表わす)
で示されるM成からなる酸化物超電導体及び上記の組成
となるようにビスマス、ストロンチウム。Thick Q, 20X (However, A=0.6~1.2.B=0.35~0.7°C
=0.05~0.2. D=0.05-0.2. (Numbers represent atomic ratios) An oxide superconductor consisting of M shown in the following, and bismuth and strontium so as to have the above composition.
カルシウム、ベリリウム、バリウム及び銅を含む各原料
を秤量し、ついで混合したのち、仮焼、粉砕し、成形後
窒素雰囲気中又は酸素を10体積%未満で含有する窒素
雰囲気中で焼成する酸化物超電導体の製造法並びに上記
の組成となるようにビスマス、ストロンチウム、カルシ
ウム、ベリリウム、バリウム及び銅を含む各原料を秤量
し、ついで混合した後仮焼,一次焼成し、さらに粉砕後
。Oxide superconductors are manufactured by weighing and mixing raw materials containing calcium, beryllium, barium, and copper, then calcining and pulverizing them, forming them, and then firing them in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 10% by volume of oxygen. The raw materials containing bismuth, strontium, calcium, beryllium, barium, and copper are weighed and mixed, then calcined and fired, and then pulverized so as to have the above-mentioned composition.
成形し、再度窒素雰囲気中又は酸素を7体積%未満で含
有する窒素雰囲気中で二次焼成する酸化物超電導体の製
造法に関する。The present invention relates to a method for producing an oxide superconductor, which is formed and then fired again in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen.
本発明において酸化物超電導体を構成する主成分のビス
マス、ストロンチウム、カルシウム、ベリリウム、バリ
ウム及び銅を含む原料については特に制限はないが2例
えば酸化物、炭酸塩、硝酸塩、しゅう酸塩等の1種又は
2種以上が用いられる。In the present invention, there are no particular restrictions on the raw materials containing bismuth, strontium, calcium, beryllium, barium, and copper, which are the main components constituting the oxide superconductor. A species or two or more species may be used.
ビスマス、ストロンチウム、カルシウム、ベリリウム、
バリウム及び銅の配合割合は原子比でビスマスが1.0
.ストロンチウムが0.6〜1.2゜カルシウムが0.
35〜0.77、ベリリウムが0.05〜0.2.バリ
ウムが0.05−0.2及び銅が1.0 + 0.2の
範囲とされ、この範囲から外れると急冷工程なしではT
czeroが90に台の2212相のBi系の酸化物
超電導体を得ることが困難である。Bismuth, strontium, calcium, beryllium,
The blending ratio of barium and copper is bismuth in atomic ratio of 1.0.
.. Strontium: 0.6-1.2° Calcium: 0.
35-0.77, beryllium 0.05-0.2. Barium is in the range of 0.05-0.2 and copper is in the range of 1.0 + 0.2, and outside this range T
It is difficult to obtain a 2212-phase Bi-based oxide superconductor with a czero value on the order of 90.
混合方法については特にvJ限はないが7例えば合成樹
脂製のボールミルに合成樹脂で被覆したボール、エタノ
ール、メタノール等の溶媒及び原料を充填し、湿式混合
することが好ましい。Although there is no particular limit on the mixing method, it is preferable, for example, to fill a ball mill made of synthetic resin with balls coated with synthetic resin, a solvent such as ethanol or methanol, and raw materials, and perform wet mixing.
仮焼条件において、仮焼温度は各原料の配合割合などに
より適宜選定されるが、780〜870℃の範囲で仮焼
することが好ましく、また仮焼雰囲気は、大気中、1$
1素雰囲気中、真空中、還元雰囲気中、中性雰囲気中等
で仮焼することができる。Regarding the calcination conditions, the calcination temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to calcinate in the range of 780 to 870°C, and the calcination atmosphere is air, 1$
Calcination can be performed in a single element atmosphere, vacuum, reducing atmosphere, neutral atmosphere, etc.
粉砕及び成形法については特に制限はなく、従来公知の
方法で行なうことができる。There are no particular restrictions on the pulverization and molding methods, and conventionally known methods can be used.
焼成条件において、焼成温度は各原料の配合割合などに
より適宜選定されるが、試料が溶融する温度近傍以下の
温度9例えば780〜950℃の範囲で焼成することが
好ましく、810〜900℃の範囲で焼成すればさらに
好ましい。Regarding the firing conditions, the firing temperature is appropriately selected depending on the blending ratio of each raw material, etc., but it is preferable to perform firing at a temperature near the melting temperature of the sample9, for example in the range of 780 to 950 °C, and preferably in the range of 810 to 900 °C. It is even more preferable to bake it with
一方焼成雰囲気は、1回焼成の揚台、窒素雰囲気中又は
酸素を10体積%未満含有する窒素雰囲気中で焼成する
ことが必要とされ、また焼成を2回行なう場合、1次焼
成は大気中、11素雰囲気中、真空中、還元雰囲気中、
中性雰囲気中等特に制限はないが、2次焼成は窒素雰囲
気中又は酸素を7体積%未満含有する窒素雰囲気中で焼
成することが必要とされ、上記以外の条件で焼成を行な
うと急冷工程なしではT C211rOが90に台の2
212相のBi系の酸化物超電導体を得ることが困難で
ある。なお本発明において、仮焼後、必要に応じ粉砕及
び成形を行ない、その後1次焼成してもよい焼成時間は
、5〜10時間でも差し支へ
えはないが、結晶の均質性を高めるには20〜100時
間行なうことが好ましい。On the other hand, the firing atmosphere requires firing on a platform for one-time firing, in a nitrogen atmosphere, or in a nitrogen atmosphere containing less than 10% by volume of oxygen, and when firing is performed twice, the first firing is in the air. , in an 11-element atmosphere, in a vacuum, in a reducing atmosphere,
Although there are no particular restrictions such as a neutral atmosphere, the secondary firing must be performed in a nitrogen atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen, and if firing is performed under conditions other than the above, there will be no quenching step. So TC211rO is 2 in the 90s.
It is difficult to obtain a 212-phase Bi-based oxide superconductor. In the present invention, after calcination, pulverization and molding may be carried out if necessary, and then primary calcination may be performed.The calcination time may be 5 to 10 hours, but in order to improve the homogeneity of the crystals, It is preferable to carry out the treatment for 20 to 100 hours.
本発明の組成においてO(*素)の量は、Cuの量及び
Cuの酸化状態によって定まる。しかし酸化状態がどの
ようになっているかを厳密にそして精度よく測定するこ
とができない。そのため本発明においてXで表わすこと
にした。In the composition of the present invention, the amount of O (*element) is determined by the amount of Cu and the oxidation state of Cu. However, it is not possible to precisely and accurately measure the oxidation state. Therefore, it has been decided to be represented by X in the present invention.
(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
実施例1〜2
ビスマス、ストロンチウム、ベリリウム、バリウム、カ
ルシウム及び銅の比率が原子比でiI1表に示す組成に
なるように二酸化ビスマス(高純度化学研究新製、純度
99.9%)、炭酸ストロンチウム(レアメタリック製
、純度99.9%)、l!!化ベリリウム(高純度化学
研究新製、純度99.9%)、炭酸バリウム(高純度化
学研究新製、純度99.9%)、炭酸カルシウム(高純
度化学研究新製、純度99.9%及び酸化第二銅(高純
度化学研究新製、純度99.9%)を秤量し出発原料と
した。Examples 1-2 Bismuth dioxide (manufactured by Koujun Kagaku Kenkyushin, purity 99.9%) and strontium carbonate were mixed so that the ratios of bismuth, strontium, beryllium, barium, calcium, and copper were as shown in Table II1 in atomic ratio. (Made by Rare Metallic, purity 99.9%), l! ! Beryllium chloride (manufactured by Kojundo Kagaku Kenkyu Shin, purity 99.9%), barium carbonate (manufactured by Kojundo Kagaku Kenkyu Shin, purity 99.9%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyu Shin, purity 99.9%), Cupric oxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) was weighed and used as a starting material.
次に上記の出発原料を合成樹脂製のボールミル内に合成
樹脂で被覆した鋼球ボール及びメタノールと共に充填し
、毎分50回転の条件で72時時間式混合した。乾燥後
アルミナこう鉢に入れ電気炉を用いて大気中で800℃
で10時間仮焼し。Next, the above starting materials were filled into a synthetic resin ball mill together with steel balls coated with synthetic resin and methanol, and mixed for 72 hours at 50 revolutions per minute. After drying, place it in an alumina pot and heat it in the air at 800℃ using an electric furnace.
Bake for 10 hours.
ついで乳鉢で粗粉砕して酸化物超電導体用組成物を得た
。この後肢酸化物超電導体用組成物を147MPaの圧
力で直径30 m m 、厚さ1mmのベレットにプレ
ス成形後9体積比で02:N2=1=20の低酸素雰囲
気中で840℃100時間焼成してBi系の酸化物超電
導体を得た。The mixture was then coarsely ground in a mortar to obtain a composition for an oxide superconductor. This composition for hindlimb oxide superconductor was press-molded into a pellet with a diameter of 30 mm and a thickness of 1 mm at a pressure of 147 MPa, and then baked at 840°C for 100 hours in a low oxygen atmosphere with a volume ratio of 02:N2 = 1 = 20. A Bi-based oxide superconductor was obtained.
実施例3〜4
ビスマス、ストロンチウム、ベリリウム、バリウム、カ
ルシウム及び銅(いずれも実施例1〜2と同一原料を使
用)の比率が原子比で第2表に示す組成になるように秤
量し出発原料とした。Examples 3-4 Starting materials were weighed so that the ratio of bismuth, strontium, beryllium, barium, calcium, and copper (all using the same raw materials as in Examples 1-2) would be as shown in Table 2 in terms of atomic ratio. And so.
以下実施例1〜2と同様の工程を経て酸化物超電導体用
組成物を得た。この後肢酸化物超電導体用組成物を体積
比で酸素雰囲気中で900℃で15時間−次焼成し、つ
いで粉砕した後、147MPaの圧力で直径30mm、
厚さ1mmのペレツトにプレス成形後9体積比で、02
:N2=1.:20の低酸素雰囲気中で830℃で10
0時間二次焼成してBilに酸化物超電導体を得た。Thereafter, a composition for oxide superconductor was obtained through the same steps as in Examples 1 and 2. This composition for a hindlimb oxide superconductor was calcined by volume at 900°C for 15 hours in an oxygen atmosphere, and then crushed, and then crushed into powders with a diameter of 30 mm at a pressure of 147 MPa.
After press molding into pellets with a thickness of 1 mm, the volume ratio of 0.02
:N2=1. : 10 at 830℃ in a low oxygen atmosphere of 20
Secondary firing was performed for 0 hours to obtain an oxide superconductor in Bi.
(比較例)
比較例1〜2
ビスマス、ストロンチウム、カルシウム及び銅の比率が
第3表に示す組成になるように二酸化ビスマス(高純度
化学研究新製、純度99.9%)。(Comparative Examples) Comparative Examples 1 and 2 Bismuth dioxide (manufactured by Kojundo Kagaku Kenkyushin, purity 99.9%) was prepared so that the proportions of bismuth, strontium, calcium, and copper were as shown in Table 3.
炭酸ストロンチウム(レアメタリック製、純度99.9
%)、炭酸カルシウム(高純度化学研究新製、純度99
.9%)及び酸化第二銅(高純度化学研究所製純度99
.9%)を秤量し、以下実施@1〜2と同様の工程を経
てBi系の酸化物超電導体を得た。Strontium carbonate (manufactured by Rare Metallic, purity 99.9
%), calcium carbonate (manufactured by Kojundo Kagaku Kenkyushin, purity 99
.. 9%) and cupric oxide (purity 99 manufactured by Kojundo Kagaku Kenkyusho)
.. 9%) was weighed, and the same steps as in Examples 1 and 2 were carried out to obtain a Bi-based oxide superconductor.
比較例3〜4
ビスマス、ストロンチウム、カルシウム及び銅(いずれ
も比較例ユ〜2と同一の原料を使用)の比率が原子比で
第4表に示す組成になるように秤量し出発原料とした。Comparative Examples 3 to 4 Bismuth, strontium, calcium, and copper (all using the same raw materials as in Comparative Examples Y to 2) were weighed and used as starting materials so that the atomic ratios were as shown in Table 4.
以下実施例3〜4と同様の工程を経てBi系の酸化物超
電導体を得た。Thereafter, a Bi-based oxide superconductor was obtained through the same steps as in Examples 3 and 4.
次に実施例1〜4及び比較例1〜4で得たBi系の酸化
物超電導体を四端子法でT cZ″roを測定した。そ
の結果を第5表に示す。Next, T cZ''ro of the Bi-based oxide superconductors obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was measured by a four-probe method. The results are shown in Table 5.
第5表に示されるように本発明の実施例になる酸化物超
電導体は、90に以上のTc2er0を有す第
表
ることかわかる。また結晶相を調べたところ2212相
であることが確認された。As shown in Table 5, the oxide superconductors according to the embodiments of the present invention have Tc2er0 of 90 or more. Further, when the crystal phase was examined, it was confirmed that it was a 2212 phase.
(発明の効果)
本発明によれば、急冷工程を経ることなく90に以上の
T Czeroを示す2212相の酸化物超電導体を得
ることができる。(Effects of the Invention) According to the present invention, a 2212-phase oxide superconductor exhibiting a T Czero of 90 or more can be obtained without going through a quenching step.
Claims (3)
ム,バリウム及び銅を主成分とし,一般式,Bi_1_
._0Sr_ACa_BBe_CBa_DCu_1_.
_0_±_0_._2O_x (但しA=0.6〜1.2,B=0.35〜0.7,C
=0.05〜0.2,D=0.05〜0.2,数字は原
子比を表わす) で示される組成からなる酸化物超電導体。1. The main components are bismuth, strontium, calcium, beryllium, barium and copper, and the general formula is Bi_1_
.. _0Sr_ACa_BBe_CBa_DCu_1_.
_0_±_0_. _2O_x (However, A=0.6~1.2, B=0.35~0.7, C
=0.05-0.2, D=0.05-0.2, numbers represent atomic ratios).
ンチウム,カルシウム,ベリリウム,バリウム及び銅を
含む各原料を秤量し,ついで混合した後,仮焼,粉砕し
成形後,窒素雰囲気中又は酸素を10体積%未満で含有
する窒素雰囲気中で焼成することを特徴とする酸化物超
電導体の製造法。2. Each raw material containing bismuth, strontium, calcium, beryllium, barium, and copper is weighed so as to have the composition described in claim 1, then mixed, calcined, pulverized, molded, and then heated in a nitrogen atmosphere or with 10 volumes of oxygen. A method for producing an oxide superconductor, the method comprising firing in an atmosphere containing less than % nitrogen.
ンチウム,カルシウム,ベリリウム,バリウム及び銅を
含む各原料を秤量し,ついで混合した後,仮焼,一次焼
成し,さらに粉砕後,成形し,再度窒素雰囲気中又は酸
素を7体積%未満で含有する窒素雰囲気中で二次焼成す
ることを特徴とする酸化物超電導体の製造法。3. Each raw material containing bismuth, strontium, calcium, beryllium, barium, and copper is weighed so as to have the composition described in claim 1, and then mixed, calcined, and fired for the first time, and then crushed, shaped, and heated again with nitrogen. A method for producing an oxide superconductor, comprising performing secondary firing in an atmosphere or in a nitrogen atmosphere containing less than 7% by volume of oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2243294A JPH04124025A (en) | 1990-09-13 | 1990-09-13 | Oxide superconductor and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2243294A JPH04124025A (en) | 1990-09-13 | 1990-09-13 | Oxide superconductor and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04124025A true JPH04124025A (en) | 1992-04-24 |
Family
ID=17101702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2243294A Pending JPH04124025A (en) | 1990-09-13 | 1990-09-13 | Oxide superconductor and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04124025A (en) |
-
1990
- 1990-09-13 JP JP2243294A patent/JPH04124025A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04124025A (en) | Oxide superconductor and its production | |
JPH04124022A (en) | Oxide superconductor and its production | |
JPH04124024A (en) | Oxide superconductor and its production | |
JPH04124021A (en) | Oxide superconductor and its production | |
JPH04124023A (en) | Oxide superconductor and its production | |
JPH04124026A (en) | Oxide superconductor and its production | |
JPH04124018A (en) | Oxide superconductor and its production | |
JPH04124020A (en) | Oxide superconductor and its production | |
JPH04124028A (en) | Oxide superconductor and its production | |
JPH04124027A (en) | Oxide superconductor and its production | |
JPH04124017A (en) | Oxide superconductor and its production | |
JPH04124019A (en) | Oxide superconductor and its production | |
JPH04124029A (en) | Oxide superconductor and its production | |
JPH04124031A (en) | Oxide superconductor and its production | |
JPH04124016A (en) | Oxide superconductor and its production | |
JPH04124015A (en) | Oxide superconductor and its production | |
JPH0238359A (en) | Production of superconductor | |
JPH05262527A (en) | Oxide superconductor and its production | |
JPH04124030A (en) | Production of oxide superconductor | |
JPH04104940A (en) | Oxide superconductor and production thereof | |
JPH03265561A (en) | Production of high-density oxide superconductor | |
JPH04124014A (en) | Oxide superconductor and its production | |
JPH03223118A (en) | Production of oxide superconductor | |
JPH03290318A (en) | Oxide superconductor and production thereof | |
JPH01141871A (en) | Production of superconducting material |